

NDK-High-E & Sim/Reco

Aaron Higuera University of Houston

NDK-High-E

- * Nucleon Decay
- * Atmospheric Neutrinos
- * Cosmogenic

One person's signal is another person's background

Nucleon Decay

Atmospheric Neutrinos Cosmogenic

* Cosmogenic

Calibration w/ cosmic-ray muons

* Atmospheric Neutrinos

Atmospheric neutrinos provide a complementary analysis approach to beam neutrinos, and can help resolve ambiguities in beam-only analyses

Proton Decay Analysis

Analysis

Far Detector Task Force Report

$p \rightarrow K^{\mathbb{R}equirement}$		$p \rightarrow \bar{\nu} K^+_{\mu 2}$ signal efficiency (%)	Atmospheric ν background rate (Mton ⁻¹ · year ⁻¹)
	None	100.0	2.9×10^{5}
	Kaon tracking efficiency	61.8	N/A
	Kaon and muon ID	38.0	9.2×10^{3}
	Not shower-like	30.7	1.0×10^{3}
	Vertex-muon separation	23.2	1.2×10^{2}

Far from what we promised in CDR

We would focus only on $K \rightarrow \mu^+ + v_\mu$ events and atmospheric neutrino events as background

CNN Tools on the Proton Decay Analysis

CNN Tools on the Proton Decay Analysis

- To improve reconstruction
- To improve analysis

Proton Decay Analysis

Only on $K \rightarrow \mu^+ + v_\mu$ events

After using CNN

Before using CNN

MVA for Proton Decay

MVA_BDT

How we move forward?

track-like hits(CNN) + PMA (linecluster)

The End

MVA for Proton Decay

Signal: $K \rightarrow \mu^+ + v_\mu$ events Background: Atmospheric events

- Number of dcy vtx
- golden event
- Track-like hits
- EM-like hits
- Number of showers
- Total shower energy
- N tracks/trk-like hits
- N showers/em-like hits
- •N trks N vtx

MVA for Proton Decay

Signal: $K \rightarrow \mu^+ + v_\mu$ events Background: Atmospheric events

- Number of tracksPIDA
- Track length
- P by range