

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

01/09/2017

Cryocamera update

ProtoDUNE-DP

Thierry VIANT

Camera scheme

WA105

Ravotech camera needs 6 wires:

- 4 wires for data
- 2 wires for power (+12V, GND)
- still 2 other wires with a usual ethernet cable

Components inside :

- Heaters : 2 x heating carpet 12V/2W
- Ravotech camera : ethernet camera 12V 0.2 W
- temperature sensor : PT1000 glued against the camera

Intensity at 12 V :

Camera : 150 mA Heaters : 350 mA Camera ON + Heaters ON : **500 mA/camera**

For 12 cameras, we need power supplied : 12v / 6 A

Heat dispersion of the ethernet cable:

- Pictures taken with a IR camera , with and witout heaters on (atm temp : 26°C)
- Infra red pictures show :
 - no heat elevation without the heater
 - ~1°C elevation temp after 20 min

Camera ON / Heaters OFF (150mA)

Camera and Heaters ON (500mA)

Camera temperature regulation

- Computer with Labview
- 2 x compactRIO of National Instrument (Labview)
 - NI9219 (4 ports)
 - NI9481 (5 ports)
- Labview software measure camera temp (via the NI9219) and switch on/off the heater (via the NI9481)

WA104

Ravotech camera needs to have a t° more than -80°C (see backup , with Revotech camera restarting test slide)

Main cameras scheme for the 6x6x6

01/09/2017

Steps	Week
Finalize the camera prototype with polymer (CERN polymer team)	36 (next week)
Test the prototype in gas argon during few weeks	36 - 37 - 38 - 39
Build PCBs for the flanges connection $ ightarrow$ production (with Cosimo)	37
Labview with RaspBerry Pi (temperature regulation software)	37
Software (in PVSS ?) : - viewer - streaming recording	37 →
Camera box building for rack (need PCBs)	38 - 39
Build 6 prototypes connected throught the flange (final config) - Tested in argon gas	40 → 43
Camera installation in the 6x6x6 cryostat	2 (2018)

Backup

• 12 cameras fixed on the top cable trays:

WA105

- 2 x VHV feedthroughts
- 2 x cooling down nozzles
- 1 x beam plug
- 7 x liquid argon level + CRP
- No cameras in the liquid
- Safe distance from HV

Camera inside cryostat

30/06/2017

WA105

1 0

30/06/2017

Revotech camera restarting test

30/06/2017

Goal: test stability and restarting of the camera once immersed in liquid Argon

C. CANTINI, S. MURPHY, Y. RIGAUT, T. VIANT, protoDUNE-DP Design «Cryogenics cameras prototyping»

The ethernet cable connected to each camera in the cryostat will be :

- Cable 100 ohm S/FTP 4P1200MHz CAT7A SH
- Double shielded
- Categorie 7A
- Zero halogen
- Low outgassing
- 10 Gb
- POE

C. CANTINI, S. MURPHY, Y. RIGAUT, T. VIANT, protoDUNE-DP Design «Cryogenics cameras prototyping»