

An engineering review of the ISIS facility extracted proton beam windows.

Daniel Blanco Lopez Design Engineer, Target Design Group

UK Research and Innovation Rutherford Appleton Laboratory - ISIS Neutron and Muon Source

Agenda

- Introduction to ISIS
- TS1 Proton Beam Window (PBW)
 - EPB1 TS1 Interface
 - Configuration
 - Monitoring
- TS2 Proton Beam Window (PBW)
 - EPB2 TS2 Interface
 - Configuration
 - Monitoring
- Window Replacement (TS1 vs TS2)
- Summary/Comparison
- Future work

ISIS First Target Station (TS1)

- In operation since Dec 1984
- Target 12 tungsten plates clad in tantalum
- Typically 160 µA of 800 MeV protons
- Maximum power density ~400 MW/m³
- Peak energy per pulse ~11 MJ/m³/pulse
- 4 out of 5 pulses (50Hz)
- Beam sigma of ~17mm (overall beam spot diameter ~70mm)

ISIS Second Target Station (TS2)

- In operation since 2008
- Target tungsten cylinder clad in tantalum
- Typically 40 µA of 800 MeV protons
- Maximum power density ~700MW/m³
- Peak energy per pulse ~70MJ/m³/pulse.
- 10 Hz (1 out of every 5 pulses)
- Beam sigma of ~6mm (overall beam spot diameter ~36mm)

TS1 Proton Beam Window (PBW)

- Double window with water flowing between.
- Ø 145 mm, 3500 mm long
- Each window ~3mm thick Inconel 718.
- Windows welded to austenitic stainless steel support tubes.
- Beam heat input ~ 2500W.
- Water cooled, 26 litres/min.
- First one operated for ~25 years, replaced in 2010.

EPB1 – TS1 Interface

- Passes thought the monolith shielding and target void vessel.
- 546 mm from the Target face
- Flange built into the shielding wall (EPB tunnel)

TS1 PBW Configuration

BACK END SECTION

FRONT END SECTION

Outer Inconel 718 Inlet/Outlet **Inner Inconel 718** Water Channel Science & Technology Facilities Council

TS2 Proton Beam Window (PBW)

- 0.5mm thick 5083-O aluminium alloy window
- Ø57 mm, 630 mm (nose section)
- Friction welded joint to austenitic stainless steel support tube.
- Beam heating 10W total.
- Passive cooling by void vessel helium atmosphere.
- Operating since 2008, failure 2017

EPB2-TS2 Interface

TS2 PBW Assembly

TS2 PBW Monitoring

TS1 PBW Replacement

- 6 month shutdown
- High dose
- Mobile specialist tooling

TS2 PBW Failure and Replacement (Dan Coates talk)

Summary TS2 PBW

TS1 PBW

- Material
 - Inconel 718
- Thickness
 - 2 Plates 3 mm thick, separated by 1.5 mm water channel
- 160 µA
- Heat deposition
 - 2500 W
- Cooling
 - Water Cooling, 26 l/min
- Distance to the target
 - 546 mm
- Replacement
 - 6 month shutdown
 - High rad levels (7.8 Sv/h on contact)

- Estimated Life Span
 - 25+ years

- Material
 - Al Alloy 5083
- Thickness
 0.5 mm
- 40 µA
- Heat deposition
 - 10 W
- Cooling
 - Passive cooling, helium
- Distance to the target
 - 383 mm
- Replacement
 - 2 month shutdown
 - In cell
- Estimated Life Span
 - 6 years*

Science & Technology Facilities Council

Future Work

- Remove the PBW from the Hot Cell
- Test Sample cycle loading
- Improve life assessment procedures
- Better understanding of radiation damage and embrittlement mechanisms in PBW
- Post Irradiation Examination

Science & Technology Facilities Council

Thank you – Questions?

