

7th High Power **Targetry Workshop** 4th – 8th June 2018 FRIB, East Lansing, Michigan, US

Last Updates of the R&D Activities for the Redesign of the CERN's AD-Target

C. Torregrosa, M. Calviani, A. Perillo-Marcone, N. Solieri M. Butcher, J. Canhoto, R. Ferriere, L. Grec, E. Fornasiere

1) INTRODUCTION: THE AD-TARGET

Antiprotons are produced by the collisions of 26 GeV/c proton beams coming from the CERN Proton Synchrotron (PS) with a **fixed target (the AD-Target**).

Primary beam energy = 26 GeV. Time-averaged power = 1 kW. Pulse power = 11.7 GW

- A redesign of the AD-Target is on-going to guarantee antiproton physics at CERN during next decades.
- Antiproton production requires a very compact target, leading to the use of a very high **density core material** (iridium, $\rho = 22.5$ gr/cm3) to enhance the interaction with the primary beam in a short length.
- The 3 mm diameter target core made iridium is **subjected to extremely rapid heating** \bullet (max $\Delta T=2000$ °C in less than 0.5 μ s) and dynamic stresses (several GPa in compression)

4) NON-DESTRUCTIVE PIE OF THE HRMT-42 EXPERIMENT

Non-destructive Post Irradiation Examinations:

Complementary approach consisting in:

Results X-ray Tomography:

- X-ray Tomography (at European Synchrotron Radiation Facility) High Resolution, evaluating EG-Ta interface
- Neutron Topography (at Neutra line in Paul Scherrer Institut) Penetration through the Ta core to reveal its internal state
- Extensive plastic in the Ta
- It seems that the EG matrix can adapt to changes in the Ta shape

and tension) when impacted by the primary proton beam.

Several R&D activities triggered over the past years to learn about the dynamic response of the target core and to propose a new design

2) PREVIOUS NUMERICAL AND EXPERIMENTAL STUDIES OF THE TARGET RESPONSE TO PROTON BEAM IMPACTS

Use of **hydrocodes** for simulating the extreme dynamic response of the target core when subjected to proton beam impacts.

Simulations predicted fracture of the target core and potentially the graphite **containment matrix,** which could eventually lead to a <u>drop of antiproton production yield</u>

An Experiment called HRMT27 exposed several high density materials such as Ir, W, 11. W-La, Mo, TZM and Ta to equivalent dynamic conditions as reached in the AD-Target core by using the HiRadMat facility.

- Most of the materials suffered damage from conditions 7-5 less demanding than the present in the AD-Target
- Only Ta apparently survived AD-Target conditions without internally cracking

Ti-6Al-4V Capsule

3) HRMT-42 TARGET: A FIRST SCALED TARGET PROTOTYPE

Ta became the baseline core material for the new design

Results Neutron Tomography:

9 2 6 10 5 7 8 3 4

- Neutron tomography shows the formation of voids in the Ta core, especially in the downstream ones.
- These voids did not appear in HRMT-27 experiment (successive plastic deformation may play an important role)
- Voids appear to be similar to "spalling" mode of fracture for Ta described in literature.

Further microstructure analysis after target opening will investigate this mode of fracture

Opening of the target at CERN in a dedicated machine adapted to cut activated material

- Microscope and SEM
- Micro-indentation

Rod #9

5) DESTRUCTIVE PIE OF THE HRMT-42 EXPERIMENT (on-going)

• Core of made of ten 8 mm diameter Ta rods.

matrix of the target has been built:

A first scaled prototype of the core and

- Embedded in a matrix made of compressed layers of **Expanded** Graphite (EG).
- Encapsulated in a Ti-6V-4Al e-beam welded container.

Manufacturing:

- Compression of the EG graphite up to 30 MPa (27% compression)
- The goal is to guarantee a continuous contact between the Ta core and the matrix thanks to Poisson's effect.

The HIRADMAT-42 Experiment: Testing the target under 440 GeV/c proton beam impacts using the CERN's HiRadMat facility

6) PROTAD EXPERIMENT: TESTING REAL SCALE PROTOTYPES

<u>Real scale prototypes</u>, including a pressurized air cooling system, are currently being manufactured.

- Six targets with different core and matrixes configurations will be tested under proton beam at the HiRadMat facility in August 2018.
- The core configurations are selected based on pbar optimization studies performed by Target 4: FLUKA simulations. Target 1: Core: Ø 10 mm Ta2.5W Core: Ø 3 mm Ir +Ø 2 mm Ta2.5W Matrix: + Ø 2 mm lr tube Isostatic graphite Matrix: Isostatic graph Target 2: Target 5: Core: Ø 10 mm Ta + Core: Ø 10 mm Ta + Ø 2 mm Ir Ø 10 mm W + W-1.1TiC Matrix: Ø 10 mm Ir Compressed EG Ø 2 mm Ta tube Matrix: Compressed EG

(exposed to equivalent conditions as reached in the AD-Target facility)

Especially designed robot-friendly clamping system for disassembling the target by just removing one M12 screw

The six targets will be placed in a large Multipurpose Aluminum tank, together with other targets tested in HiRadMat for CERN target applications

