

Radiation Protection at CERN

H. Vincke on behalf of the RP group from CERN

Outline

- Introduction to CERN incl.
 - Radiation Protection Mandate at CERN
 - Legal Framework CERN's Radiation Protection Regulation
 - Annual dose limits
 - Definition of "radioactive"
- Radiation Monitoring
- Dosimetry at CERN
- CERNs calibration hall
- Intervention planning and ALARA
- Radioactive waste treatment
- R&D in RP
- Learn from the past prepare for the future

HSE Occupational Health & Safety and Environmental Protection Unit

CERN <u>CONSEIL EUROPÉEN POUR LA RECHERCHE NUCLÉAIRE</u>

1954:

- founded by 12 European states
- first European organisation
- fundamental research on nuclear physics

Sur le terrain du futur institut nucléaire

Sous la conduite de M. A. Picot, les membres du Conseil européen pour la recherche nucléaire se sont rendus hier à Moyrin pour reconnaître le terrain où s'élèvera le Centre nucléaire (voir en Dernière heure) (Photo Freddy Bertrand, Genève)

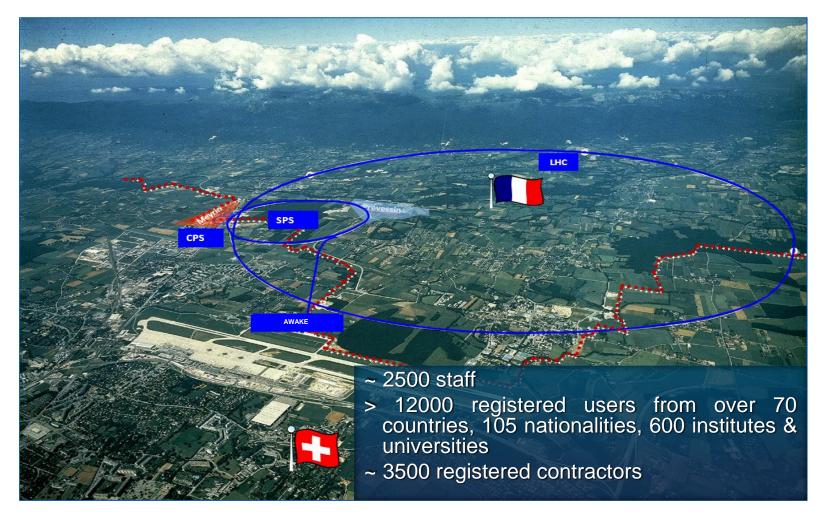
La Suisse du 30 octobre 1953

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

The First Accelerator

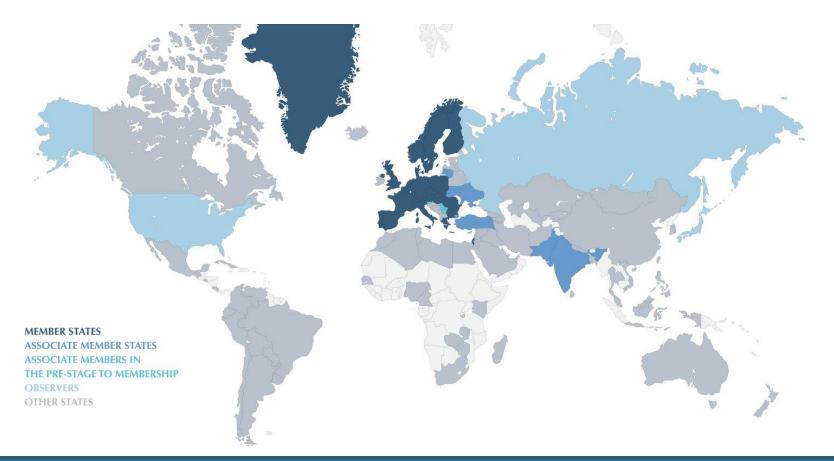
First beam: 1st August 1957

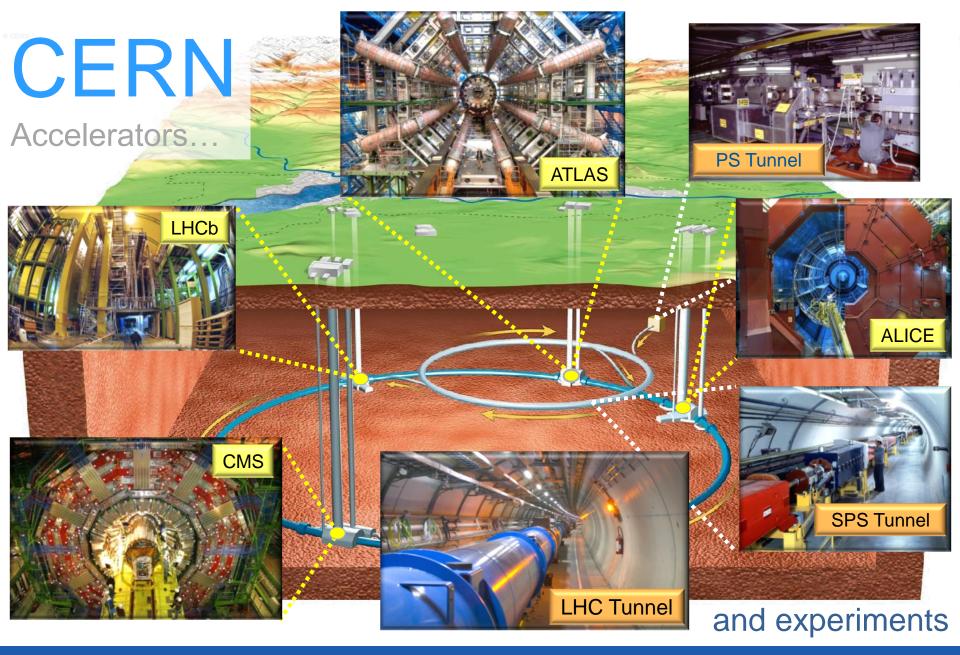

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

th High Power Targetry Workshop, Michigan, US, June 2018

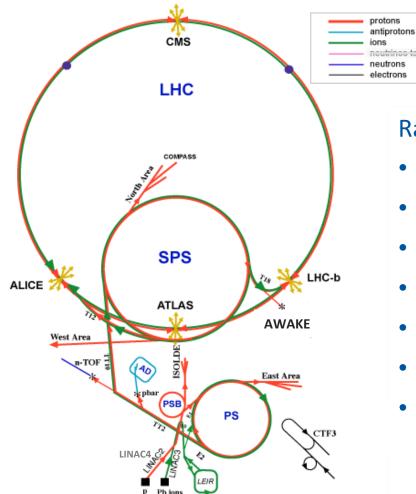
4


CERN


HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

- 22 Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland and the United Kingdom.
- Associate Member States: Cyprus, Serbia and Slovenia; India, Lithuania, Pakistan, Turkey and Ukraine
- Observers States: Japan, the Russian Federation, the United States of America, the European Union, JINR, and UNESCO


HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

th High Power Targetry Workshop, Michigan, US, June 2018

7

CERN Installations

Radiation Areas and Radioactive Laboratories:

- ~ 50 km accelerator tunnel
- ~ 60 access points
- ~ 160 experiments
- ~ 10000 radiation workers
- Radioactive Ion Beam facility ISOLDE
- Class A, C laboratories
- Spallation source n-TOF, Antiproton Decelerator, electron accelerator facility, several huge experimental halls

HSE Occupational Health & Safety and Environmental Protection Unit

CERN's Radiation Protection Regulation CERN is an intergovernmental organization and not bound to any national law* - but

Taken from B. Lorenz, WKK Symposium April 2008 and modified

the parties

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

A bientôt les protons » -rétrospective sur l'exploitation des premiers protons du LHC.

Une grande étape pour la sécurité

- Dernières nouvelles du LHC : passage aux ions lourds réussi
- ATLAS : au-delà des esperances
- CMS : au « top » de sa forme
- ALICE : le meilleur reste à venir
- LHCb : plus qu'une expérience de précision, un détecteur prêt à faire des découvertes
- TOTEM : des milliers d'événements intéressants
- Protection contre les rayonnements ionisants et sûreté des installations signature par le CERN et ses Etats hôtes d'un accord tripartite.
- Pleine puissance pour le premie puissance pour le premier module du Linac4
- Le CERN en détails Un fonds dédié à l'innovation technologique
- Réunion de concertation sur les infrastructures électroniques
- Exotica : à l'affût des événements exotiques PARTICULE-lèrement enrichissante cette nuit au
- Derrière les machines Le coin de l'Ombuds : Entre collègues
- Frank Blythe (1924-2010) Denis Gudet (1955-2010)

- Subscribe by RSS

Une grande étape pour la sécurité

Ces derniers jours ont été jalonnés de grands moments pour la physique du LHC, tandis que nous passions de l'exploitation avec protons à l'exploitation avec ions plomb. Chaque nouvelle étape a été largement commentée et je vous ai tenus informés par des courriels. Un événement moins visible et néanmoins vital pour le bon fonctionnement du Laboratoire est l'accord que nous signerons avec nos États hôtes le 15 novembre prochain. Cet accord tripartite, le deuxième que nous signons en deux mois, nous permettra de rationaliser la protection contre les rayonnements et la sûreté radiologique au CERN.

Archives | Contact | S'abonner | | Association du personnel | Accuel CER

Le mot du DG

Ce nouvel accord remplacera les accords bilatéraux actuels, qui établissent les procédures applicables sur la partie française et la partie suisse du domaine. Sur le plan

(recherche) english | français

Unite

HSE

RELATIO

TRIPARTI

Accord trip

du 15-11-

Comité trip

ûreté et radiop

Issue No. 46-47/2010 - Lundi 15 novembre 2016

au aomaine. Sur le plan pratique, le nouvel accord simplifie les choses en harmonisant les procédures administratives tout en garantissant l'application des procedures auministratives tout en garantissant rapplication meilleures pratiques en matière de protection contre les memeures pratiques en matiere de protection cont rayonnements et de sûreté radiologique au CERN.

Cet accord marque l'aboutissement de plusieurs mois de

Cet accord marque l'aboutissement de plusieurs mois de discussions approfondies avec l'Autorité de sûreté nucléaire, en discussions approfondies avec la conté authinue an enirere la fonder la contra de la contra d discussions approtongies avec l'Autorité de sureté nucléaire, en Brance, et l'Offrice fédéral pour la santé publique, en suisse. Il a France, et l'Offrice fédéral pour la santé publique en matière de rrance, et l'Urrice regeral pour la sante publique, en Suisse. Il a pour but d'améliorer les pratiques et procédures en matière de pour but d'améliorer les pratiques et de série d'accordine a serie d'accordine de la cordine de l pour but d'améliorer les pratiques et procédures en matière de radioprotection et de sûreté radiologique, ainsi que d'accroître la transparence des rapports que le CERN fait à la France et la cuiere conformément à con engagement de collaborer avec ses transparence des rapports que le CERN fait à la France et la Suisse, conformément à son engagement de collaborer avec ses Étate bâtee dans ce domaine Une transparence accrue implique des efforts considérables de la Une transparence accrue implique des efforts considérables de part du CERN pour tenir à jour ses règles, ses pratiques et ses documente en matière de sûreté radiologique et de

documents en matière de sûreté radiologique et de radioprote cion pour toutes ses insultion nécessie pour anciennes. C'est cependant une évoit de activités du CEN à grantir la durabilité environnementale des activités du certes grantir la durabilité environnementale de cet accord et remercie très long terme. Je me félicite donc de cet accord et remercie très garantir la durabilité environnementale des activités du CERN à long terme. Je me félicite donc de cet accord et remercie très sincèrement les trois parties aui ont travaillé de manière long terme. Je me félicite donc de cet accord et remercie sincèrement les trois parties qui ont travallé de manière constructive nour le mettre en place. sincerement les trois parties qui ont t constructive pour le mettre en place.

CERN **RATIFICATION OF THE TRIPARTITE AGREEMENT ON SAFETY AND RADIATION PROTECTION**

(September 2011)

ACCORD

ENTRE

L'ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE.

LE CONSEIL FEDERAL SUISSE,

ET

LE GOUVERNEMENT DE LA REPUBLIQUE FRANÇAISE

relatif à la Protection contre les rayonnements ionisants et à la Sûreté des Installations de l'Organisation européenne pour la Recherche nucléaire

Pour l'Organisation

Pour le Conseil fédéral suisse Pour le Gouvernement français

Rolf Heuer

Pascal Strupler

Directeur général

Directeur de l'Office fédéral de santé publique

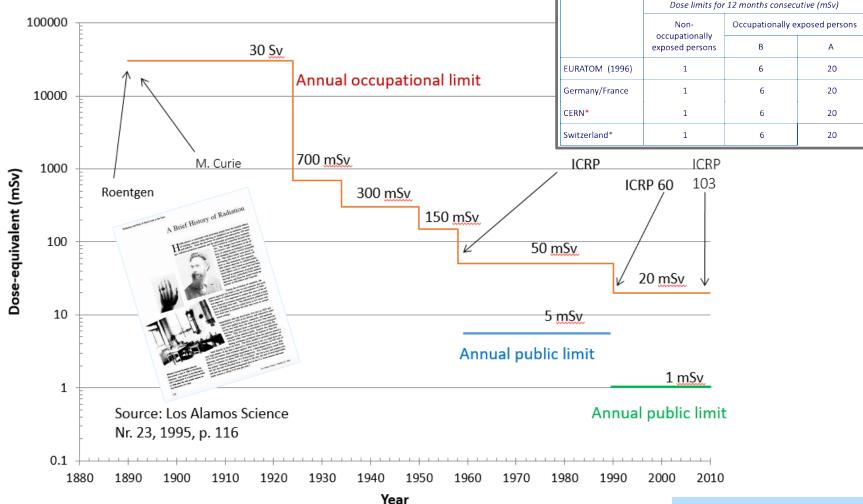
Président de l'Autorité de sûreté nucléaire

ational Health & Safety and Environmental Protection Unit

10

André-Claude Lacoste

Mandate of Radiation Protection at CERN



HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Evolution of annual dose limits

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

1 Sv = 100 Rem

When is Material Radioactive?

Radioactive if one of the 3 following 'requirements' are fulfilled:

1) Activity

- Specific activity exceeds the CERN (= ORAP) exemption limits
 AND
- total activity exceeds the CERN (=ORAP) exemptions limits (based on a 1 kg object with the given spec activity in the ORAP)

			Beurteilungsgrössen				Befreiungs- grenze	Bewilligungs- grenze	Richtwerte			
Radionuklid	Halbwertszeit	Zerfallsart/ Strahlung	e _{inh} Sv/Bq	e _{ing} Sv∕Bq	h ₁₀ (mSv/h)/ GBq in 1 Abstand	h _{0,07} (mSv/h)/ mGBq in 10 cm Abstand	h _{c,0,07} (mSv/h)/ (kBq/cm ²)	LL Bq/g	LA Bq	CA Bq/m ³	CS Bq/ cm ²	Instabiles Toch- ternuklid
	2	3	4	5	6	7	8	9	10	11	12	13
Co-58 Co-58m	70.86 d 9.04 h	ec, β^+/ph	1.70E-09	7.40E-10 2.40E-11	0.147	300	0.3 <0.1	1.E+00	3.00E+06 3.00E+08	5.00E+03 5.00E+05	30 1000	→ Co-58 [6]
Co-60	5.2713 a	β^{-}/ph	1.70E-08	3.40E-09	0.366	1000	1.1	1.E-01	3.00E+05	5.00E+02	3	
Co-60m	10.467 min	it, β^-/ph	1.20E-12	1.70E-12	0.001	20	< 0.1		4.00E+09	7.00E+06	1000	\rightarrow Co-60 [6]
Co-61 Co-62m Ni-56 Ni-57	1.650 h 13.91 min 6.075 d 35.60 h	0.1								tial origin, i		ollowing su
Ni-59	1.01 E5 a	ec, β^{+} rule	Should L	e applie	utore	novei	, 110111		erregula		л.	

 $\sum \frac{a_i}{LL_i} < 1$

HSE

Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

When is Material Radioactive?

2) Dose rate

- Ambient dose equivalent rate measured in 10 cm distance of the item exceeds 0.1 uSv/h after subtraction of the background.
 - Slightly radioactive < 10 uSv/h
 - Radioactive < 100 uSv/h
 - Highly radioactive > 100 uSv/h

3) Surface contamination

 1 Bq/cm² in case of unidentified beta- and gamma emitters and 0.1 Bq/cm² in case of unidentified alpha emitters. Once a radio-nuclide has been identified then the CS-values (= ORAP) can be used.

ORAP = Swiss Radiological Protection Ordinance

HSE Occupational Health & Safety and Environmental Protection Unit

Radiation & Environmental Monitoring

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Radiation & Environmental monitoring system

Three main families of subsystems with different implications in the accelerators and experiments operation:

- A. Radiation Protection monitors with local radiation alarm and/or interlock function Beam-on
 - Stray radiation monitoring (e.g protecting workers during beam-on in accessible areas)
- B. Radiation Protection monitors without alarm and without interlock
 Beam-off
 - Induced activity monitoring (e.g. protecting workers during beam-off inside accelerators)
- C. Environment monitoring
 - Radiation monitoring (stray radiation, releases of radioactivity in air and water)
 - "Conventional" monitoring (Air quality, water parameters, hydrocarbon)

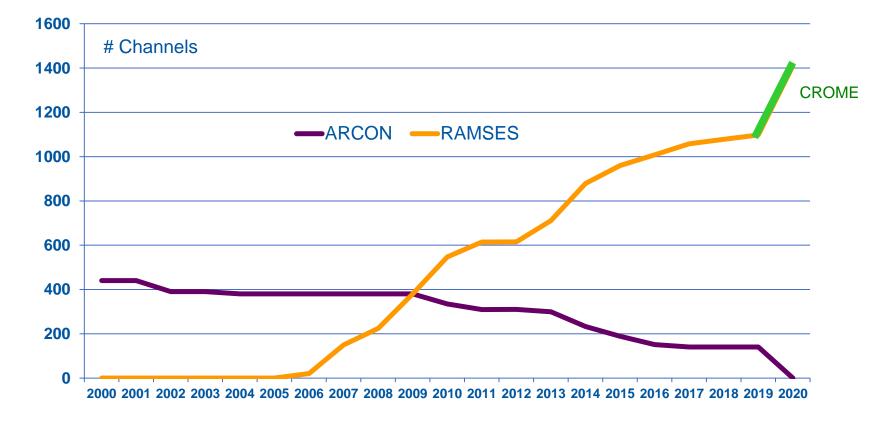
Radiation Protection monitoring

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

/th High Power Targetry Workshop, /lichigan, US, June 2018

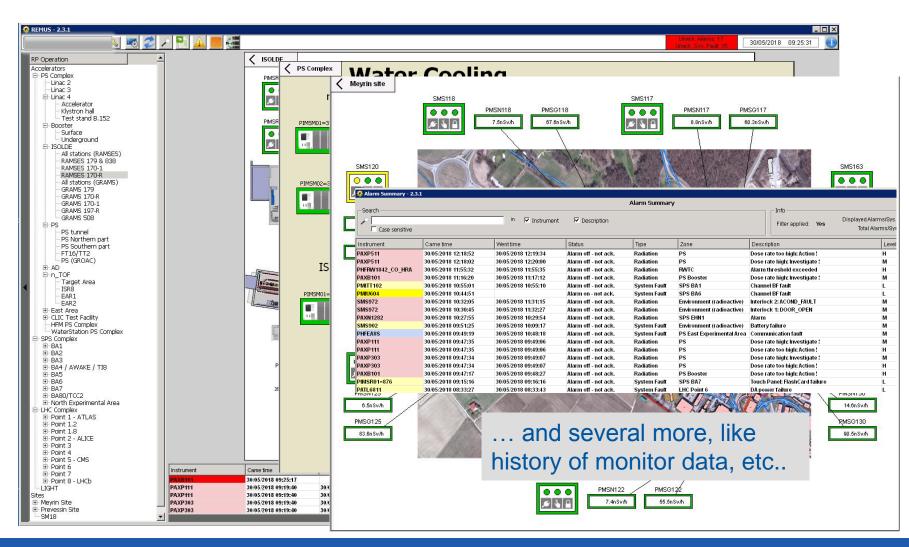
Environmental monitoring



HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Evolution of Environmental and RP monitoring channels


Year

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

REMUS <u>Radiation and Environmental Monitoring Unified Supervision</u>

HSE Occupational Health & Safety

And Environmental Protection Unit

4 - 8 June 2018

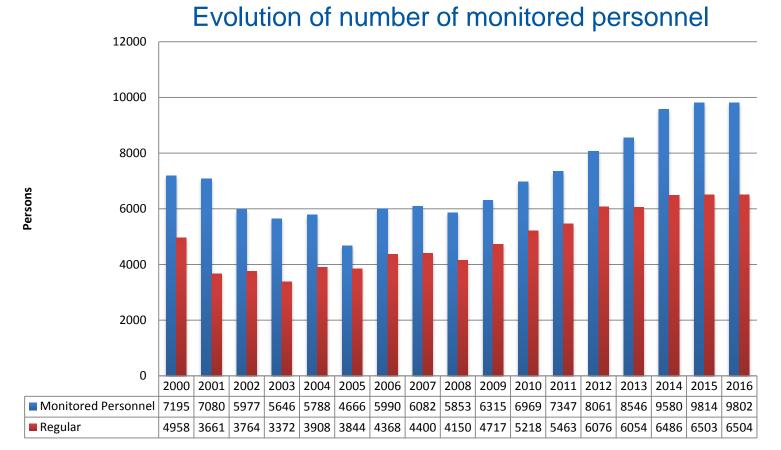
Radiological impact 2015

- CERN has clearly respected the limit value of 300 µSv defined in its Code F for members of the public.
- The estimated maximal effective doses for the reference population groups located:
 - 16 uSv near the Meyrin site and
 - 19 uSv near the Prévessin sites
- Despite the low doses mitigation measures are under study.

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Dosimetry

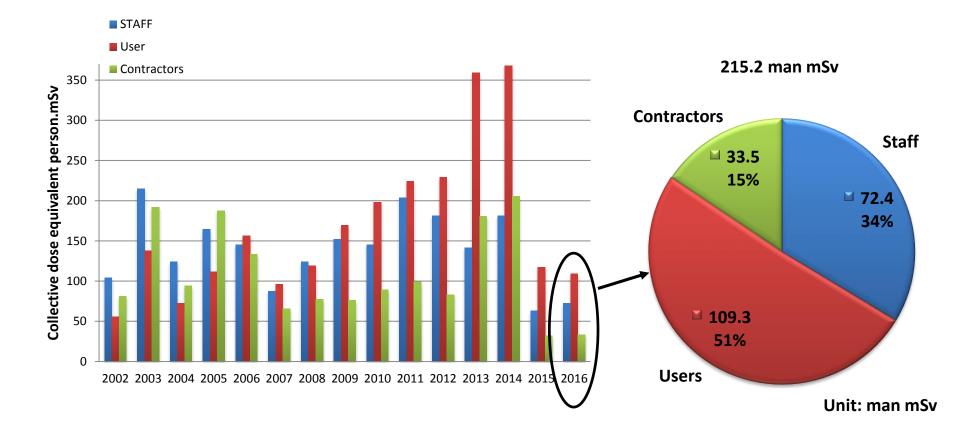

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

7th High Power Targetry Workshop,, Michigan, US, June 2018

22

Personal Dosimetry


Monitored Personnel: Total number of monitored personnel, including assignments for less than one year Regular: Number of personnel having dosimeter for entire year

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Total collective dose distribution over different categories of personnel in 2016

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Distribution of personal doses over different dose intervals

Dose	Persons										
interval	Concerned										
(mSv)											
years	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
0.0	4192	5131	5143	5042	5418	5315	6002	6273	7616	8704	8788
0.1-0.9	1738	898	1020	1219	1514	1984	2030	2188	1816	1108	1003
1.0-1.9	37	33	40	39	31	31	29	82	133	2	11
2.0-2.9	17	2	3	13	6	7	0	3	14	0	0
3.0-3.9	4	1	1	2	0	0	0	0	1	0	0
4.0-4.9	2	1	1	0	0	0	0	0	0	0	0
5.0-5.9	0	0	0	0	0	0	0	0	0	0	0
> 6.0	0	0	0	0	0	0	0	0	0	0	0
SUM PERS	5990	6066	6208	6315	6969	7337	8061	8546	9580	9814	9802

- The majority of monitored persons at CERN received a dose of 0 mSv
- In 2016, only 11 persons exceeded an annual dose of 1 mSv : < 1%
- Maximum annual individual dose: 1.9 mSv

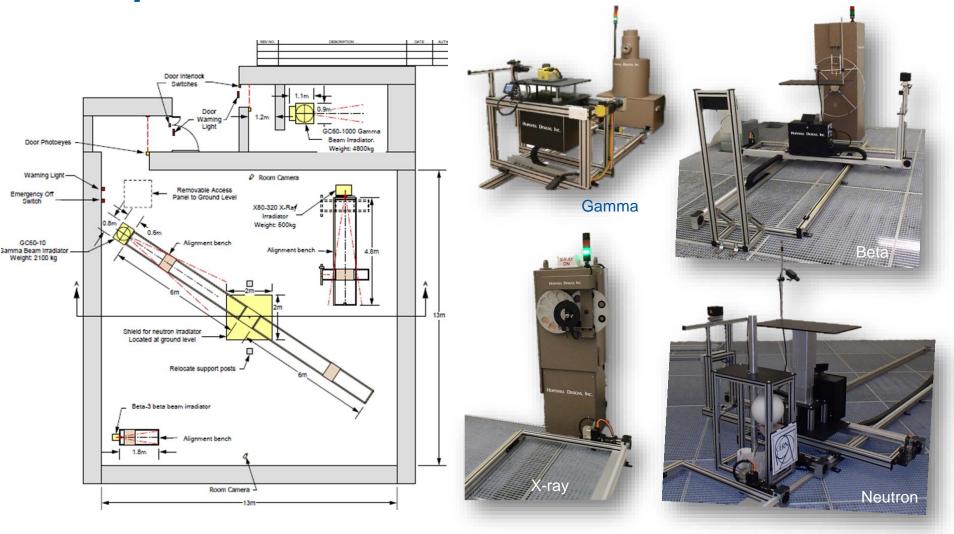
Calibration hall

HSE Occupational Health & Safety and Environmental Protection Unit


4 - 8 June 2018 4 - 8 June 201 th High Power Targetry Workshop, Michigan, US, June 2018

26

Calibration hall


HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

th High Power Targetry Workshop, Michigan, US, June 2018

27

Disposition of the irradiators

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Material tested/calibrated every year

The quantity of instruments to be calibrated is increasing each year

- 10000 personal dosimeters (DIS-1) distributed / calibrated every year
- 1500 operational dosimeters (DMC) calibrated every year
- > 600 fixed ionization chambers
- > 1000 portable radiation monitoring devices
- Test facility for research monitors.
- Test facility for new instruments.

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

7th High Power Targetry Workshop, Michigan, US, June 2018

DMC

DIS

Intervention planning and ALARA

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

ALARA at CERN

- Interventions or group of intervention can be classified in three ALARA levels
- Level definition mainly depends on planned collective or individual doses (other criteria application depends on risk analysis)
- Graduate approval workflow depending on the level

	Level 1	Leve	el 2	Level 3	
Collective dose	0.5 man.mSv		5 man	.mSv	
Individual dose	100) µSv	1000 μSv		
Dose rate	50 µSv/h		2 m	Sv/h	
Atmospheric contamination	5 CA		200	СА	
Surface contamination	10 CS		100	CS	

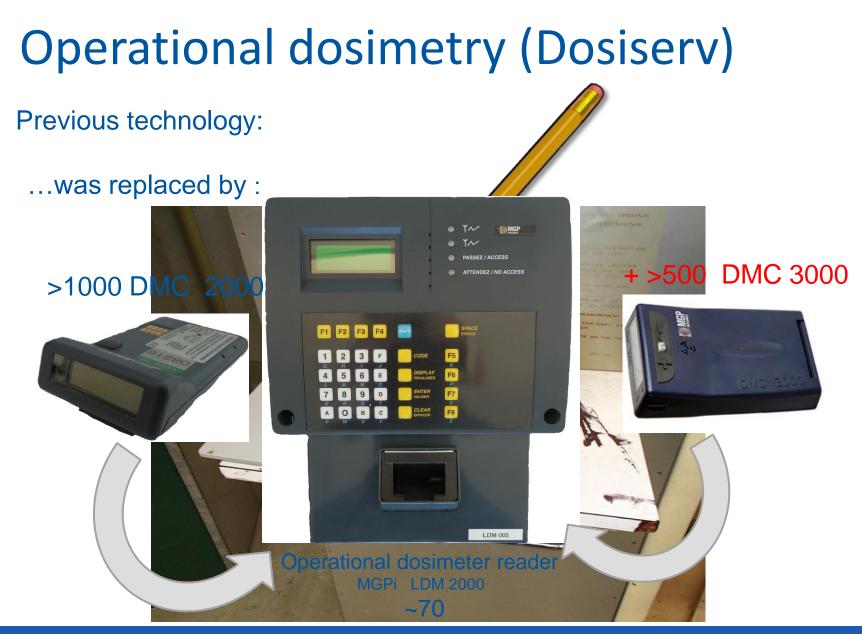
HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

IMPACT application

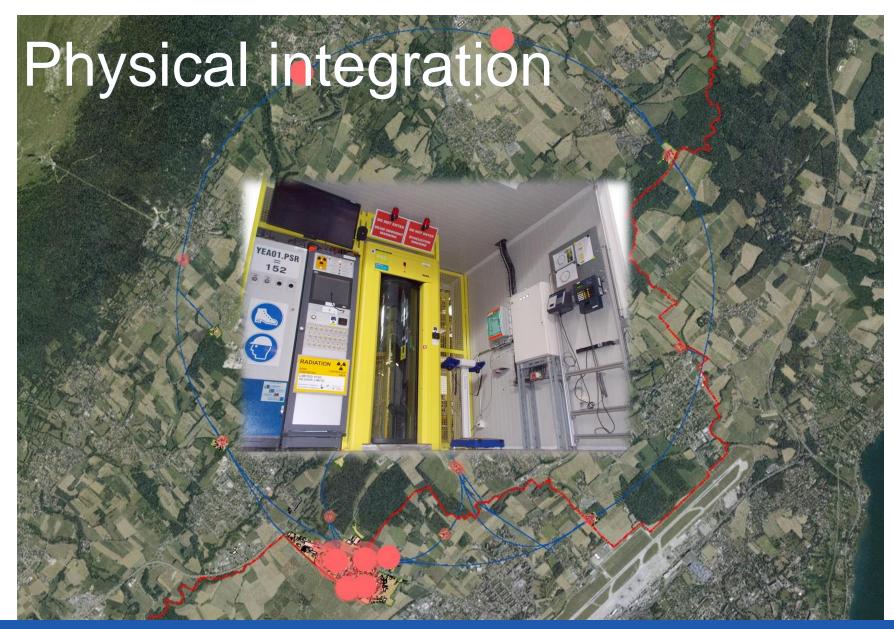
- <u>Intervention Management Planning and Coordination Tool</u>
- Central database for interventions
- Web form composed of meaningful blocks
- Dedicated workflow
- Includes ALARA documentation

Blocks	Content			
Header	Title, Priority, Facility, Responsible, Type			
What	Description, System			
Who	Participants, Contact Phone, Number of Participants			
When	Duration, Dates, Working hours			
Where	Locations, Access Points			
How	Modus Operandi			
Safety	Location & activity hazards, safety procedures			
DIMR	Radiation risk assessments, Recommendations, Feedback			



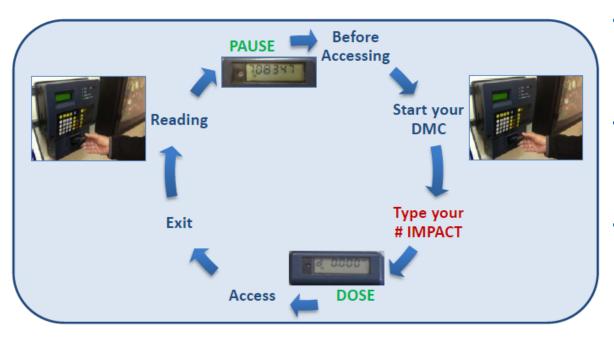
DIMR... Dossier d'Intervention en Milieu Radioactif (Radiological work permit)

HSE Occupational Health & Safety and Environmental Protection Unit


4 - 8 June 2018

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018



HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Integration & connection

2013-2014: 1st Long Shutdown (LS1) at CERN: ~1500 DMC used by >2000 distinct DMC users/year resulting in nearly 130,000 "visits" in two years

- Link the operational doses with the activities and the DIMR
- Set alarm thresholds in the DMC according to the estimates
- Detect and react if the estimated collective or individual doses are exceeded
- Allow users, the person responsible and safety officers to visualize the doses in IMPACT with a Radiation Dose Reports feature

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

OPEDOSI database

- Automated checks with email alerts in case of:
 - Data synchronisation, DosiCyc or Backup issue
 - DMC activated for more than 48h
 - Daily ALARA email report to RP group

	PS complex	SPS complex	LHC complex	Buildings - Other facilities	Links
More that 2 mSv during the last 365 days			1		
More than 600 μ Sv during the last 31 days		Sliding doses			
More than 200 µSv during the last 5 days					
DMC in alarm (last 5 days)	1	<u>4</u>	1	<u>1</u>	DMC in alarm
Estimated individual dose exceeded (last 5 days)	4	1	1	1	Indiv doses
Estimated collective dose exceeded (last 5 days)	1	<u>0</u>	1	1	Coll doses
Maximum doses and dose rates (last w- day)	404 μSv 6280 μSv/h	100 μSv 2900 μSv/h	2 μSv 29 μSv/h	41 μSv 1690 μSv/h	Dashboard
Impact activities without alarm	<u>0</u>	1	2	<u>1</u>	Impact w/o alarm
Impact with missing job and equipment codes	<u>0</u>	1	1	1	Impact w/o workdesc

Automatic message please do not answer.

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

th High Power Targetry Workshop,, Michigan, US, June 2018

- The LSS1 area is the most radioactive zone in the SPS
- Any work has to be fully optimized allowing to reduce dose to personnel to a bare minimum

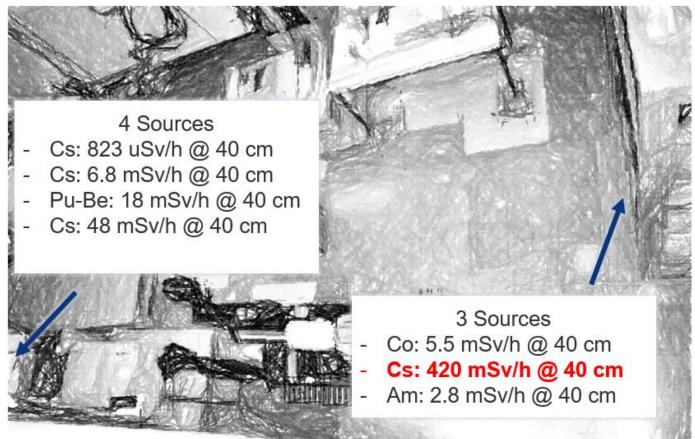
LHC RP survey using TIM
 (Train Inspection Monorail)

- Two trains in the LHC tunnel
- Both equipped with Atomtex BDKG-24 radiation probe

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Many thanks to M. Di Castro and the TIM Team (EN/SMM)



HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Radiation source handling

Source of different shape and weight Installed since more than 30 years No drawings

Many thanks to M. Di Castro

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Several tools designed and assembled to safely handle the sources and their supports

Occupational Health & and Environmental Protection Unit

8 June 2018

^m High Power Targetry Workshop, Michigan, US, June 2018

Radioactive waste & treatment

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

th High Power Targetry Workshop,, Michigan, US, June 2018

Radioactive waste storage and treatment

- CERN produces an average of ~400 m³ per year in normal operation years
- Long Shutdowns (~2 years) result in major amounts of waste
 - LS1: 1800 m³ over 18 months
 - LS2 (estimate): ~3000 m³ (2019-2020)
- Total volume stored in ISR (15 Nov. 2016): 8700 m³ (stored volume)

Status of 15 Nov 2016				
	CL	TFA	FMA	TOTAL
Mass (t)	600	6500	700	7800
Volume net (m³)	2400	6000	300	8700
Percentage in volume (%)	8	88	4*)	

*) at least 30 % uncertainty

TTFA: extremely low activity (< 1 Bq/g of β-, γ-emitters) (Candidate for Clearance) TFA: very low activity (< 100 Bq/g of β-, γ-emitters) FA/MA: low and medium activity (> 100 Bq/g of β-, γ-emitters)

CERN

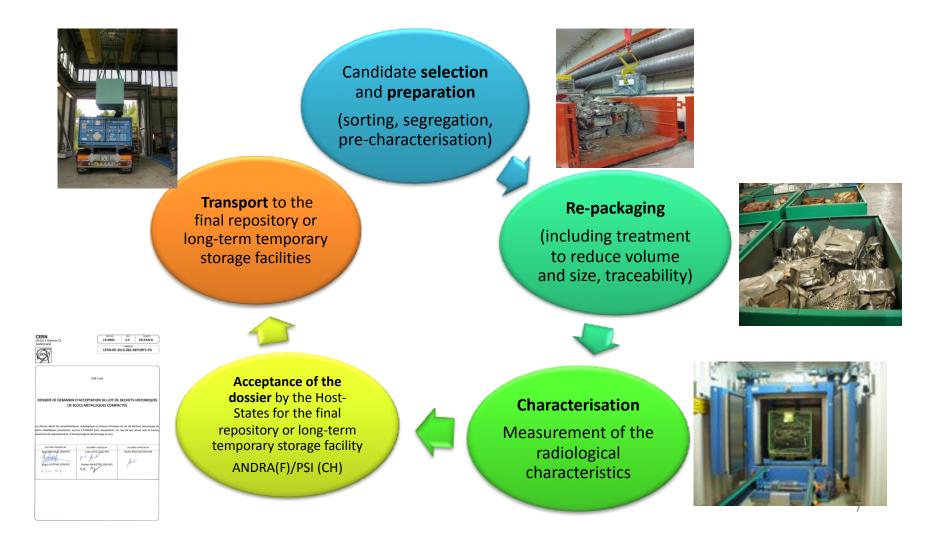
HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Temporary storage facility

CERN's temporary storage facility is installed in an old accelerator tunnel, ISR (Intersecting Storage Rings).

- 5 octants used as a temporary storage facility (~700 m)
- 1 octant hosts the radioactive waste treatment centre (RWTC)



HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Processing of radioactive waste at CERN

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

R&D in the RP group

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

th High Power Targetry Workshop, Michigan, US, June 2018

R&D

RPL reader for high-level dosimetry Filed for patent, one company raised interest for commercialization

HSE

SPA6 CABLE Integrated cable for remote measurement of very low currents

Occupational Health & Safety and Environmental Protection Unit

ActiWiz - assessment & optimization of activated material; 6 licenses granted

web driven nuclear science

RP and FLUKA

RADShip Import/export of radioactive goods NTNU screening, Oct. 2014

Michia

B-RAD radiation survey meter Patent filed, financed by KT Fund industrialisation in progress

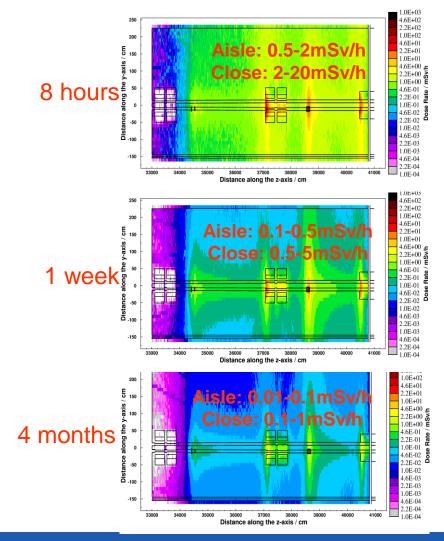
E-SHIP software for the shipment of radioactive material, integrated in Nucleonica contract signed

K	(CERN - ImportExport of Radioactive Goods (Class 7)								
0	ngini 🔹	Here	institutes v	Expediations - Import	alians v 1981 v				
		t in second or	en regnel Regnel or	rigen scolars Fear and	telly energy and first	i deliverad	unified.	in Pr	opena •
10	Admitted an	igen:		Content Description	inity analyses and Para	Caseling	City	in Pr	ogracii
0	i where it was	EOH No							
80 402	Submitted on	EOH No Internet	Contact (sender) (selectrolegy counter toorers	Content Description	indiale Ki jauree	Country	City Neverlee		Tintes Internation

RP and FLUKA

The RP Group at CERN has extended the FLUKA Monte-Carlo code to include a so-called "**Explicit Method**" (Two step method) to calculate dose rate maps for complex geometries and to provide 3D maps

First pure hadronic simulation:

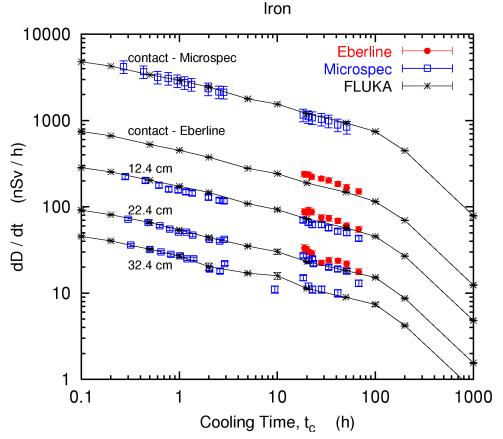

 residual nucleus production including build-up and decay (arbitrary irradiation pattern, cooling times)

Second electromagnetic simulation:

- samples the produced isotopes for decay photons, electrons, positrons and alphas according to their intensities and/or energy spectra
- calculating dose equivalent rate in any arbitrary 3D map

This is now integral part of FLUKA

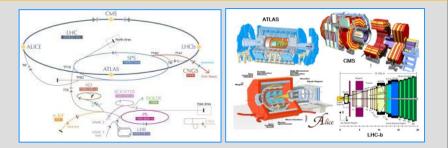
Many members of the **RP group** are member of the **FLUKA collaboration**



4 - 8 June 2018

Benchmark: Residual Dose Rates

- Different materials typical for the LHC
- Measurements and simulations for a large number of cooling times
- Very good agreement was found between the simulation and the experiment (disagreements less than 20 %)

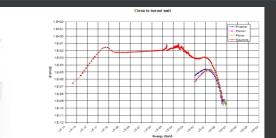

HSE Occupational Health & Safety and Environmental Protection Unit

84-18 June 2018

s7thsHigh Power Targetry Workshop, Inten Michigan, 2US, June 2018

ActiWiz overview

84 built-in radiation fields



CERN accelerators & LHC experiments

Nuclear library based on JEFF 3.1.1 and 100 CPU years of generic FLUKA calculations

external radiation fields

Radiation environment files

Photonuclear reactions are now covered as well

Energy range: thermal neutron energies up to 100 TeV

- User defined compound material composition (85 different chemical elements)
- Arbitrary irradiation & cool-down patterns

 (high complexity with thousands of subsequent differing beam
 on/off patterns possible

HSE

Occupational Health & Safety and Environmental Protection Unit

ActiWiz nuclide inventory analysis

	clide ntory de	Together with FLUKA the ActiWiz 3 code has become one of the standard tools at CERN for radioactive waste characterizationalso used for activation studies related to the design and material optimization of new facilities		
Radiotoxicity (EU, CH, US, A, Japan, IAEA limits)	γ emission spectra	dominating isotopes	isotope production sources	
shielding	alpha/beta analysis	temporal evolution of dominating isotopes	n inverse temporal extrapolation of hazard	

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Learn from the past – prepare for the future (my personal - non exhaustive - collection)

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Optimisation starts with the design

1. Material choice

- Low activation properties to reduce residual doses and minimize radioactive waste (optimization with ActiWiz code)
- Avoid materials for which no radioactive waste elimination pathway exists (e.g., highly flammable metallic activated waste)
- Radiation resistant

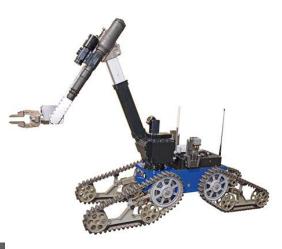
2. Optimized handling

- Easy access to components that need manual intervention (e.g., valves, electrical connectors) or complex manipulation (e.g., cables)
- Provisions for fast installation/maintenance/repair, in particular, around beam loss areas (*e.g.,* plugin systems, quick-connect flanges, remote survey, remote bake-out)
- Foresee easy dismantling of components

3. Limitation of installed material

- Install only components that are absolutely necessary, in particular in beam loss areas
- Reduction of radioactive waste

Remote handling becomes more and more needed for interventions in controlled radiation areas


- ISOLDE facility at CERN
- Collimator exchanges

. . . .

New target areas at CERN

Visual inspection Leak detection Basic mechanical work

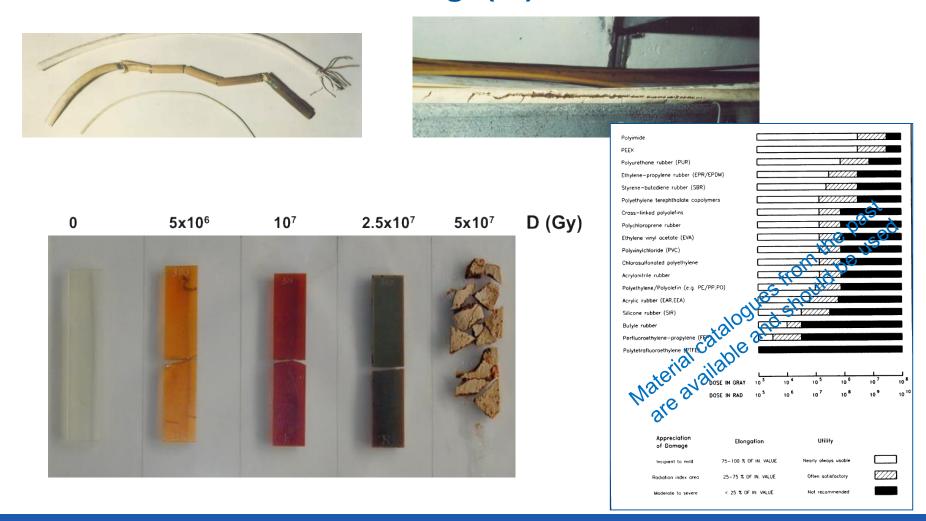
• Dedicated workshops, hot cells and class A labs are required

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Training on mock-up models significantly reduces doses to maintenance teams.

- Tracing of radioactive equipment is a must
 - We have developed a system to simplify tracing (TREC)



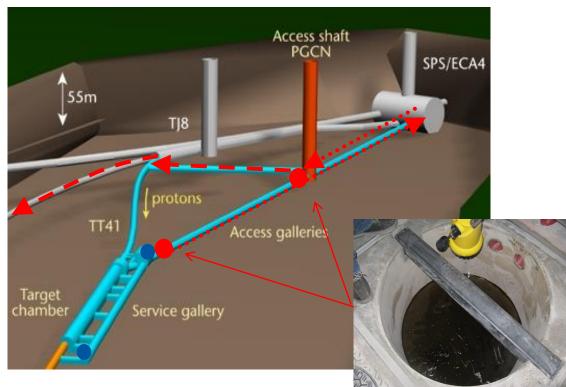
HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Radiation hard material/electronics needs to be installed in areas with high(er) radiation.

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018


7th High Power Targetry Workshop, Michigan, US, June 2018

Avoid propagation of tritiated air into other areas and in particular being in contact with water

In complex tunnel systems, the actual air-flow may be difficult to predict.

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Re-use radioactive material instead of activating new material

Low level radioactive magnet yokes from a former accelerator (the ISR, intersecting storage ring) were reused in the LHC dump shielding

Installation in the LHC dump area

Magnet yokes from the ISR decommissioning

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Old detectors/equipment is not automatically waste

.... some have found new life as material for training, experiment, and display purposes.

HSE Occupational Health & Safety and Environmental Protection Unit

4 - 8 June 2018

Thank you very much for your attention