Development of High-Radiation-Tolerant Fiber-Optic Sensors for SNS Mercury Target Strain Measurement

Yun Liu on behalf of SNS target strain sensor team

7th High Power Targetry Workshop June 4-8, 2018

Outline

- Background and motivation
- Sensor Instrumentation
 - Sensor type
 - Fiber type
 - Phase interrogation setup
 - Data acquisition
- Strain Measurement Performance
 - Laboratory test of static and dynamic strains
 - Strain measurement in the SNS target module
 - Issues and mitigation methods
- Conclusion and future work

Challenges of strain measurement in pulsed targets: Findings from the SNS mercury target vessel

- Fiber-optic strain sensors have been used to measure the dynamic strain waveforms on the mercury target vessel
 - Commercial sensors only lasted a few tens of pulses
 - Even high-OH fiber sensors have limited lifetime
- Challenges
 - High radiation > 10⁹ Gy radiation level due to protons, neutrons, and high energy photons
 - High bandwidth high intensity particle beam induces fast dynamic strain pulses which require mega-hertz measurement bandwidth

Goal - Development of high-radiation-tolerance, high-bandwidth, high-reliability fiber-optic sensors through optimization of sensor configuration, fiber, and processor.

Fiber-Optic Strain Sensor

Fiber Bragg grating (FBG) based sensors

- Well developed fabrication technology
- Fiber sensitive
- Radiation induced attenuation/grating bleach
- Measurement bandwidth

Interferometer based sensors

- High flexibility (any type of fiber)
- Interrogation setup easy to customize
- Radiation induced attenuation
- Measurement bandwidth

Optical Fiber Selection

Fiber Type

Pure silica fiber

Ge-doped fiber

High OH fiber

Hollow-core fiber

Fluorine-doped fiber

Our experiment verified that Fujikura (RRSMFB) fluorine-doped single-mode fiber shows extraordinary radiation resistance at 1300 nm.

Phase Interrogation – Low-Coherence Interferometry

Optical Setup

Data Acquisition and Software Platform

Strain Measurement

Sensor Select A Sensor D Measurement Calibration Raw Data Setup debug Attenuation 十 原 的 8 ,TR N'8Î W JR sut * Arm Auto 1.37365 -0.422433 Trig Acq Timed Save Acq

Phase Calibration

Sampling rate: 10 ~ 250 MHz

Measurement bandwidth: > 300 kHz

Measurement Performance – Laboratory Test

Measured Strain Waveforms

Strain Measurement Results

Radiation Induced Attenuation (RIA) and Sensor Lifetime

TABLE I

COORDINATES AND RADIATION DOSE OF SENSORS AND THEIR LEAD FIBER CABLES

Sensor A

Selb Of A		SeiBOI D	
Radiation Dose (MGy/MWHr)	Position (cm)	Radiation Dose (MGy/MWHr)	
16.161	12.7, 5.2, 50.5	0.419	
16.644	12.6, 5.2, 54.8	0.280	
9.071	11.5, 5.2, 57.4	0.251	
5.333	3.9, 5.2, 60.0	0.305	
1.895	0.2, 5.2, 63.0	0.260	
1.151	0.2, 5.2, 65.5	0.205	
0.988	2.2, 5.2, 67.4	0.190	
0.591	14.4, 5.5, 69.4	0.094	
0.284	17.8, 6.5, 80.6	0.044	
0.234	12.9, 9.1, 92.1	0.027	
	Radiation Dose (MGy/MWHr) 16.161 16.644 9.071 5.333 1.895 1.151 0.988 0.591 0.284	Radiation Dose (MGy/MWHr) Position (cm) 16.161 12.7, 5.2, 50.5 16.644 12.6, 5.2, 54.8 9.071 11.5, 5.2, 57.4 5.333 3.9, 5.2, 60.0 1.895 0.2, 5.2, 63.0 1.151 0.2, 5.2, 65.5 0.988 2.2, 5.2, 67.4 0.591 14.4, 5.5, 69.4 0.284 17.8, 6.5, 80.6	

Sensor B

Radiation Induced Attenuation (RIA) and Sensor Lifetime

RIA measurement results: ~ 5.5x10⁻⁸ dB/Gy/m

Location	Beam Energy (MWHr)	Peak Radiation Dose (Gy)
Front	77	1.3 x 10 ⁹
	7.1	10 ⁸
Middle	>1,670	> 7 x 10 ⁸
	80	5 x 10 ⁷

SNS customized sensors Commercial sensors

Y. Liu et al., IEEE Sensors Journal 18 (2018) 3645.

Possible Mitigation Approaches

Sensor Failure Scenarios

- Sensor gap extension induced by radiation
- Epoxy failure/effects of epoxy hardening
- Sensing interferometer broken
- Lost of light reflection

Mitigations

- Gap compensation in optical interrogation setup
- Improvement of sensor mounting methods (ultrasonic welding)
- Modification of sensor design (shorten sensor length), sensor mounting method
- Fiber material optimization?

Conclusion and Future Work

- We have developed fiber-optic strain sensors using Fluorine doped single-mode fiber, low-coherence optical interferometry technique, and digital signal processing scheme.
- The sensors have been applied to a number recent SNS mercury targets and the measurement performance demonstrated higher radiation tolerance and bandwidth than commercial products.
- Future work
 - Improvement of sensor performance using all-fiber interrogation scheme
 - Investigation of radiation effects
 - Looking into ultrasonic soldering technology
 - Collaboration

Colleagues involved in this work

- W. Blokland, C. Long (RAD/Beam Science and Technology group)
- D. Winder, B. Riemer, M. Wendal (NTD/Source Development and Engineering group)
- B. Qi (CSED/Quantum Optics group)
- R. Strum (MSU), D. Stiles (ERAU)

