

A high power beam-dump for ISOL@MYRRHA phase 1

Donald Houngbo

Outline

ISOL@MYRRHA – the context

Beam dump - requirements & material selection

Investigated concepts – pros&cons

Current reference beam dump – concept & analysis

ISOL@MYRRHA

The MYRRHA programme

- MYRRHA: Accelerator Driven System (ADS) consisting of a proton accelerator coupled to a sub-critical reactor
 - Will provide high-intensity proton beams of 600 MeV and intensities up to 4 mA
- ISOL@MYRRHA: ISOL facility using a fraction of the MYRRHA proton beam to produce high intensity RIBs

Phased implementation

- MYRRHA Phase 1
 - **2016 2024**
 - 100-MeV LINAC
 - ISOL System
- MYRRHA Phase 2 & 3

ISOL in MYRRHA Phase 1

Facility concept

Target Module concept

P. Creemers (SCK•CEN)

- 100 MeV , up to 500 μA
- ~30 MeV deposited in reference target
- ~70 MeV to be dissipated in a beam dump

Habraken, K. Nikel, L. Popescu (SCK•CEN)

ISOL facility beam dump – Context

ISOL beam dumps typically
≥ 60 cm downstream the target

- **0.45** MeV/mm at 1.39 GeV
- 0.59 MeV/mm at 485 MeV
- **2.0** MeV/mm at 70 MeV

ISOL at MYRRHA Phase 1 – Beam dump requirements

- Stop the proton beam at the ISOL facility
 - Nominal Residual proton beam
 - 70-50 MeV & up to 500 μA
 - Significant beam scattering
 - Incidental As transported proton beam
 - 100 MeV & up to 500 μA
 - Small beam spot σ ~ 2 mm
 - Minimize radiation hazards
 - Activation of dump material
 - Contamination of dump material
 - Limit added complexity
 - To the target module
 - To the target station

Material selection - Radiation hazards

- Candidate materials pre-selection
 - Low-Z materials to reduce heat deposition density
 - Materials with typical usage in ISOL / industrial applications

- Radiation hazards post-irradiation: Activation
 - Focused beam directly on dump
 - Simulated 4 weeks of irradiation at 500 μA
 - Cubical beam dump edge scaled on stopping range in material
 - Compute Ambient Dose Rate H*(10) 50-cm of air away from the dump
 - Check production of gaseous species & isotopes responsible for the activity

Ambient Dose Rate post-irradiation – H*(10)

Main Gaseous species & Radio-isotopes

Residual activities of main contributors in graphite

Residual activities of main contributors in beryllium

- Graphite & Beryllium activity are similar
- ⁷Be (53.2 days) is the nuclide responsible for most of the activity and particle emission in both graphite and Be
- ³H activity in Be is ~ 5 times higher than in graphite

Heat removal

Heat removal flux:

Conductive heat flux from bulk material to surface

	Max Temperature (K)	Thermal conducti vity (W/mK)	Material conductive power (W/cm2)
Ве	1100	100	<u>315</u>
C	1800	30	<u>191</u>

Radiative heat flux from material surface to sink

	Max Temperature (K)	Emissivity	Surface emissive power (W/cm2)	Max combined heat transfer power (W/cm2)
Ве	1100	0.18	<u>1.5</u>	<u>~1.5</u>
С	1800	8.0	<u>48</u>	<u>~30</u>

Beam heat flux for a 4-cm diameter spot is ~ 4 kW/cm²

Thermal-shock mitigation

Relevant parameters

	Max Temperature (K)	Specific heat (J/gK)	Coefficient of Thermal Expansion K ⁻¹	Yield strength (MPa)
Ве	1100	~3	~2 10 ⁻⁵	<u>20~100</u>
C (CX-761)	1800	~2	~8 10 ⁻⁶ (L) <1 10 ⁻⁶ (//)	<u>~300</u>

Temperature dependence of material strength

Material of choice : Carbon (e.g. CX-761)

Selected Material - Disposal

Effect of irradiation history

Effect of evaporation

Evaporation rate (atoms/cm2s)	Ве	С	
1100 K	1 E14	7.5 E-4	

Graphite activity lower than estimated as ⁷Be will have partially vaporized at operating temperatures

ISOL Beam dump at MYRRHA Phase 1 — Investigated concepts

Initial concepts – Beam dump fully enclosed in primary vacuum

Slanted core

- Increased interaction volume
- Requires thin long and weak core

Carbon foam core

- Reduced stopping power
- Low equivalent thermal conductivity

Multi-disc core

Increased radiation surface

Radiation hazards - Contamination

Motivation: Enable simpler post-irradiation processing of the dump material by avoiding its contamination with reaction products released from the target.

Solution : Window very-close downstream the target

Analysis:

Max Temp. << 3000 °C (limit in inert gas or vacuum)

Rotating beam through target

Current reference beam dump concept

© SCK • CEN, 2018

D. Houngbo

Summary

First implementation phase – Under design

100 MeV, up to 500 μA

2 dissimilar requirements

- Carbon composite beam dump
- 2 modules radiatively cooled

D. Houngbo, P. Creemers, M. Dierckx (SCK•CEN)

Thank you