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Outline

 ISOL@MYRRHA – the context

 Beam dump - requirements & material selection

 Investigated concepts – pros&cons

 Current reference beam dump – concept & analysis
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ISOL@MYRRHA

 The MYRRHA programme
MYRRHA: - Accelerator Driven System (ADS) consisting of a proton 

accelerator coupled to a sub-critical reactor
- Will provide high-intensity proton beams of 600 MeV 

and intensities up to 4 mA 

 ISOL@MYRRHA: ISOL facility using a fraction of the MYRRHA proton 
beam to produce high intensity RIBs

 Phased implementation
MYRRHA Phase 1
2016 – 2024
100-MeV LINAC
 ISOL System

MYRRHA Phase 2 & 3
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MINERVA
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 Target Module concept

 100 MeV , up to 500 µA

 ~30 MeV deposited in 
reference target

 ~70 MeV to be dissipated in 
a beam dump

ISOL in MYRRHA Phase 1

 Facility concept

P. Creemers, M. Dierckx, J. Engelen, M. Gomez, J. 
Habraken, K. Nikel, L. Popescu (SCK•CEN)

P. Creemers (SCK•CEN)
Beam dump 
behind the 
ISOL target

4D. Houngbo



© SCKCEN, 2018

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 2 4 6 8 10

Pr
ot

on
 fl

ue
nc

e 
(c

m
-2

 p
r-

1)

Radial position (cm)

Upstream
5-cm Downstream - 500 MeV
5-cm Downstream - 100 MeV

ISOL facility beam dump – Context
 ISOL beam dumps typically       

≥ 60 cm downstream the target

P. Bricault et al, Proceedings of Particle Accelerator Conference, New York, 1999

Residual beam window (e.g. Al)
 0.45 MeV/mm at 1.39 GeV
 0.59 MeV/mm at 485 MeV 
 2.0 MeV/mm at 70 MeV
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Section view of the ISAC target station
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ISOL at MYRRHA Phase 1 – Beam dump requirements

 Stop the proton beam at the ISOL facility
Nominal - Residual proton beam 
70-50 MeV & up to 500 µA
Significant beam scattering

 Incidental - As transported proton beam
100 MeV & up to 500 µA
Small beam spot σ ~ 2 mm

 Minimize radiation hazards
 Activation of dump material
 Contamination of dump material

 Limit added complexity 
 To the target module
 To the target station

6D. Houngbo
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Material selection - Radiation hazards

 Candidate materials pre-selection
 Low-Z materials to reduce heat deposition density

 Materials with typical usage in ISOL / industrial applications

 Radiation hazards post-irradiation: Activation
 Focused beam directly on dump

 Simulated 4 weeks of irradiation at 500 µA

 Cubical beam dump edge scaled on stopping range in material

 Compute Ambient Dose Rate H*(10) 50-cm of air away from the dump

 Check production of gaseous species & isotopes responsible for the activity
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Ambient Dose Rate post-irradiation – H*(10)
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Main Gaseous species & Radio-isotopes

 Graphite & Beryllium activity are similar

 7Be (53.2 days) is the nuclide responsible for most of the activity and particle 
emission in both graphite and Be

 3H activity in Be is ~ 5 times higher than in graphite

Residual activities of main contributors in graphite
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Heat removal
 Heat removal flux:

 Conductive heat flux from bulk material to surface

 Radiative heat flux from material surface to sink

Max 
Temperature (K) Emissivity Surface emissive 

power (W/cm2) 

Max combined 
heat transfer 

power (W/cm2) 

Be 1100 0.18 1.5 ~1.5
C 1800 0.8 48 ~30

Stopping 
range 𝑙𝑙

Cold surface at 
𝑇𝑇𝑐𝑐 = 300 K

Mid-plane assumed at 
Max. Temp.

Max 
Temperature 

(K)

Thermal 
conducti

vity 
(W/mK)

Material 
conductive 

power 
(W/cm2) 

Be 1100 100 315
C 1800 30 191

𝑞𝑞 =
𝑘𝑘 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑐𝑐

0.5 ∗ 𝑙𝑙

 Beam heat flux for a 4-cm diameter spot is ~ 4 kW/cm2
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Thermal-shock mitigation
 Relevant parameters

 Temperature dependence of material strength

Max Temperature 
(K)

Specific heat
(J/gK)

Coefficient of 
Thermal 

Expansion K-1

Yield 
strength

(MPa) 

Be 1100 ~3 ~2 10-5 20~100

C (CX-761) 1800 ~2 ~8 10-6 (ꓕ)
<1 10-6 (//) ~300

Be

 Material of choice : Carbon (e.g. CX-761)
11D. Houngbo
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 Effect of irradiation history

 Effect of evaporation
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Evaporation rate 
(atoms/cm2s) Be C
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estimated as 7Be will have 

partially vaporized at 
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 Initial concepts – Beam dump fully enclosed in primary vacuum

   

ISOL Beam dump at MYRRHA Phase 1 –– Investigated 
concepts

Carbon foam core
 Reduced stopping 

power
 Low equivalent 

thermal conductivity

Multi-disc core
 Increased radiation 

surface 

Slanted core
 Increased interaction 

volume
 Requires thin long 

and weak core
13D. Houngbo
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Beam dump material

Radiation hazards - Contamination

 Motivation : Enable simpler post-irradiation processing of the dump 
material by avoiding its contamination with reaction products 
released from the target.

 Solution : Window very-close downstream the target

 Analysis :

Vitreous Carbon Window

Rotating beam through target14

Max Temp. << 
3000 °C (limit in 

inert gas or 
vacuum)
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Current reference beam dump concept
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Summary

 First implementation phase – Under design

 100 MeV, up to 500 µA

 2 dissimilar requirements

 Carbon composite beam dump

 2 modules radiatively cooled
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D. Houngbo, P. Creemers, M. Dierckx (SCK•CEN)
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Thank you
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