

Tungsten Oxidation AeroSol Transport TOAST

for HPTW-7

Per Nilsson, ESS Anders Gudmundsson, Jens Klingmann, Karin Lovén, Lund University

www.europeanspallationsource.se 4 June 2018, ESS-0316391

Contributions

LTH Energy Sciences	Laboratory, Manufacturing, Temperature measurements, Seeding, Project management, etc Prof. Jens Klingmann, Martin Carlsson
LTH Ergonomics and Aerosol Technology	Aerosol measurements Prof. Anders Gudmundsson, Karin Lovén, Louise Gren
LTH Production and Materials Engineering	Inductive heating Adj. Prof. Tord Cedell, Fredrik Lundström, Ville Akujärvi
ESS Bilbao	Tungsten samples

Outline

- Background Accident scenario
- Experiments
 Setup
 Results
- Implications
- Lessons learned
- Open issues

Background

 $P_{mean} = 5 MW$ f = 14 Hz $\Delta T_{max}/pulse = 100 °C$

- 36 sectors
- => 2300 °C / min

Postulated scenario: Lost cooling, beam on No safety system

- 1. Cooling lost
- Temp increases
 Target opens
 He coolant lost
- 3. Pressure breaks monolith vessel confinement
- 4. Moderator water released & evaporates
- 5. Tungsten exposed Oxidises and release
- 6. Loss of PBW cooling
 - -> Failure, beam stop

- How much tungsten becomes airborne by tungsten oxidation at high temperatures, > 1400 C?
- Measure Airborne Release Fraction, ARF
 = mass fraction of the *oxidised* amount that is airborne after passage through the system

Experiment Setup

Vessel configuration

EUROPEAN SPALLATION SOURCE

TOAST setup

Experimental Results

After Test 11 (~1700 C)

Comparing recession to literature (Test 3)

Bartlett, R. W., Tungsten and Molybdenum Oxidation Kinetics at Extremely High Temperatures, US Air Force, ML-TDR-64-290, 1964.

(120 s + 260 s) * 5 mg/cm²s * 35 cm² ~ 66 g (74 g measured)

Measurements Test 11

Temperature and particle concentration

Transmission Electron Microscopy (Test 13)

Agglomerates of crystal primary particles Far from spherical

Implications

Higher ARFs (from 0.005 to 0.5), gave high doses

=>

Necessary to remove unnecessary concervatism, e.g.:

- Avoid high temperatures
- Decrease available oxidant
- Limit transport path

Implications in licensing process

EU SP SO

- Notified regulators (SSM) immediately
- Delayed decisions on emergency planning
- Continuous updates
- SSM approved source terms for emergency planning

Lessons learned

Lessons learned

- Numerous in technical details Steam may e.g. condense
- Do not extrapolate, use experiments at relevant conditions: We did, but drew preliminary conclusions to early
- Openness is crucial but difficult: The findings may seem alarming, but are results of systematic work and do finally not have major implications. This is delicate to communicate during the work, internally as well as externally.

Open issues

Under investigation

- Particle sizes and agglomeration
- Deposition
- Saturation

=>

Model for application in transport

Questions?

The End

27