Neutron Source Manufacturing at SNS

Presented at the **7th High Power Targetry Workshop**

Peter Rosenblad

Manufacturing Team Lead Source Development and Engineering

June 6, 2018

ORNL is managed by UT-Battelle for the US Department of Energy

- Part One SNS approach to source (target) component manufacturing
- Part Two What are source components and what processes are employed?
- Part Three Significant challenges in the history of SNS manufacturing
- Part Four Current status and future plans for target modules and IRP
- Part Five Final thoughts and lessons learned

Part One – SNS approach to source (target) component manufacturing

Typical target component engineering paradigm

How does the Manufacturing Team fit within the Source Development and Engineering group at SNS

Mission statement: "to manufacture neutron source components with confidence in quality, schedule, and efficiency"

- We need:
 - Clear and concise design requirement
 - Repeatable, conveyable, traceable processes
 - Non-singular supply chain cost control, competition,
 - Efficient use of budget planning appropriate spending spread amongst critical components
 - Eager and successful suppliers

Evolution of SNS approach to critical manufacturing

- 2002 2012: manufacturing supported by design engineer
 - Split focus
 - QA representative support was intermittent
- 2013 2016: Added a single dedicated manufacturing engineer
- 2016 present: Dedicated manufacturing team integrated within SDE
 - Current staff includes:
 - 2 manufacturing engineers (adding a 3rd)
 - 1 technician / expeditor / logistical support / internal shop manager / planner
 - 1 team lead
 - Consistent QA support (matrixed)
 - Roles and authorities are defined between manufacturing engineers, design engineers, and QA personnel

Part Two – What are source components and what processes are employed?

What do we make?

 At steady state, targets require the largest annual budget, followed by IRP, then PBW

What is a Proton Beam Window?

- Provides separation along the proton beam between the high vacuum accelerator and the helium backfilled core vessel
- SNS has used both Inconel and aluminum PBWs

Proton Beam Window Processes

Manufacturing Processes

- Material production
 - Forging, plate, pipe, bar, etc.
- Conventional machining
- Explosion bonding
- GTAW welding
- EB welding
- Bellows edge welding
- Gun drilling
- Electroplating

- Inspection processes
 - Dimensional inspection
 - Weld inspection
 - Visual, penetrant, ultrasonic, radiograph
 - Leak testing
 - Pressure testing
 - Functional fit / interface
 - Cleanliness

Target Module Processes

- Manufacturing Processes
 - Material production
 - Forging, plate (ESR), pipe, bar, etc.
 - Conventional machining
 - Wire and Plunge EDM
 - GTAW welding
 - EB welding
 - Bellows edge welding
 - Gun drilling
 - Electroplating
 - Kolsterizing
 - Electropolishing
 - Removal of EDM HAZ
 - Hot isostatic pressing

- Inspection processes
 - Dimensional inspection
 - Parent material radiograph
 - Weld inspection
 - Visual, penetrant, ultrasonic, radiograph
 - Leak testing
 - Pressure testing
 - Hole continuity
 - Instrumentation testing
 - Functional weight / center of gravity

Mercury vessel

- Cleanliness

Shroud

Protons

Inner Reflector Plug Overview

- The IRP is a 63,000lb plug divided into 3 main segments
 - Upper IRP Plated carbon steel shielding
 - Middle IRP Water cooled stainless steel shielding
 - Lower IRP Water cooled aluminum vessel filled with steel and beryllium surrounding aluminum ambient and cryogenic moderator vessels
 - Water piping and cryogenic transfer lines transverse all three assemblies

National Laboratory

Overview of Lower IRP, critical region

SOURCE

Inner Reflector Plug Processes

- Manufacturing Processes
 - Material production
 - Forging, plate, pipe, bar, etc.
 - Conventional machining (match machining for heat transfer)
 - Wire and Plunge EDM
 - GTAW welding
 - EB welding (*6061-T6 aluminum*)
 - Gun drilling
 - Electroplating
 - Electropolishing
 - Hot isostatic pressing
 - Cadmium flame spray
 - Cadmium machining
 - Multilayer and multi-material piping (4-6 layers)
 - Friction welding
- 5 7th High Explosion bonding

- Inspection processes
 - Dimensional inspection
 - Parent material radiograph
 - Weld inspection
 - Visual, penetrant, ultrasonic, radiograph
 - Leak testing (layered piping, complex geometry)
 - Pressure testing
 - Instrumentation testing
 - Functional interface
 - Cleanliness
 - Cadmium adhesion testing

Part Three – Significant challenges in the history of SNS manufacturing

4 of the defining moments in history of SNS source component manufacturing

- 2004 Interface problem between IRP and moderator piping leads to short moderator hydrogen supply pipe and loss of cooling (no neutrons)
 - Nearly disabled ¼ of SNS instrument capacity for many years
- 2012 Poor weld fit-up and leads to premature failure of 2 target modules within 2 months
 - Lead to significant changes in weld inspection and vendor oversight (cost increase)
- 2013 Discovery of internal cracks within moderator vacuum vessel requires major rework of IRP-2 during fabrication leads to ~2 year delay of IRP-2
 - Lead to significant schedule and cost over-runs, fundamentally changed relationship with most prolific supplier
- 2017 Detection of leak in the water-helium boundary atop the top upstream moderator leads to ~1 year delay of IRP-2
 - Caused IRP-1 to run at least 6 months longer than lifetime, which impacted pulse shapes at instruments
 CAK RIDGE SPALLATION

2004 – Interface problem between IRP and moderator piping leads to short moderator hydrogen supply pipe and loss of cooling (no neutrons)

- Moderator piping vendor was different than IRP vendor
- A design change was approved with the IRP vendor, but not communicated to the moderator piping vendor
- Issue was remedied by inserting a stint (tight spring) through 15 meters of piping that essentially extended the length of the supply pipe

2012 – Poor weld fit-up and leads to premature failure of 2 target modules within 2 months

Poor weld fit-up / incomplete penetration lead to 4 premature mercury vessel leaks

2013 – Discovery of internal cracks within moderator vacuum vessel requires major rework of IRP-2 during fabrication leads to ~2 year delay of IRP-2

2017 – Detection of leak in the water-helium boundary atop the top upstream moderator leads to ~1 year delay of **IRP-2** Top upstream helium lid, probable leak Top upstream Top downstream location moderator moderator Target **Protons** Cross section through OAK RIDGE top moderator centers 7th High Power Targe 21

Part Four – Current status and future plans for target modules and IRP

Current status of target module use (1), inventory (1), and production (8)

Target Type Key Original – Yellow Original, CDE reinforced, gas injection – Orange Jet-flow, CDE reinforced, gas injection – Green Blue – Blue Chinstrap – Grey

Pondering target module procurement history

- In early days, there was an assumption that target module price would go down over time through
 - Value engineering and design for manufacturing
 - Experience gained by suppliers
 - Competition
- In practice, costs have risen significantly
 - Some value engineering and design for manufacturing has been achieved, but it has been trumped by increased complexity elsewhere
 - Auxiliary requirements (inspection, qualification, reporting, QA, etc.) have increased significantly
 - SNS oversight has increased significantly
 - double whammy driving internal and external costs

Historical Target Module Cost

25 7th High Power Targetry Workshop

A new pilot program has begun – SNS built target module components

- SNS has started the process of self managing manufacture of a water cooled shroud
- Manufacturing is broken down into smaller tasks such as:
 - Material procurement and treatment
 - machined parts
 - EB welds
 - Tungsten Inert Gas Welding (TIG) welding / integration
 - Assembly
 - Non-destructive Examination (NDE)
- These tasks will be completed via smaller purchase orders or with internal ORNL staff

Sample flowchart of water cooled shroud (WCS) manufacture

- Current process involves 2 purchase orders to procure a WCS
- New process will take ~25 purchase orders

OAK RIDGE

SOURCE

If you thought targets were tricky...let's talk IRP

• IRP-1

- Arrived at SNS incomplete as a set of parts due to vendor budget and schedule issues
- SNS self completed assembly via heroic efforts just in time for first neutrons

• IRP-2

- Design/build contract
- Thought to be a simplified approach
- Continuous design and manufacturing challenges
- Work stoppages
- Cost overruns
- Total manufacturing time: ~9 years

IRP must be managed more effectively

- IRP-3 design incorporates significant lessons learned from IRP-1 and IRP-2
- IRP-3 will be "build to print"
- SNS staff are much better positioned to execute work:
 - IRP-2 oversight consisted of:
 - a single TPO (which changed at least 5 times)
 - intermittent QA support
 - IRP-3 will benefit from:
 - Dedicated design engineer
 - Dedicated project manager
 - Dedicated manufacturing engineer(s)
 - Dedicated QA staff

IRP procurement strategy and annual plans, *Late FY18 into FY19*

Moderators (weld development included)

Cadmium and lower IRP weld development

SPALLATION NEUTRON SOURCE

IRP procurement strategy and annual plans, FY19

Moderators (weld development included)

Lower IRP

IRP procurement strategy and annual plans, FY20

Middle IRP

Upper IRP

IRP procurement strategy and annual plans, FY21

Part Five – Final thoughts and lessons learned

Threshold for procurement strategies

Lessons learned

- All things matter complex requirements can lead to complacency regarding simpler requirements for supplier and customer - if it matters (at all), it needs to be explicitly verified
- If you can machine it, machine it
- Avoid dependence on single source specialists
- Stuff happens leaks, weld rejections, machine breakdown, machine crashes, design errors, part movement, shipping errors, misunderstandings, programming errors, cracked parts, dropped parts...
- Allow at least 50% schedule contingency for manufacturing
- Directly control the development and the process to the extent possible this depends on how often you will repeat the process
- Intentionally strive for multiple profitable suppliers

Questions?

