			These -
Taku Ishida			
Chriş J.Densham			
Michael Fitton			
Sho Tada 🕚 📑			
Takeshi Nakadaira	and a second second		J-PARC
Masa Hagiwara 📩 😱 📩			\sim
Eiichi Wakai			
Shun Makimura			
Patrick G. Hurh			
Kavin Ammigan			
David Senor		X	
Dan Edwards			••••
Andy Casella			RaDIATE
Shin Meigo			Collaboration
	iutrino P	eam-line S	
& Radiat	ion Dam	age Studie	es on
			4
	Tanum		A Carlot A Carlot A Carlot A

Japan Proton Accelerator Research Complex

Neutrino

Facility (v)

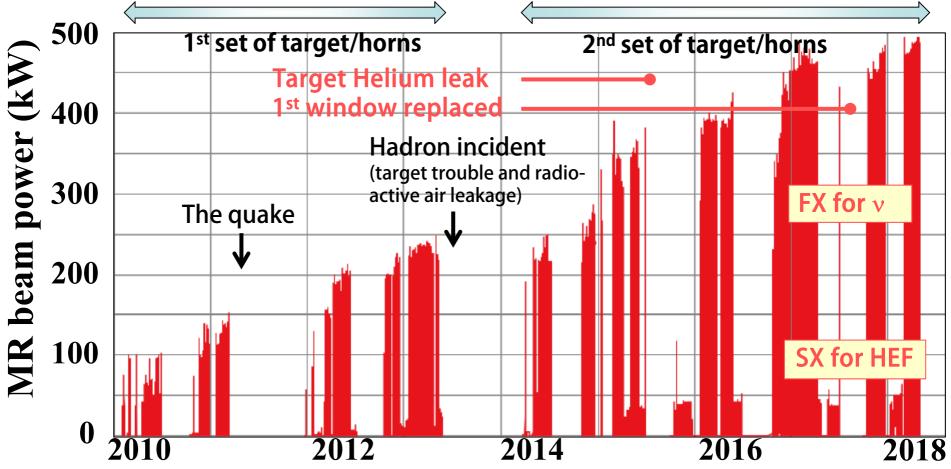
Experimental

3GeV Rapid Cycling Synchrotron (RCS) 25Hz, 1MW

Materials & Life Science Facility (MLF, MUSE)

400 MeV

H⁻Linac

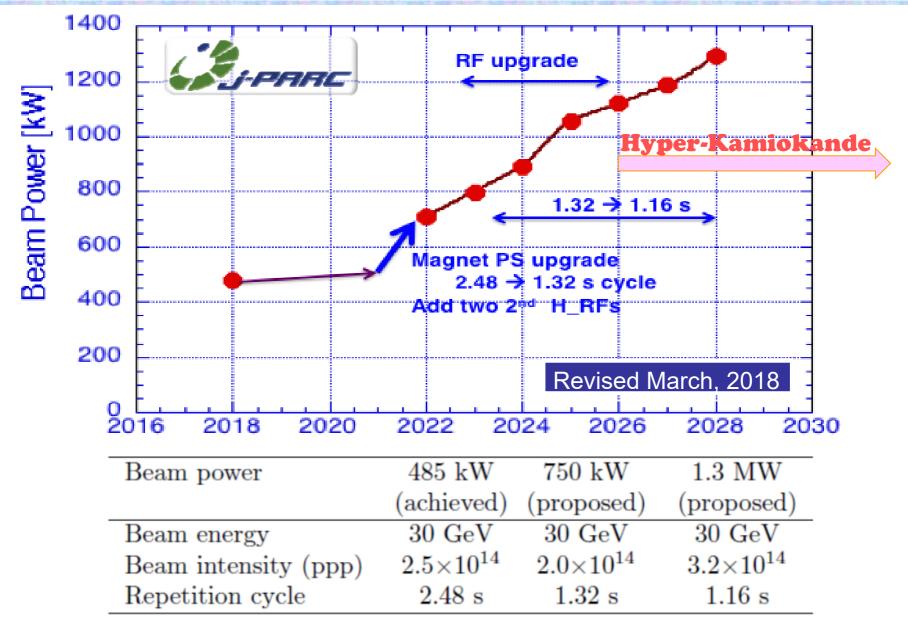

30 GeV Main Ring Synchrotron (MR) Design beam power : First Extraction to v: 750kW [→ 1.3MW] Slow Extraction to HEF: [>100 kW]

A round: 1,568m

Hadron Experimental Hall (HEF, hadron)

Operational History of Main Ring

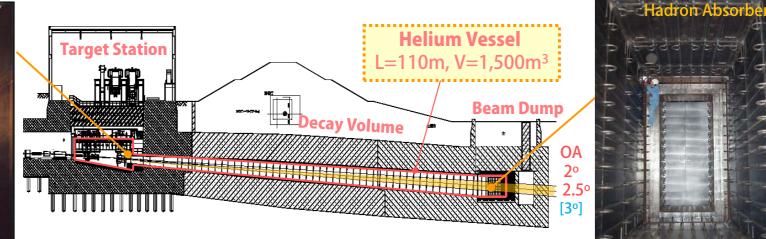
■ The 485 kW beam power has been achieved with 2.5×10¹⁴ ppp/2.48sec

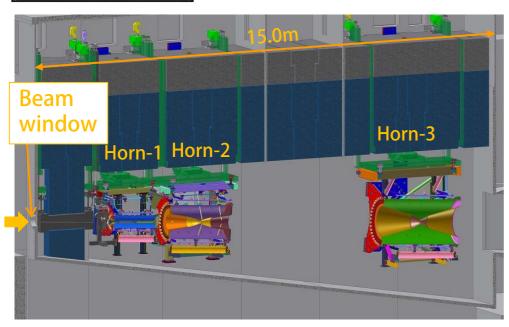

No major problems on neutrino facility target and beam-window

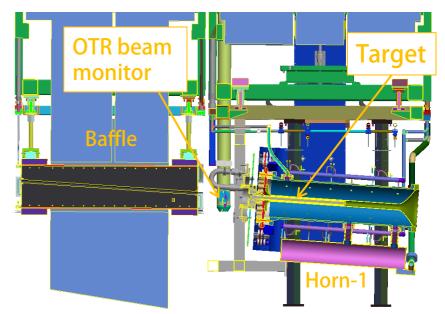
- He leak at target outlet pipe → fixed by remote handling
- The 1st beam window is replaced to (nearly) identical 2nd window

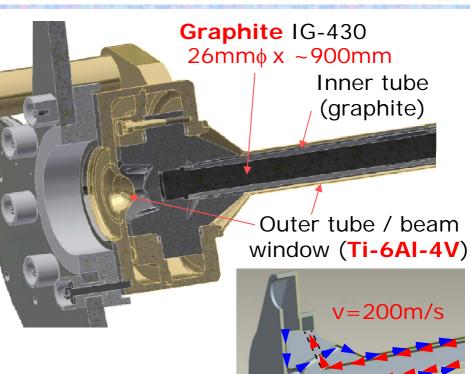
Ishida J-PARC | 7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018

MR beyond 1 MW with Doubled Rep-rate




Ishida J-PARC | 7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018


Neutrino Secondary Beam-line



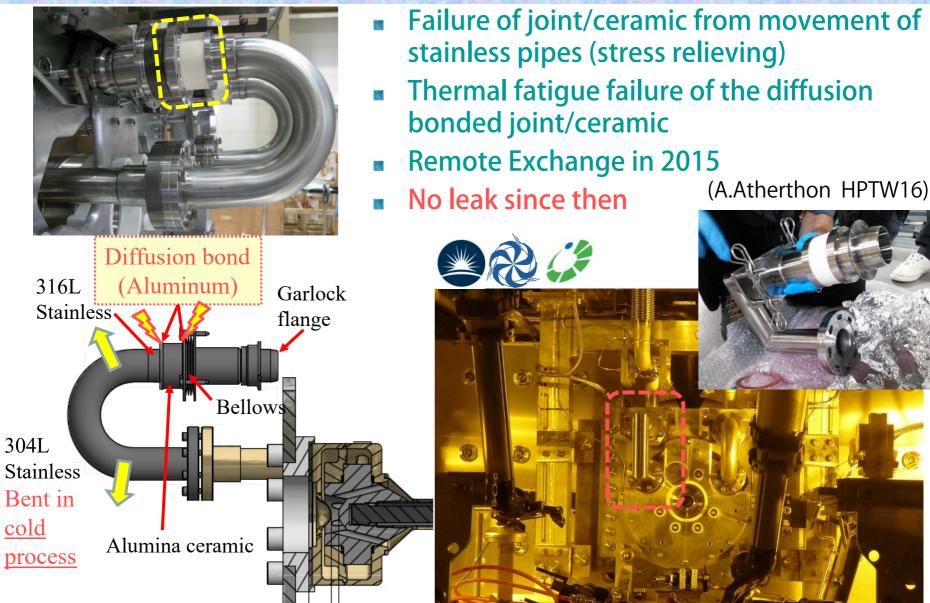
1.3 MW Target Upgrade – Graphite & Ti

Energy deposit 41kJ/spill (1.3MW) ΔT=200K, 7.2MPa (Tensile str. 37.2MPa)

	0.75 MW	1.3 MW	
Helium pressure	1.6 bar	5 bar	
Pressure drop	0.83 bar	0.88 bar	
Helium mass flow	32 g/s	60 g/s	
Heat load	23.5 kW	40.8 kW	
US window temp	105 °C	157 °C	
DS window tem	120°C	130°C	
Graphite Max. temp.	736°C	909°C	

Lifetime <mark>5years</mark> under 100ppm

High Temperature : Oxidization of graphite will be the limiting factor on target lifetime


• CVD-SiC coated graphite in BLIP/HiRadMat

Radiation damage on Ti beam window under higher pressure

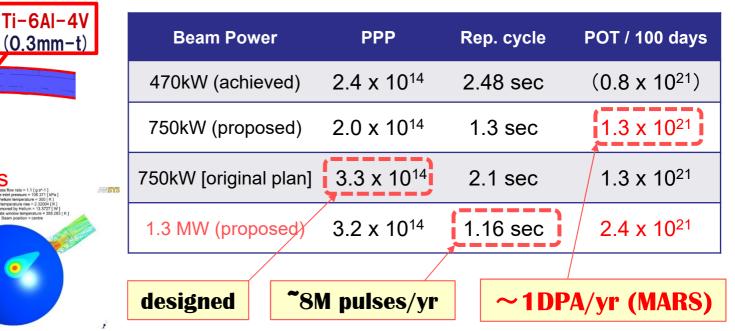
Ishida J-PARC | 7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018

Leak at Helium Outlet Pipe & Remote Handling

Ishida J-PARC | 7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018

2mm gap

Ti-6Al-4V Beam Window


230m/s

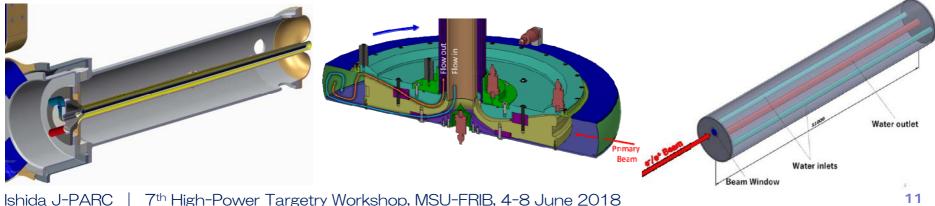
@1.1q/s 🚽

+100°C/shot

(750kW)

- Periodic thermal stress wave caused by the intense proton beam energy deposition
- 750kW operation will cause radiation damage of ~1DPA/ops-year, whereas significant irradiation hardening and loss of ductility has been reported with 0.3DPA (no higher DPA data exists)
- No known data exists on high cycle fatigue (>10³ cycles) of irradiated titanium alloys

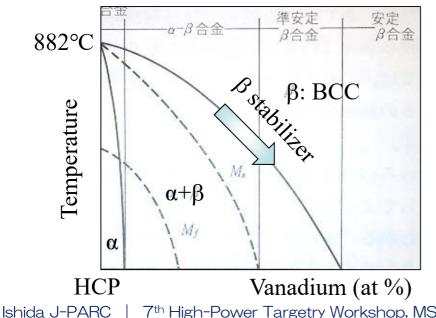
Window Remote Maintenance (2017 summer)


- Helium in TS vessel was humid, and the damage can be from radiochemical reaction (accelerator vacuum side show less signatures)
- Need to improve helium circulation system to remove the humidity

We wish to perform PIE at JAEA's hot-lab, while it will take time to clear radiation safety regulations and license problems at J-PARC

Radiation damage studies on Ti-alloys

- Titanium alloy Ti-6AI-4V is widely adopted as a targetry material:
 - J-PARC neutrino primary beam window, target window & containment vessel
 - J-PARC hadron facility target chamber window
 - LBNF reference design target window and target containment vessel
 - **MSU-FRIB Beam Dump**
 - ILC 14MW main water dump beam window
- Relatively little known on how this Ti alloy is affected by high energy proton irradiation
- Imperative to research radiation damage effects to enable :
 - Accurate component lifetime prediction
 - Design of robust multi-MW components, and
 - Choice of better alloy or development of new materials to extend lifetimes



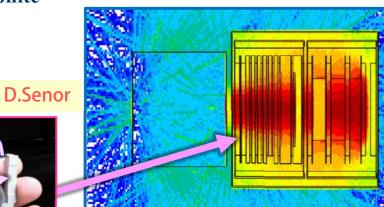
Classification of Ti-alloys & BLIP specimens

Comprehensive understanding on radiation damage effects for different Ti alloys

- β and $\alpha + \beta$ alloy require proper heat treatment to reinforce strength by precipitation of alloy elements:
 - Solution Treatment: Keep proper high temp 1. to solute more alloy element than RT
 - Rapid Cooling to RT keeping the condition 2.
 - Aging treatment: Keep temp moderately 3. higher than RT to precipitate the alloying components as fine intermetallic compound

: Samples in BLIP capsules

			-	
		弓	張性質	
組成	熱処理	引張強さ	耐力	伸び
		(MPa)	(MPa)	(%)
純チタン(α) Comercial	y Pure	e Ti		
JIS 1種 Gr1(α)	A	$270 \sim 410$	≥165	≥ 27
JIS 2 種 Gr2(α)	Α	$340 \sim 510$	≥215	≥ 23
JIS 3種	A	$480 \sim 620$	≥345	≥18
JIS 4種	Α	$550 \sim 750$	≧485	≥ 15
α 合金				
Ti-5 Al-2.5 Sn Gr6(α)	А	862	804	16
<i>α</i> リッチ <i>α</i> -β 合金				
Ti-8 Al-1 Mo-1 V	Α	1 000	951	15
Ti-6 Al-2 Sn-4 Zr-2 Mo	Α	980	892	15
<i>α-β</i> 合金				
Ti-3 A1-2.5 V Gr9(α+	A	686	588	20
Ti-6 Al-4 V	A	980	921	14
Gr5/23(α+β), α'-UFC	STA	1 1 7 0	$1\ 100$	10
Ti-6 Al-6 V-2 Sn	Α	$1\ 060$	990	14
	STA	1270	1 170	10
Ti-6 Al-2 Sn-4 Zr-6 Mo	STA	1 270	1 180	10
Ti-10 V-2 Fe-3 Al	STA	1270	1 200	10
β合金 Meta-stable β				
Ti-13 V-11 Cr-3 Al	STA	1 220	1 170	8
Ti-3 Al-8 V-6 Cr-4 Mo-4 Zr	STA	$1\ 440$	1370	7
Ti-11.5 Mo-6 Zr-4.5 Sn	STA	1 380	$1\ 310$	11
Ti-15 Mo-5 Zr-3 Al	STA	$1\ 470$	1450	13
Ti-15 V-3 Cr-3 Al-3 Sn	STA	1230	1 110	10
15-3Τi(β))			


7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018

RaDIATE Irradiation Runs at BNL-BLIP Facility

SiC-coated graphite

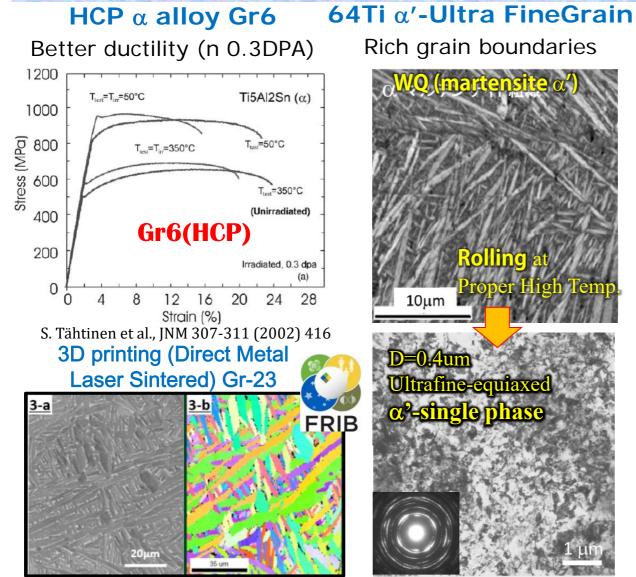
Omm

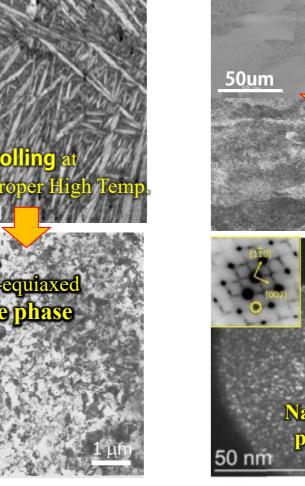
10 mm

Accumulated Damage Ti : 1.52 DPA peak (NRT) 0.93 DPA peak (Stoller)

1st phase irradiation (2017)

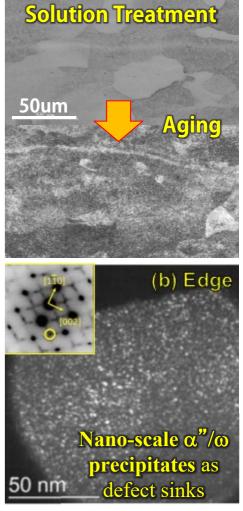
- Total POT: 1.76 x 10²¹ in 22 days @ 146µA average
- Capsules shipped to PNNL
- Tensile testing \rightarrow A.Casella
- 2 capsules newly installed
- 2nd phase irradiation(Jan-Mar 2018)
 - 2.81 x 10²¹ in 33 days @ 158uA average
 - Capsules to be shipped to PNNL soon.





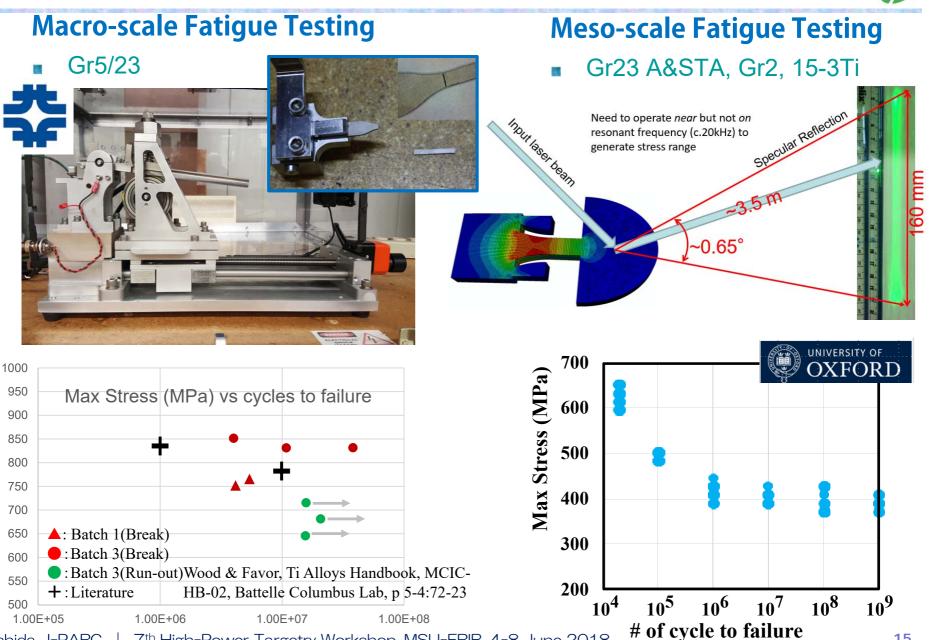
Ishida J-PARC | 7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018

Damage-tolerant Candidates in BLIP Irradiation



Nanoscale precipitates

Metastable β 15-3Ti



H.Matsumoto et al., Adv.Eng.Mat.13 (2011) 470 F.Pellemoine, NBI2017+RaDIATE Ishida J-PARC 7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018

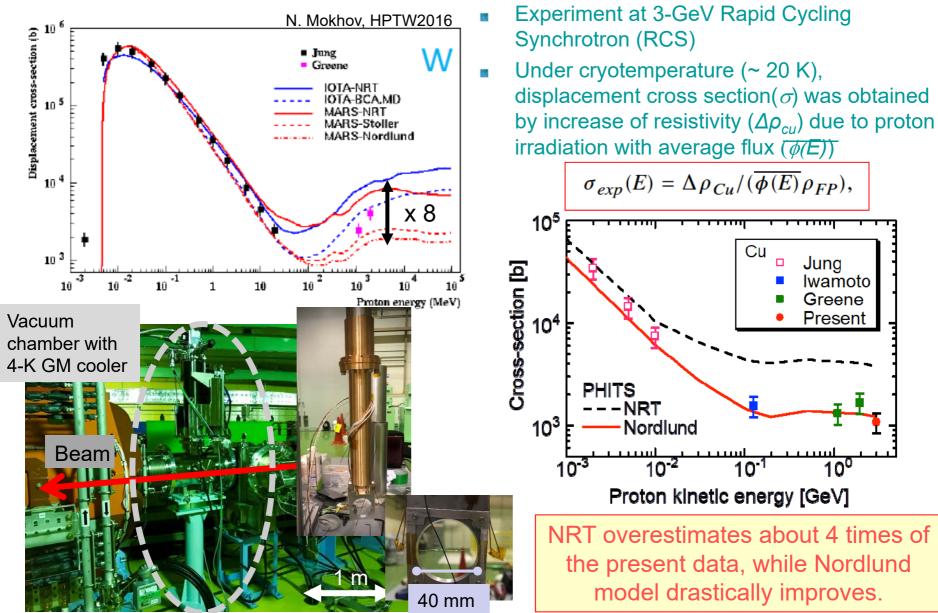
T.Ishida et al, NME (2018) in press \rightarrow D.Senor 14

High-Cycle Fatigue Data on Ti alloys to be Available

7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018 Ishida J-PARC

Measurement of displacement cross-section for S.Meigo et al., IPAC2018, MOPML045 **3-GeV proton at J-PARC**

Cu


 10^{-1}

Jung

Iwamoto

Greene

Present

Ishida J-PARC 7th High-Power Targetry Workshop, MSU-FRIB, 4-8 June 2018

Summary

- J-PARC Neutrino target/window : designed with 3.3 x 10 ¹⁴ ppp, hopefully applicable for coming 750kW \rightarrow 1.3MW operation with minor upgrades
 - Oxidization of graphite will determine the life of target. SiC-coated graphite specimen provided for BLIP irradiation / HiRadMat test
 - Beam window survived after 2.2x10²¹ pot. Need PIE to evaluate damage while it requires time to clear rad.safety regulations & license problems
- Study on radiation damage effect of Titanium alloys with a few DPA region is critical to determine/improve service life of targetry applications
 - BLIP irradiation run will provide data upto 1.5DPA (NRT)
 - 1st HCF data with both macro-bend and mesoscale tests
 - Damage-tolerant candidates: Gr-6/Gr-23 DMLS/Gr-5 α '-UFG/15-3Ti
 - Comprehensive understanding of radiation damage effect on different type of Titanium alloys and different heat treatments will be obtained.
- Displacement xsec. measurement for 3GeV proton carried out at J-PARC.
 - NRT overestimates about 4 times. Nordlund model agrees.
 - 30GeV at J-PARC MR approved. Collab. with Fermilab/ CERN underway.