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Graphite Advantages for a Nu Target

* Physics: Low Z (Atomic Number) higher yield of low energy Nu’s

— Although it means a longer target, the low Z results in less re-
Interaction of the secondary pions on the way out of the sides of the
target (long, but narrow target is an advantage, especially for low-
energy neutrino experiments)

« Thermal Shock Resistance

— Very low effective modulus of elasticity mean stresses from thermal
shock are 3x’s less than metallic counterparts (beryllium)

» High temperature operation

— Inert atmosphere required to avoid oxidation Secondary pion

trajectory through horn
magnetic field

Beam
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Graphite Advantages for a Nu Target

* Physics: Low Z (Atomic Number) higher yield of low energy Nu’s

— Although it means a longer target, the low Z results in less re-
Interaction of the secondary pions on the way out of the sides of the
target (long, but narrow target is an advantage, especially for low-
energy neutrino experiments)

« Thermal Shock Resistance

— Very low effective modulus of elasticity mean stresses from thermal
shock are 3x’s less than metallic counterparts (beryllium)

» High temperature operation
— Inert atmosphere required to avoid oxidation

Some Secondary pions

Interact with target before
exiting the target
$& Fermilab
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Non-irradiated properties of graphite vs Be

Comp Strength (MPa) 175 97 -
Tensile Strength (MPa) 79 38 345
Elastic Modulus (GPa) 14.5 10.8 309

CTE (10 K1) 8.1 4.5 11.5
Specific Heat (J/Kg/K) 710 630 1829
Thermal Cond (W/m/K) 70 143 183
Thermal Shock Resist 0.48 0.49 0.18
Application NuMI T2K Beam windows

Thermal Shock Resistance = (UTS*C) / (CTE * E)

« What about radiation damage from high energy protons?
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RaDIATE Graphite Studies

« 2010 - 2012 LBNE Graphite Study at BLIP, BNL
— 4 Grades of graphite
— C-C Composite
— Irradiation Temp 120 - 180 °C
— 0.1 DPA
 NT-02 NuMI-MINOS Graphite Target Fin Study
— Dave Senor et al., PNNL
— Dong Liu, Oxford
— Nick Simos et al., NSLS-I1I, BNL
— lrradiation Temp 90 — 300 "C
— 0.6 DPA
« MET-01 NuMI-NOVA Graphite Target Fin Study
— Visual observation only
— Irradiation Temp 300 — 700 °C
— 1.1 DPA
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Graphite micro-structure ,@ OxfordMaterials

Slide by Dong Liu, Oxford
Desired properties in nuclear-grade graphite: yUene

o High purity; High density; High thermal conductivity; Low CTE

o High irradiation stability (pitch, coke and manufacture process);

o High strength (flexural: 20-30MPa);

o Low anisotropy, (less than 1.1, defined by CTE in orthogonal directions)
o Low elastic modulus (Y11 GPa for Gilsocarbon)
Facts:

o Damage and fracture
o Microstructure, porosity
o Residual stresses
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Basic Structural
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" Carbon binder =~ Cracks Oberlin A. Carbon N Y 1984;22:521-41
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] ] Slide by Dong Liu, Oxford
Graphite micro-structure
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Results — Typical Tensile Properties (1G-430)

Irradiation Temperature ~150 °C
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Results — Tensile Properties Summary Plot

Tensile Property Changes Vs DPA
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Results — Sonic Velocity
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Simos et al

Ultrasound Velocity Recovery through Annealing in Irradiated C-2020 Graphite

—@—C-6
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C-12 sample was annealed at 300 "C prior to all tests
C-6 irradiation temperature was ~150 "C
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Figure 3.3.50: Ultrasound velocity recovery in irradiated/annealed Carbone-2020

6/4/18

P. Hurh | RaDIATE Graphite Results @ HPTW2018

& Fermilab



Results — CTE and dimensional changes

During 15t run
annealing,
specimens
shrunk

2" run, all
graphites
exhibited ~10%
increase in CTE
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Neutron irradiated graphite dimensional changes

« B.J. Marsden, “Irradiation Damage in Graphite due to fast neutrons in fission
and fusion systems,” IAEA-TECDOC-1154, 2000

dpa
55 10 15 20 2
— Graphite Crystal &
30 [~ m, 150°C £ 20 e P
()]
. 200°C  —— 2
Big change ©
3
L L] w
— N C-aXIs &
ERl = s
S5 = - h Q.
2% growt 3
g SO 5
<4 250 °C =
s .S 0 5 10 15 20 25
S B Fast Neutron Fluence 10?' nicm?
=3
gz 10
ol
o
x 450°C
650'C
0 I | I

10 20 30 40 x 1020
Neutron Dose n‘cm2(EDN)

£& Fermilab
13 6/4/18 P. Hurh | RaDIATE Graphite Results @ HPTW2018



Results — X-ray diffraction

Simos et al

XRD on BLIP irradiated POCO
graphite indicates agreement with
c-axis lattice growth results from
neutron irradiation

(100) ~ (101)

15 20 25 30 35 40
(002) 3,24 10% plem? (POCO) 20 (degrees)
(a) 2 20 2 1
5,66 102 p/cm? (POCO :

g SRS S N || 22 Ry ey
5= @ 8 "
5 % B \‘
= Wi 4.39x1020NVT
E = / 7751020 AVT)
= 5.66 102 p/cm? (G 430) - / /
= unirradiated = 4 / W@
g w
E >
E 3 ,

w “ / \

® o

27.0 26.0 250 24.0
ANGLE OF DIFFRACTION, DEGREES

28 21.5 27 26.5 26 25.5 25 245 24 W. Bollmann. “Electron-microscopic observations on radiation damage in
28 (degrees) graphite” Phil. Mag., 5(54):621-624, June 1960.

3= Fermilab
14 6/4/18 P. Hurh | RaDIATE Graphite Results @ HPTW2018



NT-02 Graphite Fin Studies
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Proton
Beam

Direction

Downstream (DS)

Graphite Fin Core, 21nt. len.

(6.4mmx 15 mmx 20 mm ) x 47
segments

Water cooling tube also provides mech.
support

(steel soldered to graphite)
Anodized Al spacer (electrical insulation)

Water turn-around at end of target

0.4 mm thick Aluminum tube (He
atmosphere,

Be windows at U.S. and D.S. ends)
Ceramic electrical isolation

Figure 1.2. Description of the NT-02 target (Hylen 2009, Senor et al. 2016).
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NT-02 Graphite Fin Fracture
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Figure 1.2. Description of the NT-02 target (Hylen 2009, Senor et al. 2016).
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Results — NT-02 Evidence of Swelling

« Micrometer measurements revealed 2 — 4% swelling in the fin thickness in
the beam center area

« TEM imaging did not show evidence of displacement damage (black
spots, dislocation loops)

Figure 2.59. TEM imaging of DS ' fin sample 16F017B. Overview of the sample shows porosity
and a mix of nanocrystalline (darker) and amorphous (lighter) regions. Mrozowski cracks are
prevalent in this sample, often at the interface between the two phases or in the nanocrystalline
e Casella et al
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Results — X-ray diffraction shows lattice growth and
amorphitization at beam center
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Results — X-ray diffraction shows lattice growth and
amorphitization at beam center

—=S_1sigma_FractureSurface
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—US_2sigma_high

~=US_2sigma_low
===US_3sigma_high NT-02 US target fin
—=US_3sigma_low (fractured in-beam)

—={JS_4sigma_high
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NOVA Target (MET-01) Autopsy

Before Irradiation (US end)
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NOVA Target (MET-01) Autopsy

After Irradiation (DS end) Sidorov et al
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NOVA Target (MET-01) Autopsy
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After Irradiation (DS end) Sidorov et al
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Thermal Comparison NT-02 to NOVA MET-01
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Quasi-static Temp (°C) 84

Peak Temp (°C) 304
Time Average Mean (°C) 139
Beam sigma (mm) 1.1
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Conclusion

24

Significant changes in material properties with high energy proton
irradiation at moderate temp (especially elastic modulus)

High dependence upon irradiation/annealing temperature, especially for
swelling (which exhibits a threshold at ~250 "C)

No dislocation defects visible at dose up to 0.6 DPA and irradiation
temperatures <~150 °C

Failure of NT-02 graphite

— Possibly swelling, internal stresses, loss of structure due to low
temperature irradiation

— Possibly oxidation or other contaminant
Success of MET-01 graphite

— Higher temperature irradiation

— Better maintained quality of environment

Future work
— MET-01 and MET-02 PIE

— Low energy ion irradiation to mimic high energy proton irradiation effects
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