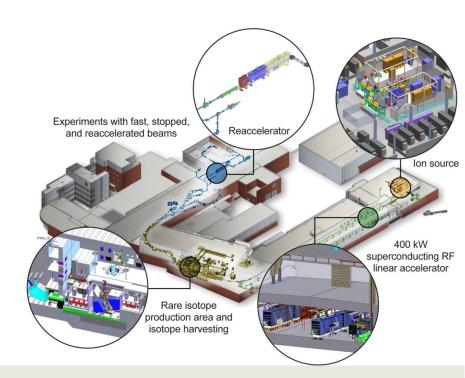


High Power Targetry at FRIB


F. Pellemoine Target and Beam Dump Systems Group Leader

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Challenge in Accelerator System area
 - Lithium stripper
 - Folding segment dumps and beam delivery system dump
- Challenge in Experimental System area
 - Production target
 - Beam dump
- R&D and testing to support design
 - Production target
 - Beam dump
- Isotope harvesting
- Summary

Michigan State University

Challenges in Accelerator System Area

Facility for Rare Isotope Beams

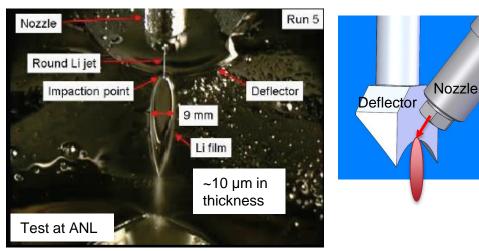
Accelerator System Area Lithium Stripper

- Stripper challenges in FRIB
 - Solid carbon foils can be used only with low Z ions at low intensities
 - We need to utilize a stripping media that doesn't suffer radiation damage to the material lattice
 - Liquid lithium was selected as baseline for FRIB

 It has a relatively low melting point (181 C), low vapor pressure at that temperature (~10⁻⁷ Pa), high boiling point (1342 C), high heat capacity and low viscosity.

F. Marti et al., "A carbon foil stripper for FRIB", TUP 106, Proceedings of LINAC2010, Tsukuba, Japan, TUP105.

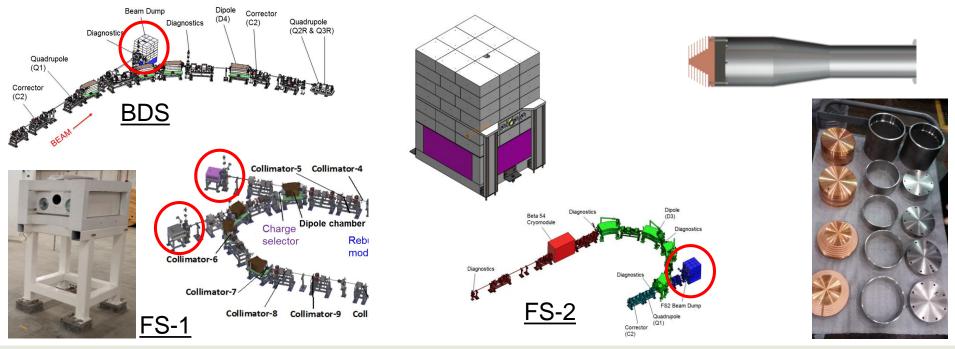
» The negative aspect is that it is reactive with air, safety concerns


Accelerator System Area Lithium Stripper - R&D and Safety Issues

- R&D issues
 - Continuous operation for two weeks with electromagnetic pump.
 - Erosion/corrosion of nozzle / deflector
 - Improvement of film stability
 - Diagnostics for film thickness measurement

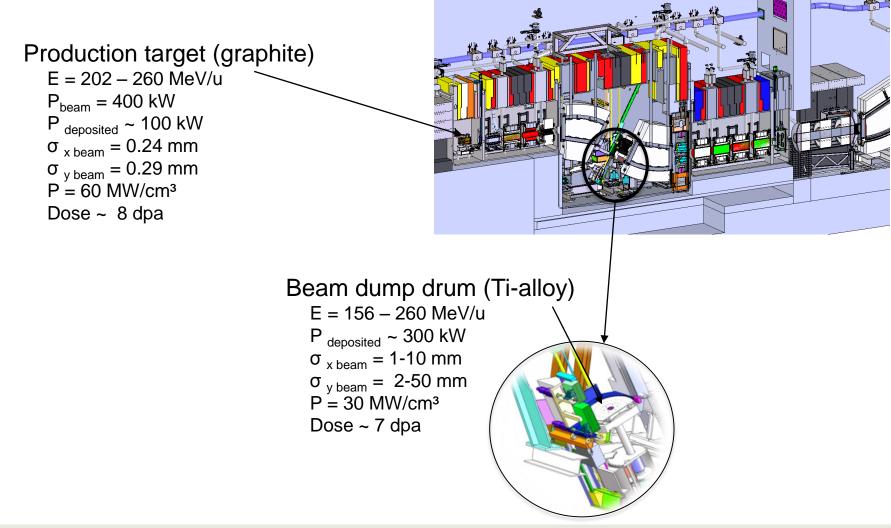
Safety issues

- Liquid lithium-air contacts resulting in a potential lithium fire
 Secondary containment vessel filled
 - » Secondary containment vessel filled with argon
- Activation of the lithium, and the argon gas in the secondary containment vessel as well as in the argon storage tank


Session #4

Session #5

Accelerator System Area Beam Dump

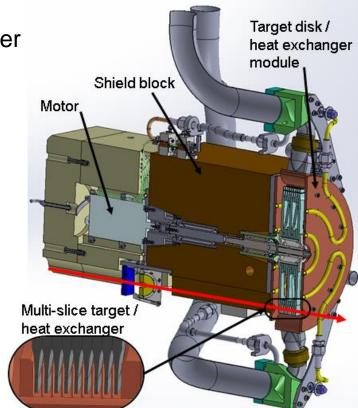

- Accelerator beam dumps have a common core design, air-cooled with location-specific local shielding
 - Folding Segment 1 (FS-1) beam dumps are low energy, the required shielding is for residual activation protection
 - Folding Segment 2 (FS-2) beam dumps are higher energy, the additional steel and concrete stack provides primarily prompt shielding

Facility for Rare Isotope Beams

Challenges in Experimental System Area

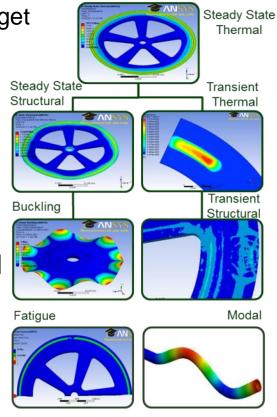
Michigan State University

F. Pellemoine, HPTW2018 - Welcome, Slide 7



FRIB Production Target Rotating Multi-slice Graphite Target Design

- Rotating multi-slice graphite target chosen for FRIB baseline
 - Increased radiating area and reduced total power per slice by using multi-slice target
 - Use graphite as high temperature material
 - Radiation cooling
- Beam Dump requirements
 - High power capability up to 100 kW
 - 2 weeks
 - Remote replacement and maintenance
- Design parameters
 - Remote replacement and maintenance
 - Optimum target thickness is ~ $\frac{1}{3}$ of ion range
 - Maximum extension of 50 mm in beam direction including slice thickness and cooling fins to meet optics requirements
 - 5000 rpm and 30 cm diameter to limit maximum temperature and amplitude of temperature changes



Facility for Rare Isotope Beams

FRIB Production Target Challenges Overview

- Thermo-mechanical challenges
 - High power density: ~ 20 60 MW/cm³
 » High temperature: ~ 1900 °C: Evaporation of graphite, stress
 - Rotating target
 - » Temperature variation: Fatigue, Stress waves through target
- Swift Heavy Ion (SHI) effects on graphite
 - Radiation damage induce material changes
 » Thermal and mechanical property changes
 - Swift heavy ions (SHI) damage not well-known
 - High fluence/dose may limit target lifetime
- Similar challenges at
 - Facility for Antiproton and Ion Research (FAIR) at GSI
 - Radioactive Ion Beam Factory (RIBF) at RIKEN

Session #4

Session #5

FRIB Primary Beam Dump Water-filled Rotating Drum Concept

- Water-filled rotating drum concept chosen for FRIB baseline
 - Using water to stop the primary beam and absorb beam power
- Beam Dump requirements
 - High power capability up to 325 kW
 - 1 year (5500 h) lifetime desirable
 - Remote replacement and maintenance

Design parameters

- Ti-alloy shell thickness 0.5 mm to minimize power deposition in shell
- 600 rpm and 70 cm diameter to limit maximum temperature and amplitude of temperature changes
- 60 gpm water flow to provide cooling and gas bubble removal
- 8 bar pressure inside the drum increases water boiling point to 170°C
- Ti-6AI-4V was chosen as candidate material for the beam dump shell

FRIB Primary Beam Dump Challenges Overview

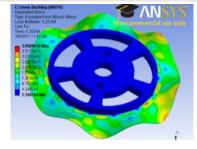
- Thermo-mechanical challenges
 - High power up to 60 kW in the shell
 - » Thermal stress
 - » Water near the boiling point limits max. temperature of the shell
 - » Sufficient wall heat transfer required
 - Rotating drum: 600 rpm
 - » Temperature variation : Fatigue, Stress wave through the drum shell
 - » Elevated mechanical stress due to internal pressure
 - » Vibration and mechanical resonances
- Water
 - Corrosion, Cavitation
- Swift heavy ions
 - Radiation damage in material
 - Sputtering
 - Radiolysis (gas production)

Session #4

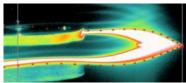
Session #5

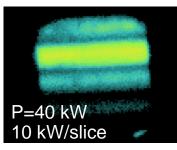
Session #2

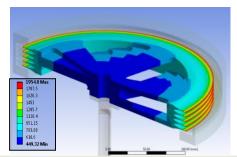
R&D to support design


- Thermo-mechanical behavior and radiation damage of material during operation could limit the lifetime of each equipment
 - Thermo-mechanical stress, fatigue, corrosion, physical property change of material under irradiation,
- FRIB will provide a wide range of swift heavy ion beams
 - Equipment needs to be reliable for each single beam configuration
 - Radiation Transport analysis done for each component to support design

R&D to support design


Target Testing with High Energy Electron Beam


- Electron beams used to simulate similar power density close to FRIB conditions without the activation of the target due to nuclear reaction
- Successful low energy electron beam tests at Sandia National Laboratories (2010) and SOREQ (2010)
 - Demonstrated that FRIB power densities can be achieved
- Prototype for FRIB production target successfully tested with electron beam at BINP-Novosibirsk (2012)
 - 5 slices 0.3 mm 5000 rpm 30 cm diameter
 - Demonstrated that FRIB power densities can be achieved
 - Valuable information on further design improvements of heat exchanger and targets themselves. Input for final design of FRIB production target

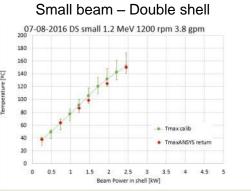


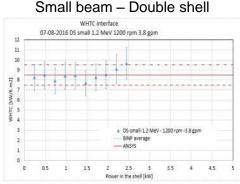
Session #1

Session #4

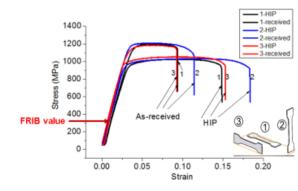
R&D to support design


Session #1


Session #4


Beam Dump Testing with High Energy Electron Beam

- Testing with high energy electron beam at Novosibirsk with ¼ scale mock-up: a 0.5 mm thick shell made of DMLS Ti-6AI-4V – July 2016
 - Validate the maximum heat flux in the beam dump shell
 - Wall Heat Transfer Coefficient (WHTC) determination in rotating system
 - Single-phase fluid flow and point of entering nucleate boiling regime limit
- Good agreement between experimental data and simulation results for single shell geometry (independent of the beam size) and for double shell geometry (small beam)


Facility for Rare Isotope Beams

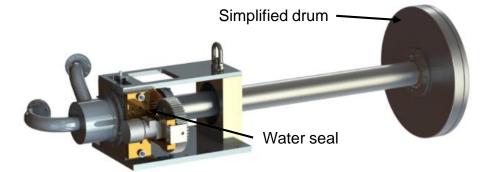
S1-Ishida

Session #2 Session #4

R&D to Support Design Poster-Amroussia Material Study to Assess Beam Dump Lifetime

- Material study of Ti-6AI-4V alloys under irradiation to assess beam dump shell lifetime
- Low energy heavy ion irradiation at University Notre Dame and GANIL-IRRSUD facilities performed to study mechanical property changes of Ti-alloys with radiation damages
 - Reach high dose (up to 10-20 dpa/day) without activation of the samples
 - Low range limits the analysis to few characterization (SEM, TEM, Nano-indentation,...)
- Test at BNL-BLIP facility started in April 2017 with RaDIATE collaborators
 - Irradiation with high energy protons (up to 1 dpa in Ti samples) sample activation
 - characterize property changes due to proton induced damage
- Mechanical tests at MSU-College of Engineering
 - Fatigue test, porosity measurement and tensile test

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science


Michigan State University

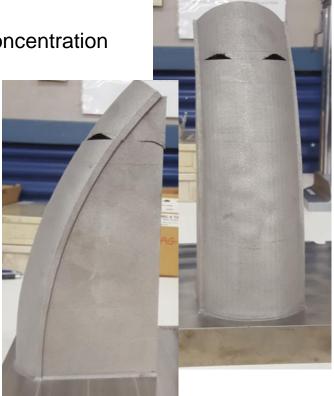
Test to validate concept Beam Dump Rotating Seal Testing

Beam dump rotating seal test on going

- » Validate the concept
- » Estimate outgassing rate

Session #4

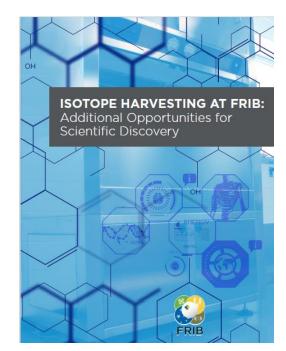
Session #5

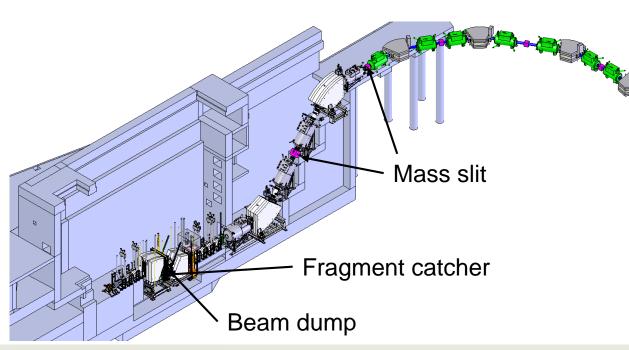


Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

3D Printed Material for Beam Dump Drum Fabrication Challenge

- 3D printer technology is needed for drum shell fabrication for high power
- Several technologies exist to support beam dump drum fabrication
 - Electron Beam Additive Manufacturing (EBAM) for 1 mm shell
 - Direct Metal Laser Sintering (DMLS) for 0.5 mm shells
 » Failure (material show sinking and cracks) due to stress concentration
 - EBAM and DMLS work with cold environment
 - ARCAM EBM® (Electron Beam Melting)
 - » Arcam EBM® process takes place in vacuum and at high temperature, the components produced are free from residual stress and have material properties better than cast and comparable to wrought material.




Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Isotope Harvesting

 "The normal operation of FRIB will produce a wide variety of useful ... Many of these radioisotopes also have applications that serve societal needs, in fields ranging from diagnosis and treatment of cancer to national security."

Facility for Rare Isotope Beams

Summary

- Lithium Stripper, production target and beam dump, are challenging equipment that need to be reliable for every single beam configuration
- Extensive R&D was performed to validate the concept for the Lithium stripper, production target and the beam dump
- Continue to improve understanding of material behavior under irradiation to assess lifetime of equipment during operation
- Continue to evaluate technical improvements that may be needed as facility ramps up to full power
- New generation facilities all around the world have or will have similar challenges to deal with
- The 7th High Power Targetry Workshop will be a great source of discussion and sharing

Acknowledgements

- MSU Department of Chemical Engineering and Material Science
 - A. Amroussia, C. Boehlert, S. Balachandran Nair, A. Lee, P. Kwon
- GANIL-CIMAP
 - F. Durantel, C. Grygiel, I. Monnet, F. Moisy, M. Toulemonde
- UNIVERSITY OF NOTRE DAME

• T. Ahn, D. Robertson, E. Stech

Notre Dame University

 University of Michigan • R. Ewing, M. Lang, W.X. Li, F.X. Zhang, G. Was

- Budker Institute of Nuclear Physics
 - S. Fadeev, M. Golkovsky, N. Kuksanov, R. Salimov, I. Chakin

- Sandia National Laboratories
 - F. Bauer, T. Lutz, J. McDonald, S. Simpson, J. Taylor, R. Nygren, D. Youchison,

- Soreg Nuclear Research Center
 - D. Kijel, A. Arenshtam, I. Silverman

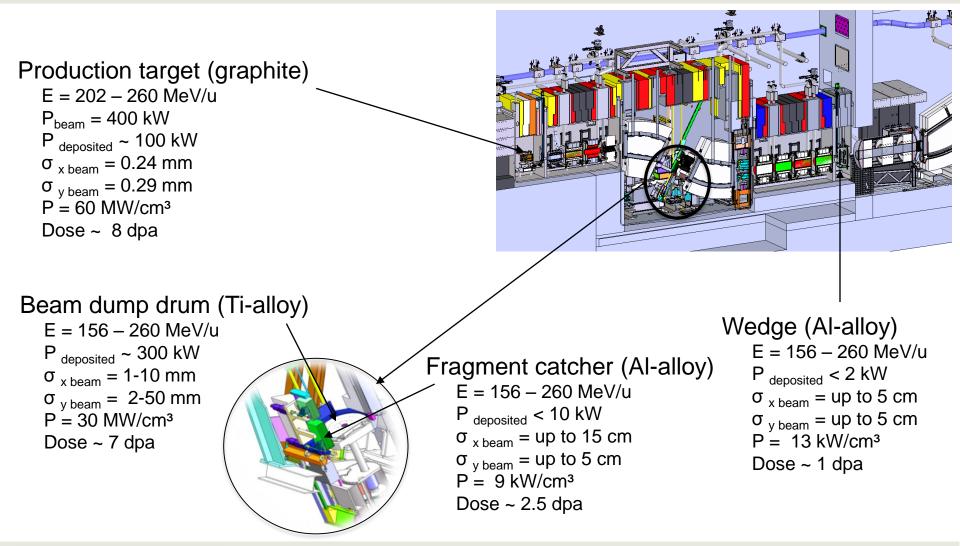
- GSI
 - M. Bender, M. Krause, D. Severin, M. Tomut, C. Trautmann
- Radiate Collaboration

- FRIB
 - M. Avilov, D. Etheridge, S. Fernandes, P. Ferrante, B. Forgacs, B. Furr, J. Gill, A. Hussein, W. Jian, J. Kramer, M. Larmann, A. Majjouj, W. Mittig, L. Ogard, H. Patel, B. Peruski, B. Phillips, N. Reha, M. Schein, G. Severin

This work was partially supported by the U.S. Department of Energy, Office of Science under Cooperative Agreement DE-SC0000661. This work was also supported by Michigan State University under the Strategic Partnership Grant "FRIB -Materials in Extreme Environments". The in-situ TEM irradiation was supported by the

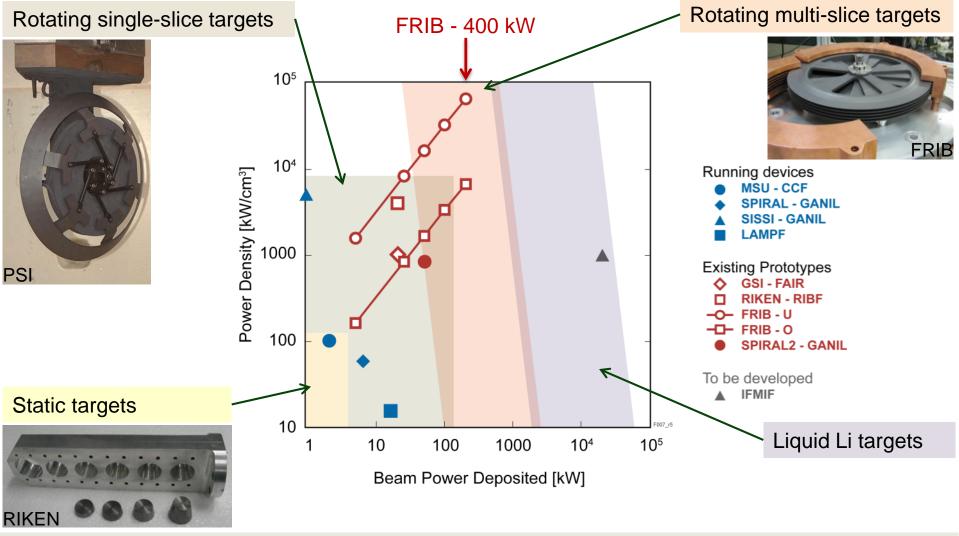
U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of NSUF experiment.

Facility for Rare Isotope Beams


Backup Slides

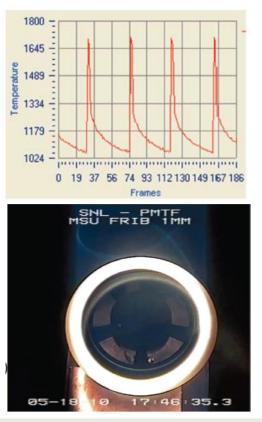
Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

F. Pellemoine, HPTW2018 - Welcome, Slide 21


Challenges in Experimental System Area

Facility for Rare Isotope Beams

High Power Target Technology



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

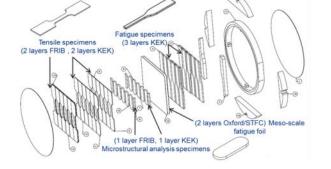
Prototype Target Single-slice 20 kW Target Prototype

- Destructive tests with 20 keV electron beam at Sandia Laboratories (NM, USA)
 - Extreme conditions at 1 Hz (target 10 cm, 1 mm)
 - P = 1.65 kW , ΔT = 640 °C
 - P = 3.3 kW, ΔT = 1800 °C \Rightarrow plasma effect

W. Mittig, F. Pellemoine and Sandia Team

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Beam Dump Design Support Progress Build Orientation and Radiation Damage Effect

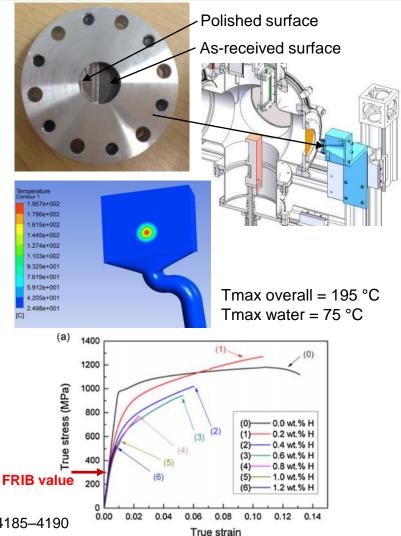

• Test at BNL-BLIP facility started in April 2017 with RaDIATE collaborators

- 4 days of irradiation with high energy protons, more in June.
- Restart irradiation early 2018 to reach 8 weeks (up to 1 dpa in Ti samples) and characterize property changes due to proton induced damage
- FRIB and KEK will irradiate DMLS and conventional Ti-alloy (Grade 5 and 23), compare and share results

‡ Fermilab

UNIVERSITY OF

 IRRSUD experiment planned in July (18-24) including Al-alloys (wedge and fragment catcher material) and 3D printed Ti-alloy


Pacific Northwest

 Build Orientation and Radiation Damage Effect with Low Energy Heavy Ion Irradiation (possible test with ARCAM samples)

Beam Dump Design Support Progress Corrosion Test for a Better Understanding of Lifetime

- Short irradiation at NSCL with high energy heavy ion beam
 - Windows made of 3D printed Ti-6AI-4V
 - Water cell fabricated
 - Benchmark gas production in water
 - Study first stage of corrosion on Ti-6AI-4V
- Long irradiation with new NSCL beam stopper
 - 3D printed beam stopper made of Ti-6AI-4V
 - Benchmark gas production in water
 - Study corrosion on Ti-6AI-4V with beam configuration close to FRIB operation
- H2 embrittlement
 - No significant change at low stress value even for high concentration of H

B.G. Yuan et al. / Materials Science and Engineering A 527 (2010) 4185–4190

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University