Optimization of the LBNF Neutrino Beam

Laura Fields
High Power Targetry Workshop
4 June 2018
LBNF/DUNE Overview

- LBNF (Long Baseline Neutrino Facility) and DUNE (Deep Underground Neutrino Experiment):
 - Neutrinos from high-power proton beam
 - **1.2 MW from day one**; upgradeable to at least 2.4 MW
 - **Near detector** to characterize the beam
 - Massive underground Liquid Argon Time Projection Chambers
 - **4 x 17 kton** (fiducial mass of more than 40 kton)
LBNF/DUNE Overview

Some size comparisons of the far detector:
LBNF/DUNE Overview

The far detector will be nearly a mile underground
LBNF/DUNE Science Program

• Neutrino Oscillation Physics
 • Search for leptonic (neutrino) **CP violation**
 • Resolve the **mass hierarchy**
 • **Precision oscillation** physics
• Nucleon Decay
• **Supernova** physics and astrophysics
 • 3000 ν_e events in 10 sec from SN at 10 kpc
• Plus **many other** topics
 • neutrino interaction physics, atmospheric neutrinos, sterile neutrinos, WIMP searches, Lorentz invariance tests, etc.
LBNF/DUNE Science Program

- Neutrino Oscillation Physics
 - Search for leptonic (neutrino) CP violation
 - Resolve the mass hierarchy
 - Precision oscillation physics

- Nucleon Decay

- Supernova physics and astrophysics
 - 3000 ν_e events in 10 sec from SN at 10 kpc

- Plus many other topics
 - Neutrino interaction physics, atmospheric neutrinos, sterile neutrinos, WIMP searches, Lorentz invariance tests, etc.

This is why we need to build a neutrino beam of unprecedented intensity
LBNF/DUNE Science Program

- DUNE will measure oscillations of neutrinos:

![Neutrino Oscillation Diagram]

Probability of a Muon Neutrino Oscillating to an **Electron**, **Muon** or **Tau** Neutrino

Distance Traveled / Energy (km / MeV)
LBNF/DUNE Science Program

- Neutrino Oscillations are *very* odd behavior:
LBNF/DUNE Science Program

• And this is physics beyond the Standard Model — we *must* investigate it!

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

PMNS Matrix:
Elements are functions of three mixing angles (\(\theta_{13}, \theta_{23}, \theta_{23}\)) and one CP-violating phase (\(\delta_{\text{CP}}\))

• Some of the specific things we are trying to measure:
 • What are the values of the mixing matrix — especially, what is the value of the CP-violating phase?
 • What is the neutrino mass ordering?
 • Is the data consistent with this model?
And this is physics beyond the Standard Model — we *must* investigate it!

Some of the specific things we are trying to measure:
- What are the values of the mixing matrix — especially, what is the value of the CP-violating phase?
- What is the neutrino mass ordering?
- Is the data consistent with this model?
Initial neutrino energy spectra will be modified by neutrino oscillation probabilities.

Figures from DUNE CDR
LBNF/DUNE Long Baseline Physics

• After traveling 1300 miles and interacting in an Argon detector:

Figures from DUNE CDR
We’ll be trying to detect very subtle differences in predicted event spectra expected for different oscillation parameters:

These are really, really old plots, but illustrate the kinds of differences we’ll be trying to resolve.
LBNF Beamline

- LBNF will use protons from the Main Injector, which will operate at 1.2 MW to start and will be upgradeable to 2.4 MW.

Proton beam will be tunable between 60 and 120 GeV.
Until recently, LBNF was currently considering two different beamline designs:

Reference Design

- Two horns, nearly identical to those used in NuMI, run at slightly higher current (230 kA)
- 1 m long graphite fin target, similar to but not identical to NuMI target

Figures courtesy Amit Bashyal
LBNF Optimized Beamline

- Until recently, LBNF was currently considering two different beamline designs:

 Optimized Design
 - Three horns, not similar to NuMI, run at **300 kA**
 - **2.2 m long** carbon target

Figures courtesy Amit Bashyal
Physics Performance of Beam Options

- Flux increases by 36% in the critical 1-4 GeV region
- Increase is more than a factor of two below 1 GeV

- Muon neutrino flux is significantly improved in the optimized design over the reference
Physics Performance of Beam Options

• This translates into improvements in physics sensitivities

Sensitivities use CDR GLoBES setup and default parameters, and exposure of 300 kT MW years; CP sensitivity assumes a normal mass hierarchy
Physics Performance of Beam Options

• You’re going to see a lot of this plot, so let’s go over it briefly:

![Sensitivity to CP Violation](image)

- It shows how sensitive DUNE will be to CP violation after about 6 years.
- If there is a lot of CP violation (δ_{CP} near $\pi/2$ and $-\pi/2$), DUNE will be able to clearly see it.
- For smaller amounts of CP violation, the situation will be less clear.
Physics Performance of Beam Options

• You’re going to see a lot of this plot, so let’s go over it briefly:

![Sensitivity to CP Violation](image)

- It shows how sensitive DUNE will be to CP violation after about 6 years
- If there is a lot of CP violation (δ_{CP} near $\pi/2$ and $-\pi/2$), DUNE will be able to clearly see it
- For smaller amounts of CP violation, the situation will be less clear
Physics Performance of Beam Options

- You’re going to see a lot of this plot, so let’s go over it briefly:

Sensitivity to CP Violation

- It shows how sensitive DUNE will be to CP violation after about 6 years.

- If there is a lot of CP violation (δ_{CP} near $\pi/2$ and $-\pi/2$), DUNE will be able to clearly see it.

- For smaller amounts of CP violation, the situation will be less clear.
Physics Performance of Beam Options

- For some figures of merit, the improvements in time to reach physics milestones corresponds to increasing the far detector mass by 70% — 28 kTons of liquid Argon
- Last fall, LBNF/DUNE made the decision to go forward with the optimized beam design
 - Physics argument was clear
- The rest of this talk:
 - How we redesigned the beam to get a physics improvement equivalent to 28 kTon of additional liquid Argon
Beam Optimization

• A first step in beam optimization is identify parameters of the beam that could be changed
• These are what we started with:

Parameters Varied:

• Horn 1 shape parameters (see figure)
• Width/length of carbon fin-style target
• Horn current
• Horn 2 radial and longitudinal scales
• Horn separation
• Proton beam momentum & radius
Beam Optimization

• A first step in beam optimization is identify parameters of the beam that could be changed
• These are what we started with:

Parameters Varied:

• Horn 1 shape parameters (see figure)
• Width/length of carbon fin-style target
• Horn current
• Horn 2 radial and longitudinal scales
• Horn separation
• Proton beam momentum & radius
Beam Optimization

- Also need to pick one quantity to optimize
 - Although algorithms exist to optimize multiple quantities
- For LBNF/DUNE, the choice was pretty clear

CP Sensitivity is one of our most important and most challenging goals.
Beam Optimization

• First step in optimizing the beam to pick one quantities to optimize

• For LBNF/DUNE, the choice was pretty clear

, we set as the goal a mean sensitivity to CP violation of better than 3σ (corresponding to 99.8% confidence level for a detected signal) over more than 75% of the range of possible values of the unknown CP-violating phase δCP
Genetic Algorithms

- What we’d ideally do at this point would be to simulate a bunch of beam configurations, estimate the physics performance, and pick the best one:

One problem: when we started this endeavor, this simulation cycle took ~ about a week
Genetic Algorithms

• But we developed a fast estimator of CP sensitivity that ran in 2 seconds (after the 1-2 hour simulation of the neutrino beam)

• We measured the change in CP sensitivity given some fixed changed in a single energy bin of the neutrino energy spectrum

• And used that information to estimate CP sensitivity for any neutrino energy spectrum
Genetic Algorithms

- But we developed a fast estimator of CP sensitivity that ran in 2 seconds (after the 1-2 hour simulation of the neutrino beam)

But considering e.g. just 20 parameters, each with 20 possible values, scanning over the available phase space would take much longer than the lifetime of the universe, even with very fast simulations.

A comparison of an approximation with the actual CP sensitivity for different proton beam energies
Since we wanted to build the beam sometime in our lifetimes, we developed a genetic algorithm

- A beam configuration is viewed as an organism; you start with a sample of randomly chosen organisms
- Configurations are judged based on “fitness” (CP sensitivity) and best configurations are mated together to form new (and better) designs
Genetic Algorithms

- The initial set of randomly chosen beams is generally pretty poor:

But when you take the best ones, and mix them together…
Genetic Algorithms

- Pretty much immediately, you start to do a lot better:

![Genetic Algorithm Diagram]

And then you repeat this survival of the fittest procedure over and over again.
Genetic Algorithms

- Pretty much immediately, you start to do a lot better:

And then you repeat this survival of the fittest procedure over and over again
Genetic Algorithms

- Eventually, the algorithm converges on an optimal beam design
- Each generation runs in parallel on the Fermigrid and takes ~2 hours; convergence takes a few weeks

We know that this algorithm produces good beam designs.
We can never know that it gave us the best possible design.
Initial Results

- Our first attempts at optimization considered a two-horn system.

Features of optimized focusing system:

- Very long first horn
- Long (2.5 m) target
- Larger second horn
- Greater horn separation
- As much horn current as possible
Initial Results

• It was clear that we were on the right track — the neutrino flux (and physics sensitivities) were much improved:

The problem at this point was that the engineers were pretty sure they could not build the giant horns/ targets that came out of the optimization (while still satisfying other requirements of the experiment)
Iteration with Engineers

- So we embarked on many more rounds of optimization, incorporating realistic engineering constraints

Engineering constraints considered

- Split first horn into two horns
- Target length limited to 2 m
- Horn size limited
- Horn system constrained to fit into ~21 m target chase
- Realistic inner conductor thicknesses

Target is inside first Horn
Iteration with Engineers

- We also considered a bunch of options for the shape of the first horn

- Engineers expressed preference for more simple inner conductor

- See slightly better performance with more complex shapes — flared or tapered shapes vs cylindrical or conical inner conductor
Iteration with Engineers

- And ran optimizations with several different target options:

Different targets caused the optimization to find slightly different focusing systems. Some combinations are better than others, physics-wise.

CP violation sensitivity

![Graph showing CP violation sensitivity with different targets]
Iteration with Engineers

- Further investigation of optimizations performed with different options:

Difference in physics performance was primarily due to the target itself, not focusing system.

Cylindrical and Sphere targets here do not have complete material description, so this is not an apples-to-apples comparison.
Iteration with Engineers

- Parameter scans were useful for understanding optimized systems:
Iteration with Engineers

- Parameter scans were useful for understanding optimized systems:
Iteration with Engineers

- Parameter scans were useful for understanding optimized systems:
Iteration with Engineers

- Subdominant neutrinos matter too

In many cases, improvements to CP-sensitivity is due not only to increases muon neutrino flux (and muon antineutrino flux in antineutrino mode), but also reductions in neutrino backgrounds in antineutrino mode ("wrong-sign" backgrounds")
Final Idealized Design

• We ultimately chose to pursue the focusing system with the best CP sensitivity of all of our optimized beams:

Features of final idealized design

• Short first horn, slightly tapered
• Long (nearly 4 m) second horn
• Wide third horn
• 2 m long target
• 300 kA horn currents
• 110 GeV proton beam
Toward Reality

- The optimized horns at this point were basically sheets of aluminum with 300 kA but no cooling or supports
- We turned the design over to engineers to add necessary details of real horns

It wasn’t possible to include details like full support/cooling systems in the simulation used for the optimization.

These elements were expected to have a modest negative impact on the performance of the beam (more material = less neutrinos)
Toward Reality

- The optimized horns at this point were basically sheets of aluminum with 300 kA but no cooling or supports
- We turned the design over to engineers to add necessary details of real horns

Initial results showed big losses in neutrino flux and physics performance

What we learned:
Most losses came from a “game of telephone” between engineers and physicists
Also, some came from extra material in the beamline — inner conductors and target supports
Toward Reality

• Engineers then produced a second iteration, taking into account the lessons learned from the first round
Toward Reality

- Engineers then produced a second iteration, taking into account the lessons learned from the first round
 - 2 m target is fully integrated into Horn A
 - Target body & cooling lines are held by support rings inside a titanium tube.
 - Helium flows through support tube from upstream end for heat removal.
Toward Reality

• Flux/physics losses this time were quite modest:
Toward Reality

• And those losses were mitigated by a new target design:

 – After optimization, a carbon cylindrical design was developed at RAL
 – Have studied two options — 2.2 m long cylinder w/ cooled support (current nominal design), and 1.5 m without support
Toward Reality

• And that brings us back to the optimized beam I described at the beginning of the talk:
Next Steps

- The optimized target/horn system is currently at the level of Conceptual Design
- Will proceed to Preliminary Design over the next few years
- Will be critical to simulate design changes and minimize losses in beam performance

 - Target design still under consideration
 - 1.5 m target?
 - Two cantilevered half-targets?

- Have also maintained genetic optimization software to re-optimize parameters and study possibilities for long-term physics goals such as tau neutrino appearance and Non-Standard Interactions
Next Steps: Particle Swarm Optimization

• We are also pursuing alternatives to the genetic algorithm:

“Particle Swarm” algorithms are used to simulate animals swarming in nature
Also turn out to be good optimization algorithms
Initial results indicate ~order of magnitude decrease in time to convergence over genetic algorithms
Conclusion

• The LBNF optimized design is the result of several years of optimization and iteration with engineers.
• Final design yields significantly better flux and sensitivity to oscillation parameters than the Reference design.
• Optimized beam is current progressing to Preliminary design.
• Optimization continues for potential long term DUNE physics goals.
Thank You!
Systematic Uncertainties of Optimized Beam

- Also studying uncertainties on neutrino flux with optimized beam
- Estimated using infrastructure developed by MINERvA
Systematic Uncertainties

- Uncertainty on near/far ratio (critical to oscillation measurements) is also similar:

![Graphs showing N/F Ratio Error (Fractional) vs Neutrino Energy (GeV) for Reference and Optimized cases, with Total, Focusing, and Hadron Production contributions.]
LBNF/DUNE: Overview

Conceptual illustration of rock conveyor. Construction begins this year; ~3 years of rock-moving expected.

875,000 tons of rock will be moved from shaft to open cut.
LBNF/DUNE: Overview

Construction has begun!
LBNF/DUNE: Overview

As of today:

1095 collaborators from 175 institutions in 31 nations

Armenia, Brazil, Bulgaria, Canada, CERN, Chile, China, Colombia, Czech Republic, Spain, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Paraguay, Peru, Poland, Romania, Russia, South Korea, Sweden, Switzerland, Turkey, UK, Ukraine, USA

DUNE: a fully international science collaboration
LBNF (Long Baseline Neutrino Facility): US(DOE)-hosted project with international contributions
Physics Performance of Beam Options

- Improvements are present for all exposures:

Sensitivities use CDR GLoBES setup and default parameters; CP sensitivity assumes a normal mass hierarchy.
Physics Performance of Beam Options

- Comparison of a few milestones

<table>
<thead>
<tr>
<th></th>
<th>Optimized</th>
<th>Reference</th>
<th>Improvement vs Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to 3 sigma 75% CP</td>
<td>921</td>
<td>1577</td>
<td>42%</td>
</tr>
<tr>
<td>sensitivity (kT MW y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to 5 sigma 25% CP</td>
<td>293</td>
<td>419</td>
<td>30%</td>
</tr>
<tr>
<td>sensitivity (kT MW y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 % MH coverage @</td>
<td>6.21</td>
<td>4.69</td>
<td>33%</td>
</tr>
<tr>
<td>400 kT MW y (# sigma)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sin^2 2\theta_{13}$ resolution @</td>
<td>0.0036</td>
<td>0.0043</td>
<td>18%</td>
</tr>
<tr>
<td>1000 kT MW y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sin^2 \theta_{23}$ resolution @</td>
<td>0.0027</td>
<td>0.0031</td>
<td>12%</td>
</tr>
<tr>
<td>1000 kT MW y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equivalent to increasing mass of far detector by 70%, or 28 kTon

17 kTon of Argon
Beam Optimization

- Parameter scans were useful for understanding optimized systems:

![Graph showing relationships between horn current and proton momentum](image)
• Have done optimizations for tau neutrino appearance
• ~1000 events / year possible with NuMI parabolic horns
• Slightly less with optimized horns
• Also beneficial for separating CP/NSI
Toward Reality

- Cylindrical target gives modest improvements to flux/CP sensitivity: