

RaDIATE thermal shock experiments at CERN's HiRadMat facility

Kavin Ammigan 7th High Power Targetry Workshop MSU – FRIB, East Lansing, MI 04 June 2018

Outline

- Introduction
- BeGrid1 (HRMT24)
 - Experimental set-up
 - PIE work and results
- BeGrid2 (HRMT43)
 - Objectives
 - Experimental design
 - PIE activities
- Conclusion

RaDIATE Collaboration

radiate.fnal.gov

Radiation Damage In Accelerator Target Environments

Broad aims are threefold:

- to generate new and useful materials data for application within the accelerator and fission/fusion communities
- to recruit and develop new scientific and engineering experts who can cross the boundaries between these communities
- to initiate and coordinate a continuing synergy between research in these communities, benefitting both proton accelerator applications in science and industry and carbon-free energy technologies

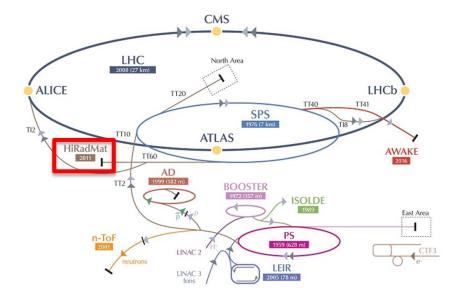
HRMT 24/43 contributors

K. Ammigan¹, P. Hurh¹, R. Zwaska¹, S. Bidhar¹, K. Yonehara¹, K. Anderson¹, G. Waver¹, M. Calviani², R. Losito², C. Torregrosa², R. Seidenbinder², K. Kershaw², M. Butcher², V. Kuksenko³, D. Senor⁴, A. Casella⁴, C. Densham⁵, A. Atherton⁵, G. Burton⁵, O. Caretta⁵, T. Davenne⁵, P. Loveridge⁵, J. O'Dell⁵, M. Fitton⁵, T. Ishida⁶, S. Makimura⁶, E. Wakai⁶, S. Roberts⁷

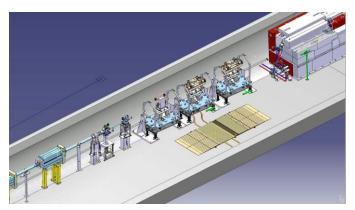
¹Fermi National Accelerator Laboratory (FNAL) ²European Organization for Nuclear Research (CERN) ³Culham Center for Fusion Energy (CCFE) ⁴Pacific Northwest National Laboratory (PNNL) ⁵STFC Rutherford Appleton Laboratory (RAL) ⁶High Energy Accelerator Research Organization (KEK) ⁷University of Oxford

RaDIATE Collaboration Members

Introduction


Motivation

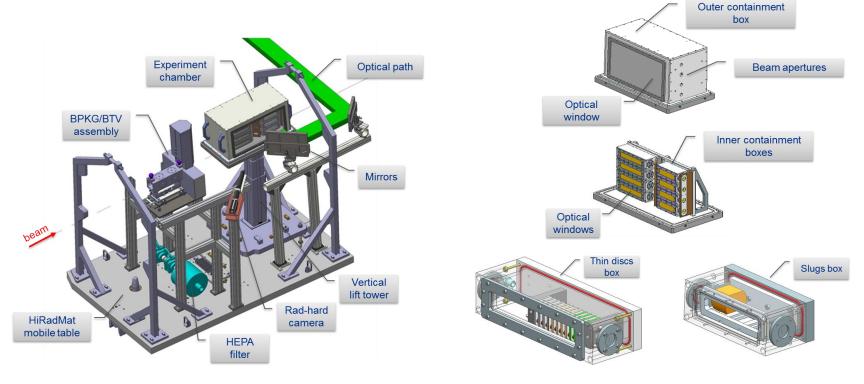
- To help reliably operate accelerator beam windows and secondary particle production targets without having to compromise particle production efficiency by limiting beam parameters in future multi-MW accelerator facilities
- Further understand the thermal shock response and identify material failure limits of conventional and novel materials used as beam windows/targets


Objectives

- In-beam test to induce thermal shock in materials under controlled conditions at very high localized strain rates and temperatures
- Explore and identify onset of failure modes and potential material thermal shock limits
- Acquire real-time dynamic thermomechanical response of materials to help validate highly non-linear numerical simulations

HiRadMat facility at CERN

Beam Par	ameters
Beam energy	440 GeV
Max. bunch intensity	1.2 x 10 ¹¹
No. of bunches	1 – 288
Max. pulse intensity	3.5 x 10 ¹³ ppp
Pulse length	7.2 µs
Gaussian beam size	1σ: 0.1 – 2 mm



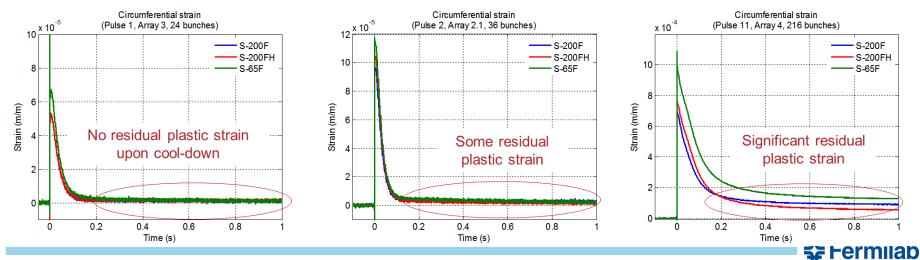
BeGrid1 (HRMT24) – experimental set-up

- Experiment successfully completed in September 2015
- Consisted of four specimen arrays of thin Beryllium discs and slugs
 - Various grades (S200F, S200FH, PF60, S65F) and thicknesses
 - Real time measurements of temperature, strain and displacement
 - PIE of thin disc specimen at the University of Oxford

BeGrid1 (HRMT24) – online results

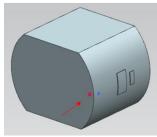
Real-time thermomechanical measurements

- Instrumented Be slugs in downstream containment boxes
- LDV for radial displacement measurements
- Strain and temperature gages


- Residual plastic strain observed upon cool-down
- Beam alignment/position effects on measurements not very clear

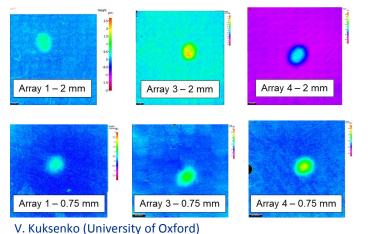
Array 3 – 24 bunches, 3.2e12 POT

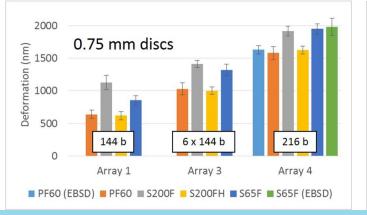
7


Array 2 - 36 bunches, 4.7e12 POT

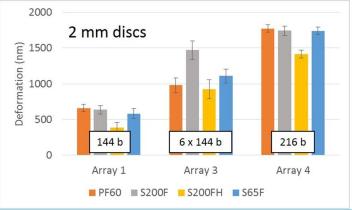
Array 4 - 216 bunches, 2.8e13 POT

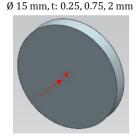
6/19/2018 K. Ammigan | RaDIATE thermal shock experiments at CERN HiRadMat's facility


Ø 40 mm , L: 30 mm

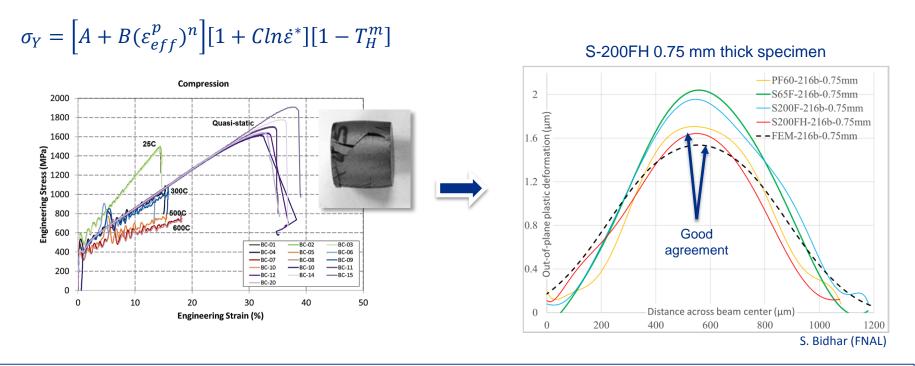


BeGrid1 (HRMT24) – PIE results


- Thin disc specimen PIE performed at University of Oxford
- Optical microscopy and profilometry to measure out-of-plane plastic deformations


S-65F grade specimens

- All Be grades showed less plastic deformation \geq than predicted by generic strength models
- S200FH showed least plastic deformation, in \geq agreement with empirical strength model
- Observed plastic strain ratcheting in Array 3
- Glassy carbon windows survived without signs of \succ degradation


🚰 Fermilab

6/19/2018 K. Ammigan | RaDIATE thermal shock experiments at CERN HiRadMat's facility 8

BeGrid1 (HRMT24) – data analysis

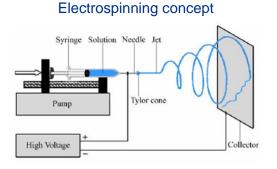
Beryllium S-200FH Johnson-Cook strength model

- Strength model parameters developed by Southwest Research Institute (SwRI)
- High strain rate and elevated temperature testing with Split-Hopkinson pressure bar

🚰 Fermilab

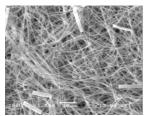
- HRMT24 completed successfully and safely
 - No containment breach and safe containment box disassembly/shipment to Oxford
 - Valuable PIE results and validation of strength model

BeGrid2 (HRMT43) objectives


Beam time allocated for Oct. 1st week (2018)

- Follow-up of BeGrid1 (HRMT24) experiment to expose Beryllium to even higher beam intensities than what was achieved in HRMT24
- Identify thermal shock response differences between <u>non-irradiated and</u> <u>previously irradiated</u> material specimens (Be, C, Ti, Si)
- Explore <u>novel materials</u> such as metal foams and electrospun fiber mats to evaluate their resistance to thermal shock and suitability as target materials
- Real-time measurement of dynamic thermomechanical response of graphite slugs in an effort to <u>benchmark numerical simulations</u>

BeGrid2 (HRMT43) – experimental specifications


- Four specimen arrays exposed to varying beam intensities (σ: 0.25 mm, 1.3e11 ppb)
- Various material specimens and grades of varying thicknesses
 - Beryllium, graphite, glassy carbon, titanium alloys, silicon, SiC-coated graphite, foam materials (C, SiC) and electrospun fiber mats (Al₂O₃, ZrO₂)

As-spun AI_2O_3 -pvp mat

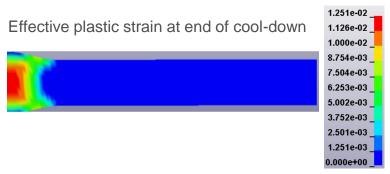
SEM: as-spun Al₂O₃

🚰 Fermilab

S. Bidhar (FNAL), "Improvised electrospinning set-up for thicker ceramic nanofiber mat for high power target", HPTW poster, June 5, 2018

- Previously proton-irradiated specimens (BNL BLIP with 180 MeV protons)
 - Beryllium, graphite, glassy carbon, titanium alloys, silicon

• Real-time measurements of temperature, strain and vibration of graphite slugs

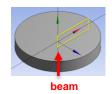

Numerical simulations of beam induced strain/stress

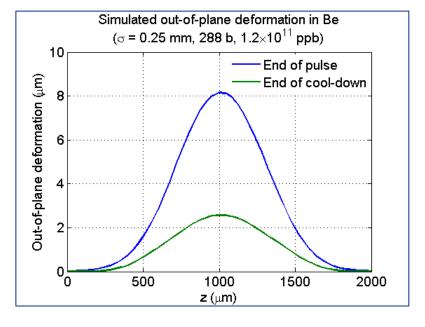
Beryllium

Peak temperature jump ~1000 °C (MARS/FEA)

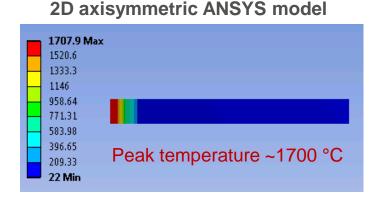
- Out-of-plane plastic deformation will be measured with profilometer during PIE work
- Peak effective plastic strain: 1.25 %
 - Failure plastic strain from literature: 1-2%

LS-DYNA (Johnson-Cook strength model)




Irradiated BLIP Be specimens: ~0.03 DPA

- Explore effect of radiation damage on thermal shock response
- Reduced ductility expected (~100 appm He)

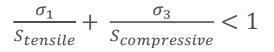


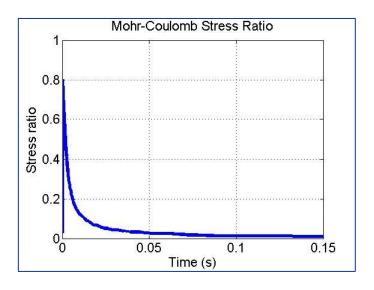
13 6/19/2018 K. Ammigan | RaDIATE thermal shock experiments at CERN HiRadMat's facility

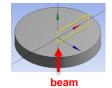
Numerical simulations of beam induced strain/stress

Graphite

- Peak beam intensity: $\sigma = 0.25$ mm, 288 x 1.2e11 ppb (3.5e13 ppp)
- Temperature dependent thermal/mechanical properties
- UTS: 79 MPa, UCS: 175 MPa (POCO ZXF-5Q)

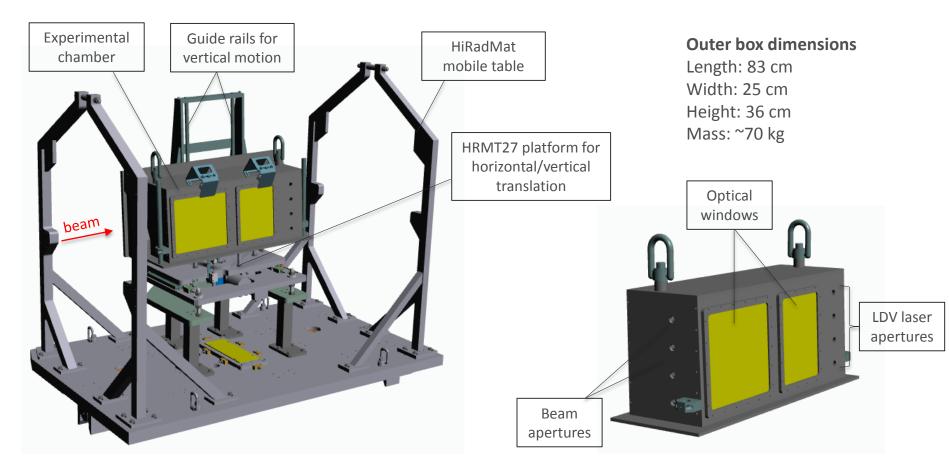



Stress ratio (0.8) highest at end of beam pulse, then drops back to zero as specimen


- BLIP graphite specimens: ~0.05 DPA
 - 10.5 mm x 10.5 mm x 0.5 mm

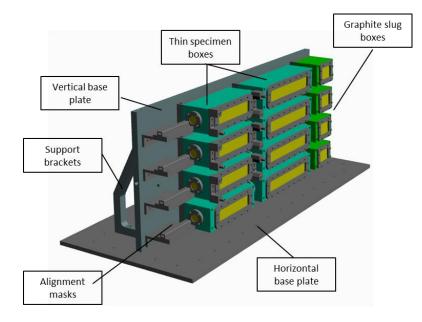
cools down

Mohr-Coulomb failure criterion



🗲 Fermilab

BeGrid2 (HRMT43) – experimental set-up



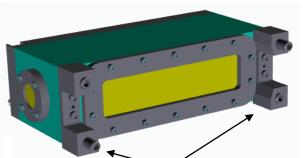
- Re-use of HRMT27 experimental platform with some modifications
- Outer chamber kept at slightly negative pressure using vacuum cleaner equipped with HEPA filter

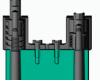
Fermilab

• Optical viewports for visual monitoring with rad-hard camera

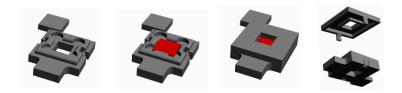
BeGrid2 (HRMT43) – specimen arrays

- Four arrays separated vertically
 - Irradiated and non-irradiated specimens in separate inner boxes
 - Slug inner boxes at downstream end
- TZM alignment mask upstream of each array
 - Used to center beam on array (similar to the CuCrZr mask in HRMT18)
- Remote handling features for irradiated specimen boxes
- Optical viewports for visual and LDV access

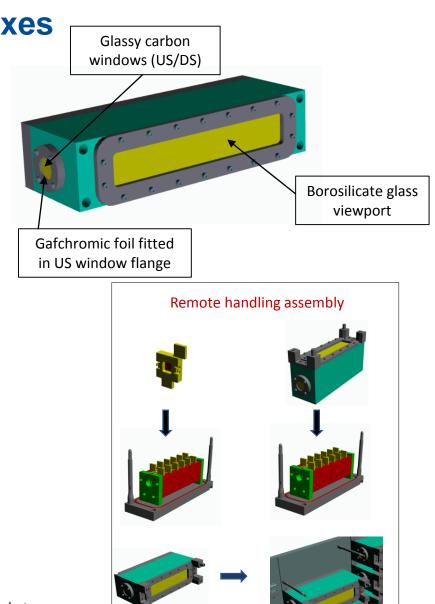

			Bear	n Pulse	List			
No		Intensity		Beam sp	ot [mm]	Bunch spacing	Pulse length	Torgot
NO	# bunches	p/bunch	Total	Sigma_x	Sigma_y	[ns]	[us]	Target
1	144	1.30E+11	1.87E+13	0.25	0.25	25	3.6	Array 4
2	144	1.30E+11	1.87E+13	0.25	0.25	25	3.6	Array 4
3	144	1.30E+11	1.87E+13	0.25	0.25	25	3.6	Array 4
4	144	1.30E+11	1.87E+13	0.25	0.25	25	3.6	Array 4
5	144	1.30E+11	1.87E+13	0.25	0.25	25	3.6	Array 4
6	216	1.00E+11	2.16E+13	0.25	0.25	25	5.4	Array 3
7	216	1.30E+11	2.81E+13	0.25	0.25	25	5.4	Array 2
8	288	1.30E+11	3.74E+13	0.25	0.25	25	7.2	Array 1



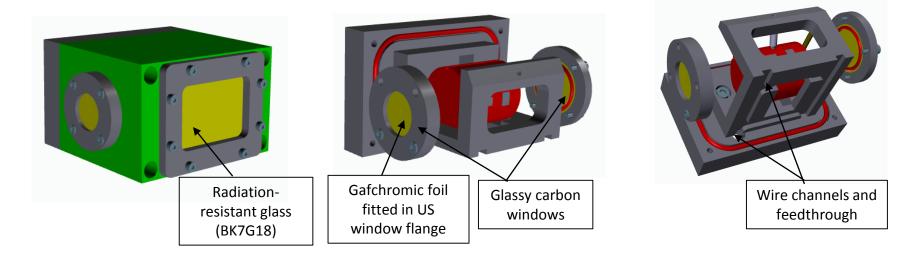
BeGrid2 – inner containment boxes

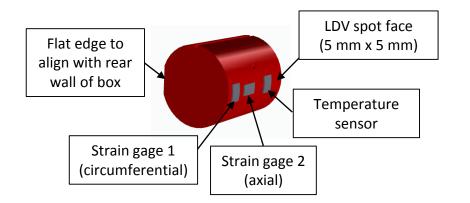

Thin specimen inner containment box designs

• Hermetically-sealed in air to fully contain specimens and avoid contamination release



With remote handling features (captive nuts in cover boxes) for 3 boxes that will contain irradiated specimens

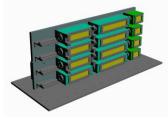

- Irradiated specimens currently at BNL
- Will be shipped to PNNL for assembly in holders and potentially inner containment boxes
- Shipment to CERN for final assembly to vertical base plate



🛠 Fermilab

BeGrid2 (HRMT43) – graphite slugs

Graphite slug containment box



- POCO ZXF-5Q graphite slug
- Slug aligned so that beam is 5 mm away from cylindrical edge
- Strain, temperature and radial displacement measurements will be acquired
- Also useful as diagnostic tool during experiment to verify beam impact on targets

Test matrix

Array 1 - 1 x 288 bunches (3.74 × 10¹³ protons, 1.3 × 10¹¹ ppb)

ARRAY					Irrac	liated	Specir	mens												Non-ir	radiate	ed Spe	cimen	5							Slug
1	PF-60	S-65F	S-200F	S-200FH	GC20	IG-430	ZXF-5Q	GC20 Lower dose	IG-430 Lower dose	<u>ZXF-5Q Lower</u> dose	Silicon	Silicon	PF-60 (1)	PF-60 (2)	S-65F (1)	S-65F (2)	S-200F (1)	S-200FH (1)	GC20 (1)	GC20 (2)	ZXF-5Q (1)	ZXF-5Q (2)	IG-430 (1)	IG-430 (2)	RVC (1)	RVC (2)	Silicon	Silicon	FREE	FREE	ZXF-5Q
t (mm)	0.75	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	1	1	0.75	0.75	0.75	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	1	1	1	1			35

Array 2 - 1 x 216 bunches (2.81 × 10¹³ protons, 1.3 × 10¹¹ ppb)

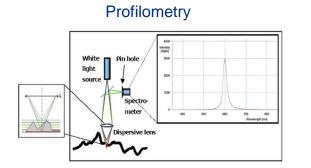
ARRAY					Irra	diated	Specin	nens												Non-ir	radiate	ed Spe	cimen	5							Slug
2	PF-60	S-65F	S-200F	S-200FH	GC20 Lower dose	IG-430 Lower dose	<u>ZXF-5Q</u>	Silicon	Silicon	FREE	FREE	FREE	PF-60 (1)	PF-60 (2)	S-65F (1)	S-65F (2)	S-200F (1)	S-200FH (1)	GC20 (1)	GC20 (2)	ZXF-5Q (1)	ZXF-5Q (2)	IG-430 (1)	IG-430 (2)	RVC (1)	RVC (2)	Silicon	Silicon	FREE	FREE	ZXF-5Q
t (mm)	0.75	0.75	0.75	0.75	0.5	0.5	0.5	1	1				0.75	0.75	0.75	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	1	1	1	1			35

Array 3 - 1 x 216 bunches (2.16 × 10¹³ protons, 1.0 × 10¹¹ ppb)

ARRAY					Irrad	diated	Specir	nens							_				Soli	id, foa	m and	novel	Mater	ials							Slug
3	Ti alloy	Ti alloy	SiC-graphite	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	SiC solid (1)	SiC solid (2)	SiC foam (1)	SiC foam (2)	Al2O3 solid (1)	Al2O3 solid (2)	ZrO2 solid (1)	ZrO2 solid (2)	Al2O3 spun (1)	Al203 spun (2)	ZrO2 spun (1)	ZrO2 spun (2)	Ti alloy	Ti alloy	SiC-graphite	FREE	FREE	FREE	ZXF-5Q
t (mm)	0.5	0.5	1										1	1	1	1	1	1	1	1	1	1	1	1	0.5	0.5	1				35

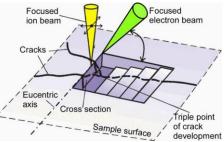
Array 4 - 5 x 144 bunches (9.36 × 10¹³ protons, 1.3 × 10¹¹ ppb)

ARRAY					N	lovel N	lateri	als													Solid	& foar	m Mat	erials									Slug
4	Al2O3 spun (1)	Al203 spun (2)	ZrO2 spun (1)	ZrO2 spun (2)	FREE	FREE	FREE	FRE	FRE	E FF	REE	FREE	FREE	SiC solid (1)	SiC solid (2)	SiC foam (1)	SiC foam (2)	Al2O3 solid (1)	Al2O3 solid (2)	ZrO2 solid (1)	ZrO2 solid (2)	Al-Be solid	Al-Be solid	FREE	FREE	FREE	FREE	FREE	FREE	FRE	E FRE	E	ZXF-5Q
nm)	1	1	1	1										1	1	1	. :	1 1	1	1	1	1	. 1										35
																																	3


18 6/19/2018 K. Ammigan | RaDIATE thermal shock experiments at CERN HiRadMat's facility

BeGrid2 (HRMT24) – PIE work

Thin specimens


Inner containment boxes will be shipped, after sufficient cool-down time, to Culham Center for Fusion Energy (CCFE) laboratory in UK for PIE work

- Profilometry or Atomic Force Microscopy (AFM) to measure plastic out-of-plane deformations
- Scanning Electron Microscopy (SEM) for identifying local deformations/cracks
- Electron Backscatter Diffraction (EBSD) to map grain structure/orientation and crack analysis
- 3D FIB-SEM for 3D analysis of crack morphology if needed

🗲 Fermilab

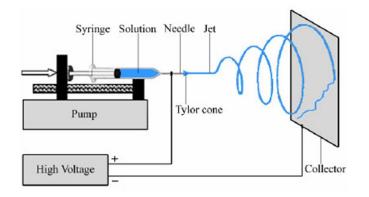
Graphite slug specimens

- · Analysis of real-time recorded data
- Benchmark and validate POCO ZXF-5Q numerical simulations by comparing with experimental measurements

Conclusions

- BeGrid2 will build upon BeGrid1 experiment to expose specimens to even higher beam intensities and thermal shock conditions
- Direct comparison of thermal shock response between non-irradiated and irradiated material specimens
- Evaluate potential novel materials for secondary particle-production targets
- Benchmark and validate numerical simulation and material strength models

Many thanks to HiRadMat facility/team for providing us the opportunity to perform in-beam material/component tests to replicate actual operating conditions of high-energy high-power target facilities

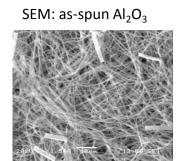

Back-up slides

21 6/19/2018 K. Ammigan | RaDIATE thermal shock experiments at CERN HiRadMat's facility

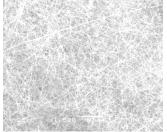
Novel materials

- Electro-spun and foam materials
 - Local damage of fibers do not affect structural integrity as a whole
 - Reduced temperature gradient limited to fibers
 - High surface area and gaps: improved cooling by flowing gas
- In-beam test to evaluate thermal shock response of foam/fiber mats compared to solid material

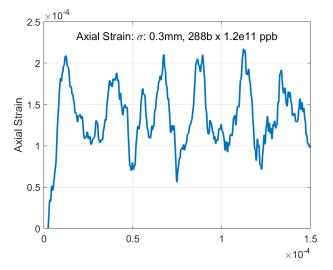
Reticulated vitreous carbon foam

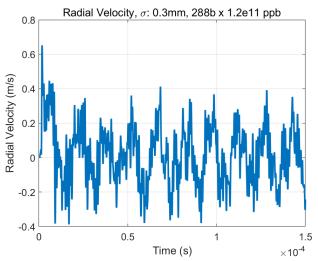


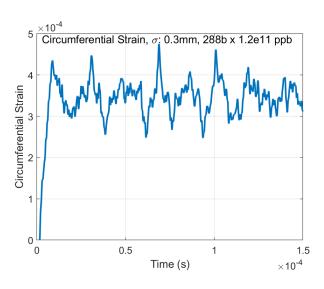
SiC foam

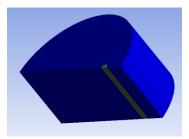


As-spun alumina-pvp mat


$\mathrm{Al}_{2}\mathrm{O}_{3}$ SEM after heat treatment




22


Graphite slugs updated FEA results

- Graphite slug, D: 30 mm, L: 30 mm
- Beam spot 5 mm away from cylindrical surface
- $\sigma = 0.3 \text{ mm}$, 288b x 1.2e11 ppb

- Axial strain range: 50 220 με
- Circumferential strain: 250 475 με
- Radial velocity: -0.4 0.4 m/s

ULTEM 9085 specimen holder

- Proposing to 3D print specimen holders in ULTEM 9085 (family of polyetherimide PEI)
- Handle to enable easy handling
- Snap-fit to close/secure specimen in holder
- Separate fixture will be used to open holder by pressing down on handles

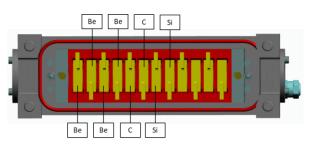
3D-printed prototype

• CERN 98-01 report: compilation of radiation damage test data

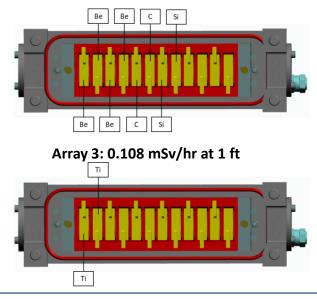
- PEI fully safe up to 5 MGy
- Mechanical properties relatively constant up to 100 MGy (ULTEM1000)
- Glass transition temperature of PEI: 217 °C (heat deflection T: 150 °C)
 - Maximum temperature rise due to heat conduction from specimens: 17°C (peak intensity pulse)
 - Peak temperature rise from direct alignment beam interaction (1.3e11 protons): 8 °C

Instrumentation	Purpose	Quantity
Resistive strain gages	Measurement of axial and circumferential strain on cylindrical surface of graphite slugs	8
Temperature sensors	Temperature measurement of cylindrical surface of graphite slugs	4
LDV	Radial velocity and displacement of cylindrical surface of graphite slugs	1
Radiation-hard camera	Visual observation of experimental test rig	1
LED lighting	Provide illumination for acquiring camera images	2
Vacuum cleaner equipped with HEPA filter	Pumping down on outer chamber to maintain slightly lower pressure than atmosphere	1
Horizontal/vertical translation stage	Align specimen arrays to beam	1

BLIP irradiated specimens dose rates

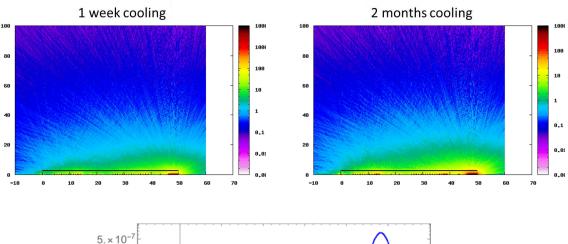

Material	Dose rate/specimen (mSv/hr @ 1 ft)
Beryllium	0.028
Graphite & Glassy carbon	0.036
Titanium (DS Ti1 capsule)	0.054
Silicon	0.115

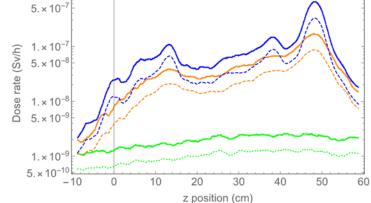
Total dose rate from all 3 irradiated specimen boxes: 0.936 mSv/hr @ 1ft


Conservative MARS dose rate estimate

- All specimens assumed to be lumped together
- No self shielding
- No aluminum boxes shielding

Array 1: 0.414 mSv/hr at 1 ft

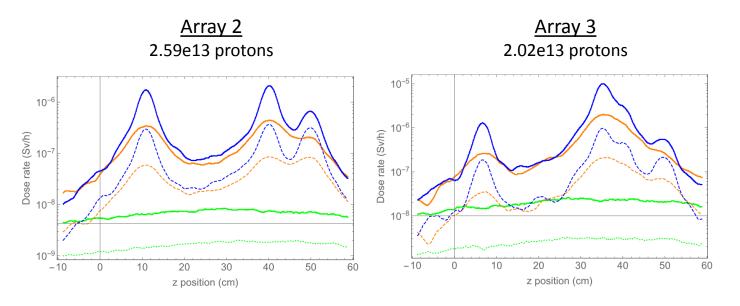

Array 2: 0.414 mSv/hr at 1 ft

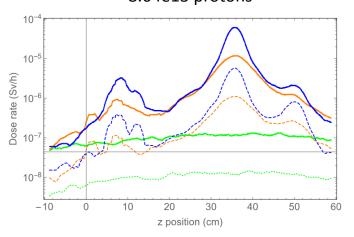


Residual activity from HiRadMat beam

- FLUKA analysis of residual dose induced by HiRadMat beam pulses
- Analysis does not include dose rate from pre-irradiated specimens

Array 1 3.45e13 protons




Blue: on contact with specimens Orange: on contact with inner box Green: 1 ft away from inner box surface

Solid line: 2 weeks cool-down **Dashed line**: 2 months cool-down

Residual activity from HiRadMat beam

<u>Array 4</u> 8.64e13 protons

Blue: on contact with specimens Orange: on contact with inner box Green: 1 ft away from inner box surface

Solid line: 2 weeks cool-down Dashed line: 2 months cool-down

• More comprehensive FLUKA analysis including entire test rig geometry will be performed