

MeV proton irradiation damage on tungsten

Blisters formation

Targetry 2018

I Gavish Segev^{1,2}, E Yahel³, I Silverman² and G. Makov¹

¹Dept. of Materials Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

- ² Soreq NRC, Yavne, Israel
- ³ Dept. of Physics, NRCN, Beer Sheva 84190, Israel

Talk Outline $\sqrt{Introduction}$: ✓ SARAF Accelerator $\sqrt{Tungsten target}$ $\sqrt{\text{Research goals}}$ $\sqrt{Experimental part}$ $\sqrt{Irradiation results}$ √Discussion √Summary $\sqrt{\text{Single crystal results}}$

***SARAF Phase-I Accelerator**

	MeV	mA
Protons	4	2 CW
Deuterons	5	1CW

*Soreq Applied Research Accelerator Facility (SARAF)

Introduction

Radiation damage from proton irradiation exhibits specific features (H retention):

- *Hydride formation
- *Embrittlement

*Nucleation and growth of hydrogen blisters

Radiation damage in Tungsten and its alloys:

Increased interest

Choice of tungsten as a structural material in nuclear fusion systems (ITER), and advanced accelerators (ESS).

Exposing it to high flux, low energy proton plasma, high temperature environment and high energy ions.

Introduction- Why W? Why Tungsten?

*High Z metal---Low sputtering yield

*Excellent Thermal and Mechanical properties

*Does not create hydrides

*High mobility of H and low solubility---rapid diffusion to surface and evaporation

Nevertheless...

Hydrogen blisters have been identified as a key mode of tungsten degradation under proton irradiation.

Example of Blisters Radiation damage in SARAF beam dump (W)

Experimental

key vs. Mey protons

	keV	MeV
Implantation range	nm scale	Microns scale
Sputtering	Intensive sputtering	Minor sputtering
Irradiation temperature	Low	High
Blister formation critical dose	10 ¹⁸ -10 ²⁰ protons/cm ²	???

*T affects diffusion processes

Therefore MeV Vs. keV is expected to differ in hydrogen retention, radiation damage evolution and blistering conditions

Research goals

- *The main goal of this research is to explore the effect of irradiation by high energy protons (MeV's) on blister formation in W.
- *At these high energies we expect <u>deeper penetration</u> of the protons in W, <u>greater energy transfer</u> and thus <u>higher</u> <u>temperatures</u>, all of which should affect the nature, density, and evolution of the radiation induced defects in the material.
- *In particular, we shall focus on Nucleation and growth of hydrogen blisters, and the material and irradiation parameters controlling them.

Results - Irradiation T & current

A linear relationship is obtained between the measured temperature and current

Low scatter - consistency between temperature and flux measurements

Results- blister formation

SEM

Stereoscope

Results- blisters characterization

Each blister was characterized using 3D optical interferometry

Comparison of blisters obtained at samples with same total dose and different irradiation T

At high temperatures smaller blisters are formed

keVs---T increases : Height decreases ; Density decreases MeVs--T increases: Height decreases; Smaller blisters

Results-Polycrystal W

• Blisters formation as a function of irradiation T and total dose. Dashed lines suggest possible boundaries of blisters formation.

I. Gavish Segev et al. Journal of Nuclear Materials 496 (2017) 77

Results- blister characterization

Irradiation parameters	Diameter range	Total dose [ions/ cm ²]	Height range	density
2.2MeVproton s	100-700µm	1017	2- 15µm	1-10 blisters per 1 mm ²
keV protons	Typical diameter 0.1- 3µm	10 ¹⁹	0.1- 0.5µm	~10 ⁶ blisters
	Max. diameter of 80µm	10 ²¹		per 1 mm ²

Blisters from MeV protons obtained at low critical dose and very large

13 * Enomoto et al. J. Nucl. Mater. 385 (2009) 606. ** Wang et al. J. Nucl. Mater. 299 (2001) 124.

Low critical dose-Riscussion

We suggest that the lower critical dose for blister formation in MeV is an outcome of the bulk implantation, far from the surface.

- *In MeVs :
 - * Hydrogen implanted far from the surface- Decreased H reaches the surface.
 - * Decreased recombination of other defects with surface, increases the density of possible traps of H.
 - * Decreased sputtering- increases the retained H.

Results - Effect of flux\T on blister shape

*Flux increases, ratio of blister height to area increases

* It could be that larger fluxes\temperatures contribute to higher stresses, allowing smaller area of blisters to elevate the cap.

I. Gavish Segev et al. Journal of Nuclear Materials 496 (2017) 77

Results- single blister characterization

FIB cross section of blisters

2×10¹² protons/s for 15 hours, T340K

HV	mag 🎛	HFW	WD	det	curr	mode	10 μm
5.00 kV	2 500 x	51.2 µm	4.3 mm	TLD	0.69 nA	SE	BINA

protons stopping range for 2.2MeV protons is 16.4±2.2µm (TRIM) The cap of the blisters is within several microns of the stopping range

Summary and conclusions

- 1. Poly crystalline W samples were irradiated by 2.2 MeV protons, at a novel regime not explored previously.
- Large, well developed blisters were obtained at sub critical dose (3°10¹⁷ p/cm²)
- 3. We correlate it to the bulk implantation, far from the surface.
- 4. We saw an effect of the irradiation flux\temperature on blisters dimensions.
- 5. The blister cap was found to be within several microns with stopping range

Single crystal- High T results

*W single crystals (110) irradiated by 2.2MeV protons at SARAF *Critical blisters formation dose increases to ~4X10¹⁸P/cm²

		2.2MeV	1.5keV		
	PC	SC		PC	SC
Critical dose[P/cm ²]	3∘10 ¹⁷	4X10 ¹⁸		10 ¹⁸ -10 ²⁰	10 ¹⁹
Blisters diameter[µm]	120-700	50-80	120-180	0.1-3	1
Blisters Height	2-15µm	50- 200nm	1-10µm	200- 700nm	150- 500nm

Due to higher critical total dose in SC, Temperature controlled experiments are needed to reach the critical dose at reasonable time.

* Enomoto et al. J. Nucl. Mater. 385 (2009) 606.
** Wang et al. J. Nucl. Mater. 299 (2001) 124.

Single crystal- High T results

High total dose irradiation

Single crystal- High T results

Results from the cooled target experiments are being analyzed these days, Please stay tuned...

Special Thanks

SARAF Team:

Leo Weissman, Amichay Perry, Hodaya Dafna, Tamir Zchut,Yonatan Mishnayot, Tsviki Hirsh, Ido Silverman, Ilan Eliyahu, Shlomi Halfon, Sergey Vaintraub, Asher Shor, Daniel Kijel.

PAZI organization for its support and funding of this research