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– Fermilab and Fermilab Computing
– Quantum Computing Entering 2018

Background
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America’s premier laboratory for particle physics and 
particle accelerator research

One of the few single-purpose DOE national labs

With 4,500 scientists from 50 countries, we aim to 
discover what the universe is made of and how it works

We study the smallest building blocks of matter and 
probe the farthest reaches of the universe using some 
of the most complex particle accelerators, detectors, 
and computing systems in the world

Fermilab is managed by Fermi Research Alliance for 
the U.S. Department of Energy Office of Science

Fermi National Accelerator Laboratory
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Experiments (LHC, Neutrinos, Muons)
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LIGO and Virgo recently announced 
discovery of Gravitational Waves 
from colliding neutron stars

Resulting kilonova imaged in many 
wavelengths by many telescopes, 
including the Blanco 4m in Chile with 
the Fermilab built Dark Energy 
Camera (DECam)

Discovery of Optical Counterpart to GW170817 with DECam
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• Very intense high-throughput computing utilization to process images in search for source
• Project uses resources at Fermilab and opportunistic resources on the Open Science Grid
• Processing involves many algorithms for image subtraction, cleanup and source detection
• Backgrounds from moving objects and point-source transients are rejected with Machine 

Learning (doi:10.1088/0004-6256/150/3/82) Talk by Marcelle Soares Santos, Brandeis University
http://iopscience.iop.org/article/10.3847/2041-8213/aa9059/meta



Fermilab is the largest source of HEP computing support in the US
• Hardware

– Large-scale high-throughput computing resources
• CPU
• Storage

• Common Services
– Core software development support

• Frameworks
– CMSSW and art

• Two closely related frameworks for CMS and Intensity Frontier experiments (muons, 
neutrinos, etc.), respectively

– Scientific Workflows
– Grid Computing
– HEPCloud

High Energy Physics (HEP) Computing at Fermilab
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Fermilab Facilities
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Growth in Classical Computing is not What it Used to Be
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“Data Processing in Exascale-Class Computing Systems”, Chuck Moore, AMD Corporate Fellow and CTO of Technology 
Group, presented at the 2011 Salishan Conference on High-speed Computing, Original data collected and plotted by M. 
Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten, dotted line extrapolations by C. Moore



– Fermilab and Fermilab Computing
– Quantum Computers Entering 2018

Background
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• Several companies and labs have announced quantum computers in the 5-22 qubit 
range
– Rigetti, Google, IBM, Intel, others…
– Academic efforts
– D-Wave has quantum annealing machines with more qubits

• These machines can be simulated on moderate-sized classical computers
• Preskill: Quantum Supremacy

– Demonstrate a quantum computer that can do things that are beyond the limits of classical 
computers
• n. b.: not necessarily useful

– Estimated to require roughly 50 qubits
• Recent advances in classical simulation have pushed that up a little…

Few-qubit Quantum Computers Have Merged
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Newer Quantum Hardware is Becoming Interesting
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Counting Qubits is not Enough
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• Early results generated excitement about the possibilities of quantum computers
• One of the first examples: factoring large numbers

– Taken from LA-UR-97-4986 “Cryptography, Quantum Computation and Trapped Ions,”
Richard J. Hughes (1997)

Quantum Computing ideal is still far away
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• Current machines can use O(100) gates
– Compared to today: 102x – 103x qubits required for factoring, 107x – 1010x usable gates

Quantum Computing ideal is still far away
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– Quantum Computing in HEP
– Quantum Testbed Plan
– Candidate Quantum Applications

Quantum Testbeds for HEP
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• Quantum sensors
– Adapting quantum devices for use as quantum sensors 

for particle physics experiments such as direct dark 
matter detection

• Superconducting technologies
– Some quantum computers use superconducting 

cavities similar to those we develop for accelerators.

• Quantum networks
– We have agreed to host a quantum network on site in 

collaboration with Caltech and AT&T

Fermilab Quantum Hardware Initiatives

6/7/17 James Amundson | Computing at Fermilab16

Quantum sensors 
for axion search 
LDRD by Aaron 
Chou, Andrew 
Sonnenschein, 
and Dan Bowring

Fermilab SRF group is in a R&D collaboration with 
U. Chicago and Argonne

Quantum 
networks visit with 
John Donovan of 
AT&T



There is a significant body of QIS work from the theoretical HEP community
• Emphasis on “theoretical”

– Example titles from Workshop on Computational Complexity and High Energy Physics (U. 
Maryland, 7/31 – 8/2):
– “Black holes, entropy, and holographic encoding”
– “Computational complexity of cosmology in string theory”
– “Computability theory of closed timelike curves”

– See, however… this workshop!
Majority of HEP computing is very different from current quantum computing ideas

– Trivially parallelizable problem (statistically independent events)
– Very complex code without dominant kernels

– LHC experiment code is O(107) lines C++

Quantum Computing in HEP
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The gap between theoretical work and 
existing (or soon-to-exist) hardware is large
• We propose to facilitate the transition 

from theory to practice
• Implement algorithms, more likely parts 

of algorithms
– Investigate parameters and scalability, 

impact of errors
• Input and output, especially

• We are data-driven
– We do not need to solve a complete 

problem in order to make progress
• We need to start somewhere

– We may not be directly pointed to Quantum 
Nirvana…

Quantum Computing in HEP Today
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– Quantum Computing in HEP
– Quantum Testbed Plan
– Candidate Quantum Applications

Quantum Testbeds for HEP
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• Host a series of workshops
– Introduce HEP community to QC 

and Quantum Information 
Science

– Introduce QC and Quantum 
Information Science community 
to HEP

– Incorporate QC into our HEP 
user facility

– Move forward with QC 
experiments that can eventually 
lead to algorithms useful to HEP

Our Proposed Plan of Work
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• Our HEP 
computing model 
matches 
commercial cloud 
offerings

• Excellent way to 
make QC 
resources 
available to HEP 
scientists 

Establishing a Testbed
quantum cloud facilities

commercial team members
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– Quantum Computing in HEP
– Quantum Testbed Plan
– Candidate Quantum Applications

Quantum Testbeds for HEP
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Quantum Computing is currently interesting for us as an 
accelerator

– Hybrid quantum/classical workflows
We have a few candidate quantum application areas

– Particle accelerator modeling utilizing PDEs
• Poisson Equation, etc.

– Machine learning utilizing Boltzmann machines
– Optimization problems for HEP data analysis

Candidate HEP Quantum Applications
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– Particle accelerator modeling utilizing PDEs
– Machine learning utilizing Boltzmann machines
– Optimization problems for HEP data analysis

Candidate Application Areas
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Particle Accelerator Modeling Utilizing PDEs
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Space charge forces in accelerators

vbeam

pipe

Rigid beam approximation:   
electrostatic problem

Approaches using the Vlasov equation:
- particle density in the 6D phase space

space charge force

Particle simulation approach:
● The motion of a large  number of particles is simulated.  
● F is applied directly to the particles (momentum kicks).

Beam simulation



Quantum Algorithm for a Poisson Solver
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Yudong Cao, et al, 2013, New J. Phys. 15, 013021

1. Input preparation
2. Phase estimation algorithm for the eigenvalues
3. Inverse eigenvalue calculation
4. Rotation of the ancilla qubit
5. Output use



• Next Step
– Start simple. Implement Cao's Poisson solver for small number of qubits and 1d case
– Optimize approach in conjunction with collaborators
– 2-d and 3-d Poisson solver

• Later
– Implement different boundary conditions (corresponding to different pipe geometries).  The 

Quantum Phase estimation part of the algorithm needs modifications.
– Figure out how to use the output for beam study. It may lead to a quantum algorithm for 

the Vlasov equation. 

Particle Accelerator Modeling Utilizing PDEs Plan of Action
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• Basic workflow:
– Establish a complete, high quality simulation system,
– Use the simulation output to design features for an analysis,
– Run the analysis on detector data.

• We have very detailed first-principles simulations - but, they can be slow, and often 
rely on models that contain incomplete physics.
– We are interested in generative models improve simulation speed and to circumvent 

limitations

Use of Simulation in HEP Analysis
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Simulating Neutrino-Nucleus Interactions
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• Formally recurrent neural nets with undirected edges
• May provide a generative model for the data
• BM is modeling training data with an Ising model in 

thermal equilibrium
• The probability of a configuration is modeled with the 

Gibbs distribution
• Energy function

– System seeks the minimum energy
• The energy function is difficult to evaluate but some 

techniques (e.g., contrastive divergence) make it 
possible to estimate the gradient with only a few (or 
single) MCMC sampling step
– Still very computationally expensive

Boltzmann Machines
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arXiv 1412.3489

arXiv 1601.02036



• GEQS algorithm (arXiv 1412.3489) - Gradient Estimation via Quantum Sampling

Quantum Boltzmann Machines

Fermilab Quantum Testbed Approaches | James Amundson31



• Examine RBMs using classical computers (e.g., TensorFlow) in the context of 
simulation (as a generative model – “competing” with a GAN)

• Study quantum algorithm implementation
• How do we input data (here a long, simple list of floats) and extract output (here, a 

long list of paired integers)?
• This problem is simple but interesting

– Obvious extensions: distinguish between prompt and delayed neutrons, get neutron 
energy and angle, predict the existence of pions and other particles, etc.

• Initial quantum example: data-driven neutron counting: single variable input (Q2), 
output is integer number of neutrons

Machine Learning Utilizing Boltzmann Machines Plan of Action
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– Particle accelerator modeling utilizing PDEs
– Machine learning utilizing Boltzmann machines
– Optimization problems for HEP data analysis

Candidate Application Areas
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High-dimensional Parameter Estimation
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• Part of most analyses across all HEP experiments
– Techniques such as MCMC frequently employed
– Need for evaluation of expensive likelihood functions 

involving experimental results
– Produce posterior probability distributions

2.4 New Algorithms and Software for Parameter Tuning 2 PROPOSED RESEARCH AND METHODS

measurements because they are too computationally expensive. Instead, they rely on the assumption that improved
agreement with thin-target data will necessarily lead to improved agreement with calorimeter shower data.

Tuning these parameters does not require expensive event generation. Still, because the detector simulation is
needed, the time to evaluate a single iteration is significant. If successful, such a program could resolve a number of
long-standing physics modeling problems in ATLAS and CMS, including the understanding of electron, photon, and
hadron shower shapes in the calorimeter. Just as in the case of event generator tuning in regions that require detector
simulation, the expensive function evaluation time will necessitate the inclusion of new approaches to sampling and
minimization.

We will use the tools developed as part of this project to explore shower shape tuning using parameters that are
directly exposed by Geant4. Since Geant4 is embedded as the detector simulation tool within all the major experiment
event processing frameworks of ATLAS (Athena), CMS (the CMS framework), and the Intensity Frontier experiments
NOvA and DUNE (art), the workflow and data modeling that are defined in this project can be used to aid in this
analysis of managing the computational load needed to simulate events in any of these complex detectors. The HPC
facilities are well suited for these workflows. The workflow and data modeling tools will be used to generate (simulated
and reconstructed) events using experiment frameworks with full simulation configurations necessary for parameter
tuning.

For the parameters that are hidden within the Geant4 Hadronic models, we will work directly with the Geant4
developers as these parameters are exposed. The Geant4 team has plans for making these parameters available during
FY17. Our plan is to stay within the user space and communicate interface needs to the Geant4 community. This
simulation tuning work will follow that generator tuning tasks and will align with the release of these parameters.

2.4 New Algorithms and Software for Parameter Tuning
The tuning (or parameter estimation) of an event generator requires individual runs for each different choice of
parameters with little feedback on how the prediction would change with a different choice.5 (Event generator
processing itself is embarrassingly parallel.) For the sake of illustration, assume p parameters, each defining a
dimension in parameter space. The full volume can be approximated by a lattice, with 10 increments in each dimension
to allow a Gaussian estimation of variances. Then, a naive approach would require 10p independent evaluations at
each lattice point to map out an approximation to the full functional dependence in this volume. This is the brute
force method mentioned earlier, which is highly inefficient (for only 3 parameters, this approach would result in
1000 generator runs), and thus restricts the number of parameters that we can investigate. Moreover, equally spaced
lattice points may not be a good representation of the behavior of the function. Small sub-lattice oscillations may be
missed whereas other samples in subregions of the parameter space may not add information because there the function
value does not change significantly. Thus, we need adaptive and sophisticated sampling strategies that add samples in
“interesting” subregions of the parameter space (for example, regions where the function values change substantially)
and that occasionally query the function at parameter values that are in under-explored regions of the parameter domain
to add information about the global behavior of the function. In optimization terms, these two sample routines are
referred to as exploitation (local search) and exploration (global search).

In the following, we start by showing how the fitting problems described above can be abstracted, and then present
our algorithmic and solution approaches. We finish this section by presenting new models and algorithms that push the
envelope beyond the classical parameter estimation approaches.

2.4.1 Mathematical Abstraction
Mathematically, we can abstract the high-dimensional parameter fitting problems (as described in Sections 2.1, 2.2, and
2.3) as structured least-squares problems of the form

min
l

c2(l ) := Âwi

0

@ fi(l )�Diq
fi(l )2 +D2

i

1

A
2

. (7)

The Di are the experimental data – distributions such as Thrust or Sphericity from Z boson decays or the pseudorapidity
dependence of charged track production satisfying a jet trigger – and fi(l ) represents the evaluation of the physical
model (the simulation). The parameters l represent quantities such as: the a and b coefficients of the Lund string

5While we use event generator tuning as an explicit example, the discussion here applies equally to the other parameter–estimation problems in
this proposal.

13

To find the Lebesgue measure of the time interval �t we divide it into a very large
number (M) of intervals �t. A particular distribution of counts over these infinitesimal
boxes is called a micro-state. If the micro-states are independent and equally probable
then it follows from the sum rule that the probability of observing n counts is propor-
tional to the number of micro-states which have n boxes occupied, which is given by the
binomial coe�cient. For large M � n this becomes Mn/n!, as is easy to show by using
the Stirling approximation for M !. Upon normalisation we then have for the Lebesgue
measure

m(n) =
Mn

n!
e�M . (5.23)

Inserting this result in (5.13) we get
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Combining this with (5.24) we find from the constraint (5.22)

Me�� = µ ) P (n|µ) =
µn

n!
e�µ (5.25)

which is the same result as derived in Section 4.6.

6 Parameter Estimation

In data analysis the measurements are often described by a parametrised model. In
hypothesis testing such a model is called a composite hypothesis (i.e. one with pa-
rameters) in contrast to a simple hypothesis (without parameters). Given a composite
hypothesis, the problem is how to extract information on the parameters from the data.
This is called parameter estimation. It is important to realise that the composite
hypothesis is assumed here to be true; investigating the plausibility of the hypothesis
itself, by comparing it to a set of alternatives, is called ‘model selection’. This will be
the subject of Section 8.

The relation between the model and the data is encoded in the likelihood function

p(d|✓, s, I)

where d denotes a vector of data points and ✓ and s are the model parameters which
we have sub-divided in two classes:
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1. The class ✓ of parameters of interest;

2. The class s of so-called nuisance parameters which are necessary to model
the data but are otherwise of no interest. These parameters often describe the
systematic uncertainties due to detector calibration, acceptance corrections and
so on. Input parameters also belong to this class like, for instance, an input value
of the strong coupling constant ↵

s

± �↵
s

, taken from the literature.

There may also be parameters in the model which have known values. These are, if not
explicitly listed, included in the background information ‘I’.

Given a prior distribution for the parameters ✓ and s, Bayes’ theorem gives for the joint
posterior distribution

p(✓, s|d, I)d✓ds =
p(d|✓, s, I)p(✓, s|I)d✓dsR
p(d|✓, s, I)p(✓, s|I)d✓ds

. (6.1)

The posterior of the parameters ✓ is then obtained by marginalisation of the nuisance
parameters s:

p(✓|d, I) =

Z
p(✓, s|d, I) ds. (6.2)

As we have discussed in Section 5, choosing appropriate priors for the parameters ✓
may, or may not be a delicate issue (often it is not). However, a very nice feature of
priors is that unphysical regions can be excluded from the posterior by simply setting
it to zero. In this way it is—to give an example—impossible to obtain a negative value
for the neutrino mass even when that would be preferred by the likelihood. The priors
for s are assumed to be known from detector studies (Monte Carlo simulations) or, in
case of external parameters, from the literature. Note that the marginalisation (6.2)
provides a very elegant way to propagate the uncertainties in the parameters s to the
posterior distribution of ✓ (‘systematic error propagation’, see Section 6.4).

Bayesian parameter estimation is thus fully described by the equations (6.1) and (6.2).
But the evaluation of these two innocent looking formulae may need a lot of sophis-
tication to properly assign the probabilities and to compute the integrals. These may
be far from trivial tasks, in particular when we deal with complicated detectors and/or
when our parameter space has a large number of dimensions. Considerable simplifica-
tions occur when two or more variables are independent (the probability distributions
then factorise), when the distributions are Gaussian or when the model is linear in the
parameters.

In the following subsections we will discuss a few simple cases which are frequently
encountered in data analysis.

6.1 Gaussian sampling

One of the most simple parameter estimation problems is to find the mean and/or
variance of a Gaussian distribution from which a sample of n measurements is drawn.

Suppose that we know the width � of the Gaussian (resolution of our measuring device)
and want to find the best estimate for the mean (or mode) µ from a set of n independent

44

This operation is called marginalisation10 and plays a very important role in Bayesian
analysis since it allows us to eliminate sets of hypotheses which are necessary in the
formulation of a problem but are otherwise of no interest (‘nuisance parameters’).

The inverse of marginalisation is the expansion of a probability: Using the product
rule we can re-write (2.12) in reverse order as

P (D|I) =
X

i

P (D, H
i

|I) =
X

i

P (D|H
i

, I)P (H
i

|I) (2.13)

which states that the probability of D can be written as the weighted sum of the prob-
abilities of a complete set of hypotheses {H

i

}. The weights are just given by the proba-
bility that H

i

, when true, gives D. In this way we have expanded P (D|I) on a basis of
probabilities P (H

i

|I).11 Expansion is often used in probability assignment because it
allows us to express a compound probability in terms of known elementary probabilities.

Using (2.13), Bayes’ theorem (2.9) can, for a complete set of hypotheses, be written as

P (H
i

|D, I) =
P (D|H

i

, I)P (H
i

|I)P
i

P (D|H
i

, I)P (H
i

|I)
, (2.14)

from which it is seen that the denominator is just a normalisation constant.

If we calculate with (2.14) the posteriors for all the hypotheses H
i

in the set, we obtain
a spectrum of probabilities which, in the continuum limit, goes over to a probability
density distribution (see Section 2.4). Note that in computing this spectrum the term
P (D|H

i

, I) is taken to be a function of the hypotheses for fixed data. It is then called
a likelihood function; note that this is not a probability. On the other hand, if
P (D|H

i

, I) is regarded as a function of the data for fixed hypothesis it is not called a
likelihood but, instead, a sampling probability.

Exercise 2.7: Mr. White is positive on an AIDS test. The probability of a positive
test is 98% for a person who has AIDS (e�ciency) and 3% for a person who has not
(false-positive). Given that a fraction µ = 1% of the population is infected, what is the
probability that Mr. White has AIDS? What would be this probability for full e�ciency
and for zero false-positives? Note that Bayesian probabilities are by no means fixed since
they can change when new information becomes available. For instance, suppose that
two months after the test a more thorough investigation of the population reveals that
µ = 0.1%, instead of 1%. What is now the probability that Mr. White has AIDS?

Exercise 2.8: What would be the probability that Mr. White has AIDS given the prior
information µ = 0 (nobody has AIDS) or µ = 1 (everybody has AIDS)? Note that both
these statements on µ encode prior certainties. Convince yourself that, according to Bayes’
theorem, no amount of data can ever change a prior certainty.

Up to now we have explicitly kept the probabilities conditional to ‘I’ in all expressions as
a reminder that Bayesian probabilities are always defined in relation to some background

10A projection of a two-dimensional distribution f(x, y) on the x or y axis is called a marginal

distribution. Because (2.12) is projecting out P (D|I) it is called marginalisation.
11Note that (2.13) is similar to the closure relation in quantum mechanics hD|Ii =

P
i

hD|H
i

ihH
i

|Ii.
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Another view: the high-dimensional 
parameter fitting problems can be 
abstracted as structured least-
squares problems of the form
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tions occur when two or more variables are independent (the probability distributions
then factorise), when the distributions are Gaussian or when the model is linear in the
parameters.

In the following subsections we will discuss a few simple cases which are frequently
encountered in data analysis.

6.1 Gaussian sampling

One of the most simple parameter estimation problems is to find the mean and/or
variance of a Gaussian distribution from which a sample of n measurements is drawn.

Suppose that we know the width � of the Gaussian (resolution of our measuring device)
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Fitting as a Part of Current Analysis Tools
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• CosmoSIS example – a modular framework for parameter 
estimation 

–MCMC module is typically used as the sampler
–Allows for combining likelihoods

# Example configuration:
[cosmological_parameters]
omega_m = 0.2 0.3 0.4
h0 = 0.6 0.7 0.8
omega_b = 0.02 0.04 0.06
omega_k = 0.0 w=-1.0
A_s = 2.0e-9 2.1e-9 2.3e-9
n_s = 0.92 0.96 1.0
tau = 0.08 
wa = 0.0

Likelihood Function

Sampler

Likelihood Calculator

physics 
module A

physics 
module B

physics 
module C

CosmoSIS
main



• Starting point: experiment with known algorithms
• Sampling

– Gibbs, perhaps Metropolis-Hasting
– Still trying to understand if these can actually be used

• Optimization – QAOA and Constraint Satisfaction Problems
– MaxCut
– SAT (Binary Satisfaction Problems)
– Still not known 

• Reading through papers from Farhi and Harrow, and many others

Optimization Problems for HEP Data Analysis Plan of Action
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• The ideas presented are only starting points
– We expect further research to take us in new directions

• There is a great temptation to base quantum computing ideas on today’s classical 
computations
– Probably exactly the wrong approach.

• Physics models that are intractable on classical computers could be newly 
interesting on quantum computers

• Input (state preparation) and output are important areas for study

General Observations
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Thank you for your attention
The End
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