Statistical Aspects of Quantum Computing

Yazhen Wang

Department of Statistics
University of Wisconsin-Madison
http://www.stat.wisc.edu/~yzwang

Near-term Applications of Quantum Computing
Fermilab, December 6-7, 2017

Outline

- Statistical learning with quantum annealing
- Statistical analysis of quantum computing data

Statistics and Optimization

MLE/M-estimation, Non-parametric smoothing,

- Stochastic optimization problem: $\min _{\theta} \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta ; X_{i}\right)$
- Minimization solution gives an estimator or a classifier. Examples : $\ell\left(\theta ; X_{i}\right)=\log p d f$; residual square sum / loss + penalty

Statistics and Optimization MLE/M-estimation, Non-parametric smoothing,

- Stochastic optimization problem: $\min _{\theta} \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta ; X_{i}\right)$
- Minimization solution gives an estimator or a classifier.

Examples : $\ell\left(\theta ; X_{i}\right)=$ log pdf; residual square sum / loss + penalty
Take $g(\theta)=E\left[\mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)\right]=E\left[\ell\left(\theta ; X_{1}\right)\right]$

- Optimization problem: $\min _{\theta} g(\theta)$
- Minimization solution defines a true parameter value.

Statistics and Optimization

MLE/M-estimation, Non-parametric smoothing,

- Stochastic optimization problem: $\min _{\theta} \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta ; X_{i}\right)$
- Minimization solution gives an estimator or a classifier.

Examples : $\ell\left(\theta ; X_{i}\right)=\log p d f ;$ residual square sum / loss + penalty
Take $g(\theta)=E\left[\mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)\right]=E\left[\ell\left(\theta ; X_{1}\right)\right]$

- Optimization problem: $\min _{\theta} g(\theta)$
- Minimization solution defines a true parameter value.

Goals: Use data \mathbf{X}_{n} to do the following
(i) Evaluate estimators/classifiers (minimization solutions) Computing
(ii) Statistical study of estimators/classifiers - Inference

Computer Power Demand

Computer Power Demand

BIG DATA

Computer Power Demand

BIG DATA

Scientific Studies and

Computational Applications

$4 \square$
三

Learning examples

Machine learning and compressed sensing

- Matrix completion, matrix factorization, tensor decomposition, phase retrieval, neural network.

Learning examples

Machine learning and compressed sensing

- Matrix completion, matrix factorization, tensor decomposition, phase retrieval, neural network.

History

Learning examples

Machine learning and compressed sensing

- Matrix completion, matrix factorization, tensor decomposition, phase retrieval, neural network.

History

Dog vs cat

Learning examples

Machine learning and compressed sensing

- Matrix completion, matrix factorization, tensor decomposition, phase retrieval, neural network.

Neural network: Layers in a chain structure
Each layer is a function of the layer preceded it.
Layer $j: h_{j}=g_{j}\left(a_{j} h_{j-1}+b_{j}\right),\left(a_{j}, b_{j}\right)=$ weights, $g_{j}=$ activation function (sigmoid, softmax or rectifier)

History

Dog vs cat

Gradient Descent Alorithms: Solve $\min _{\theta} g(\theta)$

Gradient descent algorithm

- Start at initial value x_{0},
$x_{k}=x_{k-1}-\delta \nabla g\left(x_{k-1}\right), \delta=$ learning rate, $\nabla=$ derivative operator

Gradient Descent Alorithms: Solve $\min _{\theta} g(\theta)$

Gradient descent algorithm

- Start at initial value x_{0}, $x_{k}=x_{k-1}-\delta \nabla g\left(x_{k-1}\right), \delta=$ learning rate, $\nabla=$ derivative operator

Accelerated Gradient descent algorithm (Nesterov)

- Start at initial values x_{0} and $y_{0}=x_{0}$,

$$
x_{k}=y_{k-1}-\delta \nabla g\left(y_{k-1}\right), \quad y_{k}=x_{k}+\frac{k-1}{k+2}\left(x_{k}-x_{k-1}\right)
$$

Gradient Descent Alorithms: Solve $\min _{\theta} g(\theta)$

Gradient descent algorithm

- Start at initial value x_{0}, $x_{k}=x_{k-1}-\delta \nabla g\left(x_{k-1}\right), \quad \delta=$ learning rate, $\nabla=$ derivative operator
Continuous curve X_{t} to approximate discrete $\left\{x_{k}: k \geq 0\right\}$
Differential equation: $\dot{X}_{t}+\nabla g\left(X_{t}\right)=0, \quad \dot{X}_{t}=$ derivative $=\frac{d X_{t}}{d t}$

Accelerated Gradient descent algorithm (Nesterov)

- Start at initial values x_{0} and $y_{0}=x_{0}$,

$$
x_{k}=y_{k-1}-\delta \nabla g\left(y_{k-1}\right), \quad y_{k}=x_{k}+\frac{k-1}{k+2}\left(x_{k}-x_{k-1}\right)
$$

Gradient Descent Alorithms: Solve $\min _{\theta} g(\theta)$

Gradient descent algorithm

- Start at initial value x_{0}, $x_{k}=x_{k-1}-\delta \nabla g\left(x_{k-1}\right), \delta=$ learning rate, $\nabla=$ derivative operator
Continuous curve X_{t} to approximate discrete $\left\{x_{k}: k \geq 0\right\}$
Differential equation: $\dot{X}_{t}+\nabla g\left(X_{t}\right)=0, \quad \dot{X}_{t}=$ derivative $=\frac{d X_{t}}{d t}$

Accelerated Gradient descent algorithm (Nesterov)

- Start at initial values x_{0} and $y_{0}=x_{0}$,

$$
x_{k}=y_{k-1}-\delta \nabla g\left(y_{k-1}\right), \quad y_{k}=x_{k}+\frac{k-1}{k+2}\left(x_{k}-x_{k-1}\right)
$$

Continuous curve X_{t} to approximate discrete $\left\{x_{k}: k \geq 0\right\}$
Differential equation: $\ddot{X}_{t}+\frac{3}{t} \dot{X}_{t}+\nabla g\left(X_{t}\right)=0, \quad \ddot{X}_{t}=\frac{d^{2} X_{t}}{d t^{2}}$

Gradient Descent Alorithms: Solve $\min _{\theta} g(\theta)$

Gradient descent algorithm

- Start at initial value x_{0}, $x_{k}=x_{k-1}-\delta \nabla g\left(x_{k-1}\right), \delta=$ learning rate, $\nabla=$ derivative operator
Continuous curve X_{t} to approximate discrete $\left\{x_{k}: k \geq 0\right\}$ Differential equation: $\dot{X}_{t}+\nabla g\left(X_{t}\right)=0, \quad \dot{X}_{t}=$ derivative $=\frac{d X_{t}}{d t}$
Convergence to the minimization solution at rate $=1 / k$ or $1 / t(\uparrow)$ as $t, k \rightarrow \infty$. For the ccelerated case: Rate $=1 / k^{2}$ or $1 / t^{2}(\downarrow)$

Accelerated Gradient descent algorithm (Nesterov)

- Start at initial values x_{0} and $y_{0}=x_{0}$,

$$
x_{k}=y_{k-1}-\delta \nabla g\left(y_{k-1}\right), \quad y_{k}=x_{k}+\frac{k-1}{k+2}\left(x_{k}-x_{k-1}\right)
$$

Continuous curve X_{t} to approximate discrete $\left\{x_{k}: k \geq 0\right\}$
Differential equation: $\ddot{X}_{t}+\frac{3}{t} \dot{X}_{t}+\nabla g\left(X_{t}\right)=0, \quad \ddot{X}_{t}=\frac{d^{2} X_{t}}{d t^{2}}$

Stochastic Gradient Descent

Stochastic optimization: $\min _{\theta} \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right), \mathbf{X}_{n}=\left(X_{1}, \cdots, X_{n}\right)$

- Gradient descent algorithm to compute x_{k} iteratively

$$
x_{k}=x_{k-1}-\delta \nabla \mathcal{L}\left(x_{k-1} ; \mathbf{X}_{n}\right), \quad \nabla \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell\left(\theta ; X_{i}\right)
$$

Stochastic Gradient Descent

Stochastic optimization: $\min _{\theta} \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right), \mathbf{X}_{n}=\left(X_{1}, \cdots, X_{n}\right)$

- Gradient descent algorithm to compute x_{k} iteratively

$$
x_{k}=x_{k-1}-\delta \nabla \mathcal{L}\left(x_{k-1} ; \mathbf{X}_{n}\right), \quad \nabla \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell\left(\theta ; X_{i}\right)
$$

BigData: expensive to evaluate all $\nabla \ell\left(\theta ; X_{i}\right)$ at each iteration

- Replace $\nabla \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)$ by

$$
\nabla \hat{\mathcal{L}}^{m}\left(\theta ; \mathbf{X}_{m}^{*}\right)=\frac{1}{m} \sum_{j=1}^{m} \nabla \ell\left(\theta ; X_{j}^{*}\right), \quad m \ll n
$$

$\mathbf{X}_{m}^{*}=\left(X_{1}^{*}, \cdots, X_{m}^{*}\right)=$ subsample of \mathbf{X}_{n} (minibatch or bootstrap sample).

Stochastic Gradient Descent

Stochastic optimization: $\min _{\theta} \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right), \mathbf{X}_{n}=\left(X_{1}, \cdots, X_{n}\right)$

- Gradient descent algorithm to compute x_{k} iteratively

$$
x_{k}=x_{k-1}-\delta \nabla \mathcal{L}\left(x_{k-1} ; \mathbf{X}_{n}\right), \quad \nabla \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell\left(\theta ; X_{i}\right)
$$

BigData: expensive to evaluate all $\nabla \ell\left(\theta ; X_{i}\right)$ at each iteration

- Replace $\nabla \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)$ by

$$
\nabla \hat{\mathcal{L}}^{m}\left(\theta ; \mathbf{X}_{m}^{*}\right)=\frac{1}{m} \sum_{j=1}^{m} \nabla \ell\left(\theta ; X_{j}^{*}\right), \quad m \ll n
$$

$\mathbf{X}_{m}^{*}=\left(X_{1}^{*}, \cdots, X_{m}^{*}\right)=$ subsample of \mathbf{X}_{n} (minibatch or bootstrap sample).
Stochastic gradient descent algorithm

$$
x_{k}^{*}=x_{k-1}^{*}-\delta \nabla \hat{\mathcal{L}}^{m}\left(x_{k-1}^{*} ; \mathbf{X}_{m}^{*}\right)
$$

Stochastic Gradient Descent

Stochastic optimization: $\min _{\theta} \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right), \mathbf{X}_{n}=\left(X_{1}, \cdots, X_{n}\right)$

- Gradient descent algorithm to compute x_{k} iteratively

$$
x_{k}=x_{k-1}-\delta \nabla \mathcal{L}\left(x_{k-1} ; \mathbf{X}_{n}\right), \quad \nabla \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell\left(\theta ; X_{i}\right)
$$

BigData: expensive to evaluate all $\nabla \ell\left(\theta ; X_{i}\right)$ at each iteration

- Replace $\nabla \mathcal{L}\left(\theta ; \mathbf{X}_{n}\right)$ by

$$
\nabla \hat{\mathcal{L}}^{m}\left(\theta ; \mathbf{X}_{m}^{*}\right)=\frac{1}{m} \sum_{j=1}^{m} \nabla \ell\left(\theta ; X_{j}^{*}\right), \quad m \ll n
$$

$\mathbf{X}_{m}^{*}=\left(X_{1}^{*}, \cdots, X_{m}^{*}\right)=$ subsample of \mathbf{X}_{n} (minibatch or bootstrap sample).
Stochastic gradient descent algorithm

$$
x_{k}^{*}=x_{k-1}^{*}-\delta \nabla \hat{\mathcal{L}}^{m}\left(x_{k-1}^{*} ; \mathbf{X}_{m}^{*}\right)
$$

Continuous curve X_{t}^{*} to approximate discrete $\left\{x_{k}^{*}: k \geq 0\right\}$ X_{t}^{*} obeys stochastic differential equation.

Gradient Descent vs Stochastic Gradient Descent

Gradient Descent vs Stochastic Gradient Descent

Gradient Descent

Stochastic gradient descent

Statistical Analysis of Gradient Descent (Wang, 2017)

Continuous curve model

Stochastic differential equation: $d X_{t}^{*}+\nabla g\left(X_{t}^{*}\right) d t+\sigma\left(X_{t}^{*}\right) d W_{t}=0$ $W_{t}=$ Brownian motion
For the accelerated case:
2nd order stochastic differential equation

Statistical Analysis of Gradient Descent (Wang, 2017)

Continuous curve model

Stochastic differential equation: $d X_{t}^{*}+\nabla g\left(X_{t}^{*}\right) d t+\sigma\left(X_{t}^{*}\right) d W_{t}=0$ $W_{t}=$ Brownian motion
For the accelerated case:
2nd order stochastic differential equation
and their asymptotic distribution
as $m, n \rightarrow \infty$ via stochastic differential equations

Statistical Analysis of Gradient Descent (Wang, 2017)

Continuous curve model
Stochastic differential equation: $d X_{t}^{*}+\nabla g\left(X_{t}^{*}\right) d t+\sigma\left(X_{t}^{*}\right) d W_{t}=0$
$W_{t}=$ Brownian motion
For the accelerated case:
2nd order stochastic differential equation

and their asymptotic distribution

as $m, n \rightarrow \infty$ via stochastic
differential equations
Example $X_{i}=\left(U_{i}, V_{i}\right), i=1, \cdots, n=10000$

$$
\begin{aligned}
& V_{i}=U_{i} \theta+\varepsilon_{i}, \quad U_{i} \sim \text { i.i.d.bivariate } N(0, \Sigma), \varepsilon_{i} \sim i . i . d . N\left(0, \tau^{2}\right) \\
& \ell\left(\theta ; X_{i}\right)=\left(V_{i}-U_{i} \theta\right)^{2}, m=200, \text { true } \theta=(0,0) .
\end{aligned}
$$

Statistical Analysis of Gradient Descent (Wang, 2017)

Continuous curve model

Stochastic differential equation: $d X_{t}^{*}+\nabla g\left(X_{t}^{*}\right) d t+\sigma\left(X_{t}^{*}\right) d W_{t}=0$ $W_{t}=$ Brownian motion
For the accelerated case: 2nd order stochastic differential equation

and their asymptotic distribution

 as $m, n \rightarrow \infty$ via stochastic differential equations

Example $X_{i}=\left(U_{i}, V_{i}\right), i=1, \cdots, n=10000$

$$
\begin{aligned}
& V_{i}=U_{i} \theta+\varepsilon_{i}, \quad U_{i} \sim \text { i.i.d.bivariate } N(0, \Sigma), \varepsilon_{i} \sim i . i . d . N\left(0, \tau^{2}\right) \\
& \ell\left(\theta ; X_{i}\right)=\left(V_{i}-U_{i} \theta\right)^{2}, m=200, \text { true } \theta=(0,0) .
\end{aligned}
$$

Deep Learning

Boltzmann Machine (BM) on graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$

$$
P(\mathbf{s})=\frac{\exp [-E(\mathbf{s})]}{Z}, \quad Z=\sum_{\mathbf{s}} \exp [-E(\mathbf{s})]
$$

- Energy

$$
E(\mathbf{s})=-\sum_{(i, j) \in \mathcal{E}} W_{i j} s_{i} s_{j}-\sum_{i \in \mathcal{V}} b_{i} s_{i}, \quad \mathbf{s}=\left(s_{1}, \cdots, s_{|\mathcal{V}|}\right) \in\{-1,1\}^{|\mathcal{V}|}
$$

Deep Learning

Boltzmann Machine (BM) on graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$

- Energy

$$
P(\mathbf{s})=\frac{\exp [-E(\mathbf{s})]}{Z}, \quad Z=\sum_{\mathbf{s}} \exp [-E(\mathbf{s})]
$$

$$
E(\mathbf{s})=-\sum_{(i, j) \in \mathcal{E}} W_{i j} s_{i} s_{j}-\sum_{i \in \mathcal{V}} b_{i} s_{i}, \quad \mathbf{s}=\left(s_{1}, \cdots, s_{|\mathcal{V}|}\right) \in\{-1,1\}^{|\mathcal{V}|}
$$

Take $\mathbf{s}=(\mathbf{v}, \boldsymbol{h})$
$\mathbf{v}=\left(\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right)$: visible nodes (observed variables)
$\boldsymbol{h}=\left(h_{1}, \cdots, h_{m}\right)$: hidden nodes (latent variables).
Boltzmann distribution models data \mathbf{v} :

$$
P(\mathbf{v})=\sum_{\boldsymbol{h}} P(\mathbf{v}, \boldsymbol{h})
$$

Deep Learning

Boltzmann Machine (BM) on graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$

- Energy

$$
P(\mathbf{s})=\frac{\exp [-E(\mathbf{s})]}{Z}, \quad Z=\sum_{\mathbf{s}} \exp [-E(\mathbf{s})]
$$

$$
E(\mathbf{s})=-\sum_{(i, j) \in \mathcal{E}} W_{i j} s_{i} s_{j}-\sum_{i \in \mathcal{V}} b_{i} s_{i}, \quad \mathbf{s}=\left(s_{1}, \cdots, s_{|\mathcal{V}|}\right) \in\{-1,1\}^{|\mathcal{V}|}
$$

Take $\mathbf{s}=(\mathbf{v}, \boldsymbol{h})$
$\mathbf{v}=\left(\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right)$: visible nodes (observed variables)
$\boldsymbol{h}=\left(h_{1}, \cdots, h_{m}\right)$: hidden nodes (latent variables).
Boltzmann distribution models data \mathbf{v} :

$$
P(\mathbf{v})=\sum_{\boldsymbol{h}} P(\mathbf{v}, \boldsymbol{h})
$$

Learning

Use training data \mathbf{v} to learn model parameters $W_{i j} \& b_{i}$.

Restricted Boltzmann Machine (RBM)

Bipartite undirected graph \mathcal{G}
Connections between hidden layer and visible layer but not within each layer

Restricted Boltzmann Machine (RBM)

Bipartite undirected graph \mathcal{G}

Connections between hidden layer and visible layer but not within each layer

Model

Variables in visible layer:

$\mathbf{v}=\left(v_{1}, \cdots, v_{n}\right)$,
Variables in hidden layer:

$$
\begin{aligned}
\boldsymbol{h}= & \left(h_{1}, \cdots, h_{m}\right) \\
& P(\mathbf{v}, \boldsymbol{h})=\exp \{-E(\mathbf{v}, \boldsymbol{h})\} / Z
\end{aligned}
$$

Restricted Boltzmann Machine (RBM)

Bipartite undirected graph \mathcal{G}
Connections between hidden layer and visible layer but not within each layer

Model

Variables in visible layer:

$\mathbf{v}=\left(v_{1}, \cdots, v_{n}\right)$,
Variables in hidden layer:

$$
\begin{aligned}
\boldsymbol{h}= & \left(h_{1}, \cdots, h_{m}\right) \\
& P(\mathbf{v}, \boldsymbol{h})=\exp \{-E(\mathbf{v}, \boldsymbol{h})\} / Z
\end{aligned}
$$

$$
E(\mathbf{v}, \boldsymbol{h})=-\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i j} v_{i} h_{j}-\sum_{i=1}^{n} b_{i} v_{i}-\sum_{j=1}^{m} c_{j} h_{j}
$$

Deep Neural Network: Restricted Boltzmann Machine

Deep Neural Network: Restricted Boltzmann Machine

Conditional independence within each layer given the others

$$
P(\boldsymbol{h} \mid \mathbf{v})=\prod_{j=1}^{m} P\left(h_{j} \mid \mathbf{v}\right), \quad P(\mathbf{v} \mid \boldsymbol{h})=\prod_{i=1}^{n} P\left(v_{i} \mid \boldsymbol{h}\right)
$$

Deep Neural Network: Restricted Boltzmann Machine

Conditional independence within each layer given the others

$$
P(\boldsymbol{h} \mid \mathbf{v})=\prod_{j=1}^{m} P\left(h_{j} \mid \mathbf{v}\right), \quad P(\mathbf{v} \mid \boldsymbol{h})=\prod_{i=1}^{n} P\left(v_{i} \mid \boldsymbol{h}\right)
$$

Sigmoid activation function for forward and backward conditional probabilities: $\operatorname{sigmoid}(x)=1 /\left[1+e^{-x}\right]$

$$
\begin{aligned}
& P\left(h_{j}=1 \mid \mathbf{v}\right)=\text { sigmoid }\left(\sum_{i=1}^{n} w_{i j} v_{i}+c_{j}\right) \\
& P\left(v_{i}=1 \mid \boldsymbol{h}\right)=\text { sigmoid }\left(\sum_{j=1}^{n} w_{i j} h_{j}+b_{i}\right)
\end{aligned}
$$

Deep Learning

Gradient ascent/descent to compute model parameters $w_{i j}, b_{i}$ and c_{j}.

Deep Learning

Gradient ascent/descent to compute model parameters $w_{i j}, b_{i}$ and c_{j}.

Parameter updates with learning rate η

$$
\begin{gathered}
w_{i j}^{(t+1)}=w_{i j}^{t}+\eta \frac{\partial \log P}{\partial w_{i j}} \\
b_{i}^{(t+1)}=b_{i}^{t}+\eta \frac{\partial \log P}{\partial b_{i}}, \quad c_{j}^{(t+1)}=c_{j}^{t}+\eta \frac{\partial \log P}{\partial c_{j}}
\end{gathered}
$$

Deep Learning

Gradient ascent/descent to compute model parameters $w_{i j}, b_{i}$ and c_{j}.

Gradient

$$
\frac{\partial \log P}{\partial w_{i j}}=\left\langle v_{i} h_{j}\right\rangle_{\text {data }}-\left\langle v_{i} h_{j}\right\rangle_{\text {model }}
$$

$$
\frac{\partial \log P}{\partial b_{i}}=\left\langle v_{i}\right\rangle_{\text {data }}-\left\langle v_{i}\right\rangle_{\text {model }}, \frac{\partial \log P}{\partial c_{j}}=\left\langle h_{j}\right\rangle_{\text {data }}-\left\langle h_{j}\right\rangle_{\text {model }}
$$

- $\left\langle v_{i} h_{j}\right\rangle_{\text {data }}$: the clamped expectation with \mathbf{v} fixed

$$
\text { Bottleneck: } \quad\left\langle v_{i} h_{j}\right\rangle_{\text {model }}=\sum_{\mathbf{v}, \boldsymbol{h}} v_{i} h_{j} P(\mathbf{v}, \boldsymbol{h})
$$

Parameter updates with learning rate η

$$
\begin{gathered}
w_{i j}^{(t+1)}=w_{i j}^{t}+\eta \frac{\partial \log P}{\partial w_{i j}} \\
b_{i}^{(t+1)}=b_{i}^{t}+\eta \frac{\partial \log P}{\partial b_{i}}, \quad c_{j}^{(t+1)}=c_{j}^{t}+\eta \frac{\partial \log P}{\partial c_{j}}
\end{gathered}
$$

Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler
Sample from Boltzmann distribution
$P(\mathbf{s})=\frac{\exp \left[-H_{\text {lsing }}(\mathbf{s}) / T\right]}{Z_{T}}, Z_{T}=\sum_{\mathbf{s}} \exp \left[-\frac{H_{\text {lsing }}(\mathbf{s})}{T}\right], T=$ temperature

Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler
Sample from Boltzmann distribution

$$
P(\mathbf{s})=\frac{\exp \left[-H_{\text {Ising }}(\mathbf{s}) / T\right]}{Z_{T}}, Z_{T}=\sum_{\mathbf{s}} \exp \left[-\frac{H_{\text {Ising }}(\mathbf{s})}{T}\right], T=\text { temperature }
$$

Simulated annealing: Thermal Fluctuation

Slowly lower the temperature to reduce the escape probability of trapping in local minima,

$$
\text { Annealing schedule : } T_{i} \propto \frac{1}{i+1} \text { or } \frac{1}{\log (i+1)}
$$

Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler
Sample from Boltzmann distribution

$$
P(\mathbf{s})=\frac{\exp \left[-H_{\text {sing }}(\mathbf{s}) / T\right]}{Z_{T}}, Z_{T}=\sum_{\mathbf{s}} \exp \left[-\frac{H_{\text {lsing }}(\mathbf{s})}{T}\right], T=\text { temperature }
$$

Simulated annealing: Thermal Fluctuation

Slowly lower the temperature to reduce the escape probability of trapping in local minima,

$$
\text { Annealing schedule : } T_{i} \propto \frac{1}{i+1} \text { or } \frac{1}{\log (i+1)}
$$

BigData

Issues: not easy for parallel computing; very hard to scale-up!

Quantum Annealing (QA): Basic Idea Classical optimization: $\operatorname{Min}\left\{H_{\text {lsing }}(\mathbf{s}): \mathbf{s} \in\{-1,1\}^{N}\right\}$

Quantum Annealing (QA): Basic Idea

 Classical optimization: $\operatorname{Min}\left\{H_{\text {Ising }}(\mathbf{s}): \mathbf{s} \in\{-1,1\}^{N}\right\}$Find a target quantum system with Hamiltonian $H(1)$ whose energies match $H_{\text {lsing }}(\mathbf{s}): H(1)=\operatorname{diag}\left\{H_{\text {lsing }}\left(\mathbf{s}_{1},\right) \cdots, H_{\text {lsing }}\left(\mathbf{s}_{2^{N}}\right)\right\}$.

Quantum Annealing (QA): Basic Idea

 Classical optimization: $\operatorname{Min}\left\{H_{\text {Ising }}(\mathbf{s}): \mathbf{s} \in\{-1,1\}^{N}\right\}$Find a target quantum system with Hamiltonian $H(1)$ whose energies match $H_{\text {lsing }}(\mathbf{s}): ~ H(1)=\operatorname{diag}\left\{H_{\text {lsing }}\left(\mathbf{s}_{1},\right) \cdots, H_{\text {lsing }}\left(\mathbf{s}_{2^{N}}\right)\right\}$.

Create an initial quantum system with Hamiltonian $H(0)$ whose lowest energy state is known and easy to prepare.

Quantum Annealing (QA): Basic Idea

Classical optimization: $\operatorname{Min}\left\{H_{\text {Ising }}(\mathbf{s}): \mathbf{s} \in\{-1,1\}^{N}\right\}$
Find a target quantum system with Hamiltonian $H(1)$ whose energies match $H_{\text {lsing }}(\mathbf{s}): H(1)=\operatorname{diag}\left\{H_{\text {lsing }}\left(\mathbf{s}_{1},\right) \cdots, H_{\text {lsing }}\left(\mathbf{s}_{2^{N}}\right)\right\}$.

Create an initial quantum system with Hamiltonian $H(0)$ whose lowest energy state is known and easy to prepare.

QA: Engineer $H(0)$ in its lowest energy state and gradually move $H(0) \longrightarrow H(1)$

Simulated Quantum Annealing (SQA)

Spin glass in transverse field

$$
H=\mathbf{A}(\mathbf{t}) \mathbf{H}_{\mathbf{x}}+\mathbf{B}(\mathbf{t}) \mathbf{H}_{\text {lsing }}, \text { two parts non-commuting }
$$

Simulated Quantum Annealing (SQA)

Spin glass in transverse field

$$
H=\mathbf{A}(\mathbf{t}) \mathbf{H}_{\mathbf{x}}+\mathbf{B}(\mathbf{t}) \mathbf{H}_{\text {lsing }}, \text { two parts non-commuting }
$$

Path integral representation via Suzuki-Trotter expansion $H \approx H_{2+1}=$ classical (2+1)-dimensional anisotropic Ising system

Simulated Quantum Annealing (SQA)

Spin glass in transverse field

$$
H=\mathbf{A}(\mathbf{t}) \mathrm{H}_{\mathrm{x}}+\mathbf{B}(\mathrm{t}) \mathrm{H}_{\text {lsing }}, \text { two parts non-commuting }
$$

Path integral representation via Suzuki-Trotter expansion $H \approx H_{2+1}=$ classical (2+1)-dimensional anisotropic Ising system
$(2+1)$-dimensional system
Two directions: along the original 2-dimensional direction spins have Chimera graph couplings, and along the extra (imaginary-time) direction spins have uniform couplings

Simulated Quantum Annealing (SQA)

Spin glass in transverse field

$$
H=\mathbf{A}(\mathbf{t}) \mathrm{H}_{\mathbf{x}}+\mathbf{B}(\mathrm{t}) \mathrm{H}_{\text {Ising }}, \text { two parts non-commuting }
$$

Path integral representation via Suzuki-Trotter expansion $H \approx H_{2+1}=$ classical (2+1)-dimensional anisotropic Ising system
($2+1$)-dimensional system
Two directions: along the original 2-dimensional direction spins have Chimera graph couplings, and along the extra (imaginary-time) direction spins have uniform couplings

Quantum Monte Carlo
H_{2+1} : a collection of 2-dimensional classical Ising systems, that can be simulated by MCMC with moves in both directions

SSSV Annealing Model

Magnet i points in direction with angle θ_{i} w.r.t. \vec{z}-axis in the xz plane, an external magnetic field with intensity $A(t)$ pointing in the \vec{x}-axis, Hamiltonian, $J_{i j}=$ coupling of magnets θ_{i} and θ_{j},

$$
H(t)=-A(t) \sum_{i=1}^{N} \sin \theta_{i}-B(t) \sum_{1 \leq i<j \leq N} J_{i j} \cos \theta_{i} \cos \theta_{j}
$$

SSSV Annealing Model

Magnet i points in direction with angle θ_{i} w.r.t. \vec{z}-axis in the xz plane, an external magnetic field with intensity $A(t)$ pointing in the \vec{x}-axis, Hamiltonian, $J_{i j}=$ coupling of magnets θ_{i} and θ_{j},

$$
H(t)=-A(t) \sum_{i=1}^{N} \sin \theta_{i}-B(t) \sum_{1 \leq i<j \leq N} J_{i j} \cos \theta_{i} \cos \theta_{j}
$$

The model can be simulated by the Metropolis algorithm with temperature $T=0.22$, and initial condition $\theta_{i}=\pi / 2$

SSSV Annealing Model

Magnet i points in direction with angle θ_{i} w.r.t. \vec{z}-axis in the xz plane, an external magnetic field with intensity $A(t)$ pointing in the \vec{x}-axis, Hamiltonian, $J_{i j}=$ coupling of magnets θ_{i} and θ_{j},

$$
H(t)=-A(t) \sum_{i=1}^{N} \sin \theta_{i}-B(t) \sum_{1 \leq i<j \leq N} J_{i j} \cos \theta_{i} \cos \theta_{j}
$$

The model can be simulated by the Metropolis algorithm with temperature $T=0.22$, and initial condition $\theta_{i}=\pi / 2$

Interpretation: angle θ_{i} as state $|\uparrow\rangle(=+1)$ or state $|\downarrow\rangle(=-1)$ according to the sign of $\cos \left(\theta_{i}\right)$ (its projection on \vec{z} direction).

SSSV Annealing Model

Magnet i points in direction with angle θ_{i} w.r.t. \vec{z}-axis in the xz plane, an external magnetic field with intensity $A(t)$ pointing in the \vec{x}-axis, Hamiltonian, $J_{i j}=$ coupling of magnets θ_{i} and θ_{j},

$$
H(t)=-A(t) \sum_{i=1}^{N} \sin \theta_{i}-B(t) \sum_{1 \leq i<j \leq N} J_{i j} \cos \theta_{i} \cos \theta_{j}
$$

The model can be simulated by the Metropolis algorithm with temperature $T=0.22$, and initial condition $\theta_{i}=\pi / 2$

Interpretation: angle θ_{i} as state $|\uparrow\rangle(=+1)$ or state $|\downarrow\rangle(=-1)$ according to the sign of $\cos \left(\theta_{i}\right)$ (its projection on \vec{z} direction).

Use the converted states to evaluate $H_{\text {lsing }}(\mathbf{s})$ and find its minimizer

DW Signal vs Background Noise

DW Signal vs Background Noise

Correlation of Ground State Success Probability Data

Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let $\hat{p}_{0 r m}$ be DW success frequency out of m repetitions and $\hat{q}_{e r m}, \ell=1,2,3$, the success frequencies for SA, SQA \& SSSV

Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let $\hat{p}_{0 r m}$ be DW success frequency out of m repetitions and $\hat{q}_{\ell r m}, \ell=1,2,3$, the success frequencies for SA, SQA \& SSSV
$H_{0 r}: p_{0 r \infty}=q_{\ell r \infty}$ vs $H_{a r}: p_{0 r \infty} \neq q_{\ell r \infty}$

$$
T_{r \ell}=\frac{m\left(\hat{p}_{r}-\hat{q}_{\ell, r}\right)^{2}}{\hat{p}_{r}\left(1-\hat{p}_{r}\right)+\hat{q}_{\ell, r}\left(1-\hat{q}_{\ell, r}\right)}
$$

Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let $\hat{p}_{0 r m}$ be DW success frequency out of m repetitions and $\hat{q}_{e r m}, \ell=1,2,3$, the success frequencies for SA, SQA \& SSSV
$H_{0 r}: p_{0 r \infty}=q_{e r \infty}$ vs $H_{a r}: p_{0 r \infty} \neq q_{e r \infty}$

$$
T_{r \ell}=\frac{m\left(\hat{p}_{r}-\hat{q}_{\ell, r}\right)^{2}}{\hat{p}_{r}\left(1-\hat{p}_{r}\right)+\hat{q}_{\ell, r}\left(1-\hat{q}_{\ell, r}\right)}
$$

$$
T_{r l}^{*}=2 m\left[\arcsin \left(\sqrt{\hat{p}_{r}}\right)-\arcsin \left(\sqrt{\hat{q}_{\ell, r}}\right)\right]^{2}
$$

Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let $\hat{p}_{0 r m}$ be DW success frequency out of m repetitions and $\hat{q}_{\ell r m}, \ell=1,2,3$, the success frequencies for SA, SQA \& SSSV
$H_{0 r}: p_{0 r \infty}=q_{\ell r \infty}$ vs $H_{a r}: p_{0 r \infty} \neq q_{l r \infty}$

$$
T_{r \ell}=\frac{m\left(\hat{p}_{r}-\hat{q}_{\ell, r}\right)^{2}}{\hat{p}_{r}\left(1-\hat{p}_{r}\right)+\hat{q}_{\ell, r}\left(1-\hat{q}_{\ell, r}\right)}
$$

$$
T_{r \ell}^{*}=2 m\left[\arcsin \left(\sqrt{\hat{p}_{r}}\right)-\arcsin \left(\sqrt{\hat{q}_{\ell, r}}\right)\right]^{2}
$$

Asymptotic distribution under $\mathrm{H}_{\text {or }}$
As $m, n \rightarrow \infty$, if $\log n / m \rightarrow 0$, then

$$
T_{r \ell} \longrightarrow \chi_{1}^{2}, \quad T_{r \ell}^{*} \longrightarrow \chi_{1}^{2} \quad \text { uniformly over } r=1, \cdots, n
$$

Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let $\hat{p}_{0 r m}$ be DW success frequency out of m repetitions and $\hat{q}_{e r m}, \ell=1,2,3$, the success frequencies for SA, SQA \& SSSV
$H_{0 r}: p_{0 r \infty}=q_{e r \infty}$ vs $H_{a r}: p_{0 r \infty} \neq q_{e r \infty}$

$$
T_{r \ell}=\frac{m\left(\hat{p}_{r}-\hat{q}_{\ell, r}\right)^{2}}{\hat{p}_{r}\left(1-\hat{p}_{r}\right)+\hat{q}_{\ell, r}\left(1-\hat{q}_{\ell, r}\right)}
$$

$$
T_{r l}^{*}=2 m\left[\arcsin \left(\sqrt{\hat{p}_{r}}\right)-\arcsin \left(\sqrt{\hat{q}_{l, r}}\right)\right]^{2}
$$

Asymptotic distribution under $\mathrm{H}_{\text {or }}$
As $m, n \rightarrow \infty$, if $\log n / m \rightarrow 0$, then

$$
T_{r l} \longrightarrow \chi_{1}^{2}, \quad T_{r \ell}^{*} \longrightarrow \chi_{1}^{2} \quad \text { uniformly over } r=1, \cdots, n
$$

p -values \& FDR
$H_{0 r}$ vs $H_{a r}:$ p-value $=P\left(\chi_{1}^{2} \geq T_{r e}\right) \quad$ p-value $=P\left(\chi_{1}^{2} \geq T_{r \ell}^{*}\right)$

Goodness-of-fit test

$H_{0}: p_{0 r \infty}=q_{\ell r \infty}$ for all $1 \leq r \leq n$ vs $H_{a}: p_{0 r \infty} \neq q_{\ell r \infty}$ for some r

$$
U_{\ell}=(2 n)^{-1 / 2} \sum_{r=1}^{n}\left(T_{r \ell}-n\right) \quad U_{\ell}^{*}=(2 n)^{-1 / 2} \sum_{r=1}^{n}\left(T_{r \ell}-n\right)
$$

Goodness-of-fit test

$H_{0}: p_{0 r \infty}=q_{\ell r \infty}$ for all $1 \leq r \leq n$ vs $H_{a}: p_{0 r \infty} \neq q_{\ell r \infty}$ for some r

$$
U_{\ell}=(2 n)^{-1 / 2} \sum_{r=1}^{n}\left(T_{r \ell}-n\right) \quad U_{\ell}^{*}=(2 n)^{-1 / 2} \sum_{r=1}^{n}\left(T_{r \ell}-n\right)
$$

Asymptotic distribution under H_{0} as $m, n \rightarrow \infty$

$$
U_{\ell} \rightarrow N(0,1) \quad U_{\ell}^{*} \rightarrow N(0,1)
$$

Conditions

(1) $\sqrt{n} / m \rightarrow 0$.
(2) $p_{0 r \infty}=q_{\ell r \infty}=$ true success probability for method ℓ with the r-th instance are bounded away from 0 and 1.

Goodness-of-fit test

$H_{0}: p_{0 r \infty}=q_{\ell r \infty}$ for all $1 \leq r \leq n$ vs $H_{a}: p_{0 r \infty} \neq q_{\ell r \infty}$ for some r

$$
U_{\ell}=(2 n)^{-1 / 2} \sum_{r=1}^{n}\left(T_{r \ell}-n\right) \quad U_{\ell}^{*}=(2 n)^{-1 / 2} \sum_{r=1}^{n}\left(T_{r \ell}-n\right)
$$

Asymptotic distribution under H_{0} as $m, n \rightarrow \infty$

$$
U_{\ell} \rightarrow N(0,1) \quad U_{\ell}^{*} \rightarrow N(0,1)
$$

p -value $=2\left[1-\Phi\left(\left|U_{\ell}\right|\right)\right] \quad \mathrm{p}$-value $=2\left[1-\Phi\left(\left|U_{\ell}^{*}\right|\right)\right]$
Conditions
(1) $\sqrt{n} / m \rightarrow 0$.
(2) $p_{0 r \infty}=q_{\ell r \infty}=$ true success probability for method ℓ with the r-th instance are bounded away from 0 and 1.

Multiple Tests: FDR

(a)

(c)

(b)

(d)

Multiple Tests: FDR

p-values

Multiple Tests: FDR

p-values

FDR

q-value = essentially zero

Goodness-of-fit-test

Goodness-of-fit-test

SQA vs DW
p-values = 0

Goodness-of-fit-test

SQA vs DW
p -values $=0$

SSSV vs DW

p-values = 0

Goodness-of-fit-test

SQA vs DW
p-values $=0$

SA vs DW
p -values $=0$
SSSV vs DW
p -values $=0$

Goodness-of-fit-test

Reject null hypothesis SA vs DW
all p-values $\leq 3.87 \times 10^{-6}$ p-values = 0
SQA vs DW
SSSV vs DW
p-values = 0

Goodness-of-fit-test

Reject null hypothesis
all p-values $\leq 3.87 \times 10^{-6}$
SQA vs DW
p -values = 0

SA vs DW
p-values $=0$
SSSV vs DW
p -values $=0$

Conclusion: Overwhelming rejection
Overwhelming evidence to reject that DW is statistically consistent with SQA or SSSV in terms of ground state success probability

Histogram of Ground State Success Probability Data

(a) DW

(c) SQA

(b) SA

(d) SSSV

SA Histograms for different annealing times

(a) SA with 100 sweeps

(c) SA with 10000 sweeps

(b) SA with 1000 sweeps

(d) SA with 50000 sweeps

SQA Histograms

Various annealing times

SQA Histograms

Various annealing times

(a) SQA with 3000 sweeps

(c) SQA with 7000 sweeps

(b) SQA with 5000 sweeps

(d) SQA with 10000 sweeps

Various temperatures

SSSV Histograms

Various annealing times

SSSV Histograms

Various annealing times

(a) SSSV with $\mathbf{5 0 0 0}$ sweeps

(c) SSSV with 15000 sweeps

(b) SSSV with 75000 sweeps

(d) SSSV with 150000 sweeps

Various temperatures

DIP Test for Shape Patterns

$$
\operatorname{DIP}\left(F_{n}\right)=\max _{0 \leq p \leq 1}\left|F_{n}(p)-\hat{F}_{n}(p)\right|
$$

$F_{n}=$ empirical $\mathrm{DF}, \hat{F}_{n}=\mathrm{DF}$ estimator under unimodality or U-shape
Under uniform null (asymptotic least favorable) distribution, as $n \rightarrow \infty$, $\sqrt{n} \operatorname{DIP}\left(F_{n}\right) \rightarrow \operatorname{DIP}(B), \quad B(t)=$ Brownian bridge on $[0,1]$

DIP Test for Shape Patterns

$$
\operatorname{DIP}\left(F_{n}\right)=\max _{0 \leq p \leq 1}\left|F_{n}(p)-\hat{F}_{n}(p)\right|
$$

$F_{n}=$ empirical $\mathrm{DF}, \hat{F}_{n}=\mathrm{DF}$ estimator under unimodality or U-shape Under uniform null (asymptotic least favorable) distribution, as $n \rightarrow \infty$, $\sqrt{n} \operatorname{DIP}\left(F_{n}\right) \rightarrow \operatorname{DIP}(B), \quad B(t)=$ Brownian bridge on $[0,1]$
Unimodality (including monotone)
DW: no

SA: yes

SQA: no
SSSV: no

DIP Test for Shape Patterns

$$
\operatorname{DIP}\left(F_{n}\right)=\max _{0 \leq p \leq 1}\left|F_{n}(p)-\hat{F}_{n}(p)\right|
$$

$F_{n}=$ empirical $\mathrm{DF}, \hat{F}_{n}=\mathrm{DF}$ estimator under unimodality or U-shape Under uniform null (asymptotic least favorable) distribution, as $n \rightarrow \infty$, $\sqrt{n} \operatorname{DIP}\left(F_{n}\right) \rightarrow \operatorname{DIP}(B), \quad B(t)=$ Brownian bridge on $[0,1]$ Unimodality (including monotone)

DW: no
SQA: no
SSSV: no
U-shape

SA: no
SQA: yes
SSSV: yes

Histogram of Success Probability

(a) DW

(c) SQA

(b) SA

(d) SSSV

Histogram of Success Probability

(a) DW

(c) SQA

(b) SA
(d) SSSV

Shape Pattern Analysis by Regression

Covariates
 Energy gap \& Hamming distance between ground state and 1st excited state

Shape Pattern Analysis by Regression

SQA

Covariates

Energy gap \& Hamming distance between ground state and 1st excited state

Shape Pattern Analysis by Regression

SQA

(c) $S Q A$

SSSV

(e) SSSV

(f) SSSV

Covariates

Energy gap \& Hamming distance between ground state and 1st excited state

Shape Pattern Analysis by Regression

(c) $S Q A$

SSSV

(e) SSSV

(d) SQA

(a) SA

(b) SA

Covariates

Energy gap \& Hamming distance between ground state and 1st excited state

Shape Pattern Analysis by Regression

SQA

SQA with Hammming distance less than 5

SQA with Hammming distance at least 5

Shape Pattern Analysis by Regression

SQA

SQA with Hammming distance less than 5
SQA with Hammming distance at least 5

SSSV

SSSV with Hammming distance less than 5
SSSV with Hammming distance at least 5

Shape Pattern Analysis by Regression

SQA with Hammming distance less than 5

SQA with Hammming distance at least 5

SA with Hammming distance less than 5

SA with Hammming distance at least 5

SSSV

SSSV with Hammming distance less than 5
SSSV with Hammming distance at least 5

Concluding Remarks

Both inference and computing are inportant for big data.

Concluding Remarks

Both inference and computing are inportant for big data.

Interface

- Computing for conducting statistical inference; and statistics for analyzing computational algorithms.
- Statistics for quantum technology (e.g. quantum computing \& tomography), and quantum computing for statistical computing and machine learning.

