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Statistics and Optimization
MLE/M-estimation, Non-parametric smoothing, · · ·

• Stochastic optimization problem: min
θ
L(θ; Xn) =

1
n

n∑

i=1

`(θ; Xi)

• Minimization solution gives an estimator or a classifier.
Examples : `(θ; Xi) = log pdf ; residual square sum / loss + penalty

Take g(θ) = E [L(θ;Xn)] = E [`(θ;X1)]

• Optimization problem: min
θ

g(θ)

• Minimization solution defines a true parameter value.

Goals: Use data Xn to do the following
(i) Evaluate estimators/classifiers (minimization solutions) Computing
(ii) Statistical study of estimators/classifiers – Inference
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Learning examples
Machine learning and compressed sensing
• Matrix completion, matrix factorization, tensor decomposition,
phase retrieval, neural network.

Neural network: Layers in a chain structure
Each layer is a function of the layer preceded it.
Layer j : hj = gj(ajhj−1 + bj), (aj ,bj) = weights,
gj = activation function (sigmoid, softmax or rectifier)

History

 
 
 
 
 
 
 
 

 

Dog vs cat
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Gradient Descent Alorithms: Solve minθ g(θ)
Gradient descent algorithm
• Start at initial value x0,

xk = xk−1 − δ∇g(xk−1), δ = learning rate, ∇ = derivative operator

Continuous curve Xt to approximate discrete {xk : k ≥ 0}
Differential equation: Ẋt +∇g(Xt ) = 0, Ẋt = derivative =

dXt

dt
Convergence to the minimization solution at rate= 1/k or 1/t (↑)
as t , k →∞. For the ccelerated case: Rate = 1/k2 or 1/t2(↓)

Accelerated Gradient descent algorithm (Nesterov)
• Start at initial values x0 and y0 = x0,

xk = yk−1 − δ∇g(yk−1), yk = xk +
k − 1
k + 2

(xk − xk−1)

Continuous curve Xt to approximate discrete {xk : k ≥ 0}
Differential equation: Ẍt +

3
t

Ẋt +∇g(Xt ) = 0, Ẍt =
d2Xt

dt2
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Stochastic Gradient Descent
Stochastic optimization: minθ L(θ;Xn), Xn = (X1, · · · ,Xn)
• Gradient descent algorithm to compute xk iteratively

xk = xk−1 − δ∇L(xk−1; Xn), ∇L(θ; Xn) =
1
n

n∑

i=1

∇`(θ; Xi)

BigData: expensive to evaluate all ∇`(θ;Xi) at each iteration
• Replace ∇L(θ; Xn) by

∇L̂m(θ; X∗m) =
1
m

m∑

j=1

∇`(θ; X ∗j ), m� n

X∗m = (X ∗1 , · · · ,X ∗m)= subsample of Xn (minibatch or bootstrap sample).

Stochastic gradient descent algorithm
x∗k = x∗k−1 − δ∇L̂m(x∗k−1; X∗m)

Continuous curve X ∗t to approximate discrete {x∗k : k ≥ 0}
X ∗t obeys stochastic differential equation.
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Gradient Descent vs Stochastic Gradient Descent

Gradient Descent

 
 
 
 
 

Stochastic gradient descent
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Statistical Analysis of Gradient Descent (Wang, 2017)

Continuous curve model
Stochastic differential equation:
dX ∗t +∇g(X ∗t )dt + σ(X ∗t )dWt = 0

Wt = Brownian motion
For the accelerated case:
2nd order stochastic differential
equation

and their asymptotic distribution
as m,n→∞ via stochastic
differential equations

Example Xi = (Ui ,Vi), i = 1, · · · ,n = 10000
Vi = Uiθ + εi , Ui ∼ i .i .d .bivariateN(0,Σ), εi ∼ i .i .d .N(0, τ2)

`(θ; Xi) = (Vi − Uiθ)2, m = 200, true θ = (0,0).
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Deep Learning
Boltzmann Machine (BM) on graph G = (V , E)
•

P(s) =
exp[−E(s)]

Z
, Z =

∑

s

exp[−E(s)]

• Energy
E(s) = −

∑

(i,j)∈E

Wijsisj −
∑

i∈V
bisi , s = (s1, · · · , s|V|) ∈ {−1,1}|V|

Take s = (v,h)
v = (v1, · · · ,vn): visible nodes (observed variables)
h = (h1, · · · ,hm): hidden nodes (latent variables).
Boltzmann distribution models data v:

P(v) =
∑

h
P(v,h)

Learning
Use training data v to learn model parameters Wij & bi .
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Restricted Boltzmann Machine (RBM)

Bipartite undirected graph G
Connections between hidden layer
and visible layer
but not within each layer

Model
Variables in visible layer:
v = (v1, · · · , vn),
Variables in hidden layer:
h = (h1, · · · ,hm)

P(v,h) = exp{−E(v,h)}/Z

An Introduction to Restricted Boltzmann Machines 23

Gibbs sampler to the stationary distribution of the MRF is bounded by the
following inequality (see for example [6]):

|μPk − π| ≤ 1

2
|μ − π|(1 − e−N�)k, (19)

where  = supl∈V δl and δl = sup{|E(x)−E(y)|;xi = yi∀i ∈ V with i �= l}. Here
μ is an arbitrary starting distribution and 1

2 |μ − π| is the distance in variation
as defined in (15).

4 Restricted Boltzmann Machines

A RBM (also denoted as Harmonium [34]) is an MRF associated with a bipar-
tite undirected graph as shown in Fig. 1. It consists of m visible units V =
(V1, ..., Vm) to represent observable data and n hidden units H = (H1, ..., Hn)
to capture dependencies between observed variables. In binary RBMs, our focus
in this tutorial, the random variables (V ,H) take values (v,h) ∈ {0, 1}m+n

and the joint probability distribution under the model is given by the Gibbs
distribution p(v,h) = 1

Z e
−E(v,h) with the energy function

E(v,h) = −
n∑

i=1

m∑

j=1

wijhivj −
m∑

j=1

bjvj −
n∑

i=1

cihi . (20)

For all i ∈ {1, ..., n} and j ∈ {1, ...,m}, wij is a real valued weight associated
with the edge between units Vj and Hi and bj and ci are real valued bias terms
associated with the jth visible and the ith hidden variable, respectively.

Fig. 1. The undirected graph of an RBM with n hidden and m visible variables

The graph of an RBM has only connections between the layer of hidden and
visible variables but not between two variables of the same layer. In terms of
probability this means that the hidden variables are independent given the state
of the visible variables and vice versa:

E(v,h) = −
n∑

i=1

m∑

j=1

wijvihj −
n∑

i=1

bivi −
m∑

j=1

cjhj
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Deep Neural Network: Restricted Boltzmann Machine

Conditional independence within each layer given the others

P(h|v) =
m∏

j=1

P(hj |v), P(v|h) =
n∏

i=1

P(vi |h)

Sigmoid activation function for forward and backward conditional

probabilities: sigmoid(x) = 1/[1 + e−x ]

P(hj = 1|v) = sigmoid

(
n∑

i=1

wijvi + cj

)

P(vi = 1|h) = sigmoid
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Deep Learning
Gradient ascent/descent to compute model parameters wij , bi and cj .

Gradient
∂ log P
∂wij

= 〈vihj〉data − 〈vihj〉model

∂ log P
∂bi

= 〈vi〉data − 〈vi〉model,
∂ log P
∂cj

= 〈hj〉data − 〈hj〉model

• 〈vihj〉data: the clamped expectation with v fixed

Bottleneck : 〈vihj〉model =
∑

v,h
vihjP(v,h)

Parameter updates with learning rate η

w (t+1)
ij = w t

ij + η
∂ log P
∂wij

b(t+1)
i = bt

i + η
∂ log P
∂bi

, c(t+1)
j = ct

j + η
∂ log P
∂cj
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Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler
Sample from Boltzmann distribution

P(s) =
exp[−HIsing(s)/T ]

ZT
,ZT =

∑

s

exp
[
−HIsing(s)

T

]
,T =temperature

Simulated annealing: Thermal Fluctuation
Slowly lower the temperature to reduce the escape probability of
trapping in local minima,

Annealing schedule : Ti ∝
1

i + 1
or

1
log(i + 1)

BigData
Issues: not easy for parallel computing; very hard to scale-up!
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Quantum Annealing (QA): Basic Idea
Classical optimization: Min{HIsing(s) : s ∈ {−1,1}N}

Find a target quantum system with Hamiltonian H(1) whose
energies match HIsing(s): H(1) = diag{HIsing(s1, ) · · · ,HIsing(s2N )}.

Create an initial quantum system with Hamiltonian H(0)
whose lowest energy state is known and easy to prepare.

QA: Engineer H(0) in its lowest energy state and gradually move
H(0) −→ H(1)
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Simulated Quantum Annealing (SQA)
Spin glass in transverse field

H = A(t)HX + B(t)HIsing, two parts non-commuting

Path integral representation via Suzuki-Trotter expansion
H ≈ H2+1 = classical (2+1)-dimensional anisotropic Ising system

(2 + 1)-dimensional system
Two directions: along the original 2-dimensional direction spins have
Chimera graph couplings, and along the extra (imaginary-time)
direction spins have uniform couplings

Quantum Monte Carlo
H2+1: a collection of 2-dimensional
classical Ising systems, that can be
simulated by MCMC with moves in
both directions
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SSSV Annealing Model

Magnet i points in direction with angle θi w.r.t. ~z-axis in the xz plane,
an external magnetic field with intensity A(t) pointing in the ~x-axis,

Hamiltonian, Jij = coupling of magnets θi and θj ,

H(t) = −A(t)
N∑

i=1

sin θi − B(t)
∑

1≤i<j≤N

Jij cos θi cos θj

The model can be simulated by the Metropolis algorithm with
temperature T = 0.22, and initial condition θi = π/2

Interpretation: angle θi as state |↑〉(=+1) or state |↓〉(= -1)
according to the sign of cos(θi) (its projection on ~z direction).

Use the converted states to evaluate HIsing(s) and find its minimizer
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DW Signal vs Background Noise
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Correlation of Ground State Success Probability Data
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Multiple Statistical Tests

For the r -th instance, repeat m times of annealing, let p̂0rm be DW
success frequency out of m repetitions and q̂`rm, ` = 1,2,3, the
success frequencies for SA, SQA & SSSV

H0r : p0r∞ = q`r∞ vs Har : p0r∞ 6= q`r∞

Tr` =
m(p̂r − q̂`,r )2

p̂r (1− p̂r ) + q̂`,r (1− q̂`,r )

T ∗r` = 2m
[
arcsin

(√
p̂r

)
− arcsin

(√
q̂`,r

)]2

Asymptotic distribution under H0r

As m,n→∞, if log n/m→ 0, then

Tr` −→ χ2
1, T ∗r` −→ χ2

1 uniformly over r = 1, · · · ,n
p-values & FDR

H0r vs Har : p-value = P(χ2
1 ≥ Tr`) p-value = P(χ2

1 ≥ T ∗r`)
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Goodness-of-fit test

H0 : p0r∞ = q`r∞ for all 1 ≤ r ≤ n vs Ha : p0r∞ 6= q`r∞ for some r

U` = (2n)−1/2
n∑

r=1

(Tr` − n) U∗` = (2n)−1/2
n∑

r=1

(Tr` − n)

Asymptotic distribution under H0 as m,n→∞
U` → N(0,1) U∗` → N(0,1)

p-value = 2[1− Φ(|U`|)] p-value = 2[1− Φ(|U∗` |)]

Conditions
(1)
√

n/m→ 0.

(2) p0r∞ = q`r∞=true success probability for method ` with the r -th
instance are bounded away from 0 and 1.
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Multiple Tests: FDR
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Goodness-of-fit-test

Reject null hypothesis

all p-values ≤ 3.87× 10−6

SA vs DW
p-values = 0

SQA vs DW
p-values = 0

SSSV vs DW
p-values = 0

Conclusion: Overwhelming rejection
Overwhelming evidence to reject that DW is statistically consistent with

SQA or SSSV in terms of ground state success probability

Yazhen (at UW-Madison) 29 / 40



Goodness-of-fit-test

Reject null hypothesis

all p-values ≤ 3.87× 10−6

SA vs DW
p-values = 0

SQA vs DW
p-values = 0

SSSV vs DW
p-values = 0

Conclusion: Overwhelming rejection
Overwhelming evidence to reject that DW is statistically consistent with

SQA or SSSV in terms of ground state success probability

Yazhen (at UW-Madison) 29 / 40



Goodness-of-fit-test

Reject null hypothesis

all p-values ≤ 3.87× 10−6

SA vs DW
p-values = 0

SQA vs DW
p-values = 0

SSSV vs DW
p-values = 0

Conclusion: Overwhelming rejection
Overwhelming evidence to reject that DW is statistically consistent with

SQA or SSSV in terms of ground state success probability

Yazhen (at UW-Madison) 29 / 40



Goodness-of-fit-test

Reject null hypothesis

all p-values ≤ 3.87× 10−6

SA vs DW
p-values = 0

SQA vs DW
p-values = 0

SSSV vs DW
p-values = 0

Conclusion: Overwhelming rejection
Overwhelming evidence to reject that DW is statistically consistent with

SQA or SSSV in terms of ground state success probability

Yazhen (at UW-Madison) 29 / 40



Goodness-of-fit-test

Reject null hypothesis

all p-values ≤ 3.87× 10−6

SA vs DW
p-values = 0

SQA vs DW
p-values = 0

SSSV vs DW
p-values = 0

Conclusion: Overwhelming rejection
Overwhelming evidence to reject that DW is statistically consistent with

SQA or SSSV in terms of ground state success probability

Yazhen (at UW-Madison) 29 / 40



Goodness-of-fit-test

Reject null hypothesis

all p-values ≤ 3.87× 10−6

SA vs DW
p-values = 0

SQA vs DW
p-values = 0

SSSV vs DW
p-values = 0

Conclusion: Overwhelming rejection
Overwhelming evidence to reject that DW is statistically consistent with

SQA or SSSV in terms of ground state success probability

Yazhen (at UW-Madison) 29 / 40



Histogram of Ground State Success Probability Data
(a) DW
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(d) SSSV
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SA Histograms for different annealing times
(a) SA with 100 sweeps
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(b) SA with 1000 sweeps
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(c) SA with 10000 sweeps
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(d) SA with 50000 sweeps
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SQA Histograms

Various annealing times
(a) SQA with 3000 sweeps
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(b) SQA with 5000 sweeps
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(c) SQA with 7000 sweeps
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(d) SQA with 10000 sweeps
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Various temperatures
(a) SQA with T=0.1
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SQA Histograms

Various annealing times
(a) SQA with 3000 sweeps
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(b) SQA with 5000 sweeps
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(c) SQA with 7000 sweeps
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(d) SQA with 10000 sweeps
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(a) SQA with T=0.1
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SSSV Histograms

Various annealing times
(a) SSSV with 5000 sweeps
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(b) SSSV with 75000 sweeps
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(c) SSSV with 15000 sweeps
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(d) SSSV with 150000 sweeps
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Various temperatures
(a) SSSV with T=0.1
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(b) SSSV with T=0.2
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(c) SSSV with T=0.3
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(e) SSSV with T=1
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SSSV Histograms

Various annealing times
(a) SSSV with 5000 sweeps
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(b) SSSV with 75000 sweeps
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(c) SSSV with 15000 sweeps
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(d) SSSV with 150000 sweeps
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(a) SSSV with T=0.1
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(b) SSSV with T=0.2
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(d) SSSV with T=0.5
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(e) SSSV with T=1
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DIP Test for Shape Patterns
DIP(Fn) = max

0≤p≤1
|Fn(p)− F̂n(p)|

Fn=empirical DF, F̂n= DF estimator under unimodality or U-shape
Under uniform null (asymptotic least favorable) distribution, as n→∞,√

nDIP(Fn)→ DIP(B), B(t) = Brownian bridge on [0,1]

Unimodality (including monotone)

DW: no SA: yes

SQA: no SSSV: no

U-shape

DW: no SA: no

SQA: yes SSSV: yes
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Histogram of Success Probability
(a) DW
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(b) SA
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(c) SQA
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(d) SSSV
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Histogram of Success Probability
(a) DW
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Shape Pattern Analysis by Regression
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(c) SQA
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(d) SQA

Hamming Distance

S
uc

ce
ss

 P
ro

ba
bi

lit
y

SA

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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(b) SA
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(e) SSSV

Energy Gap
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Shape Pattern Analysis by Regression
SQA
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(a) SA

Energy Gap
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(b) SA

Hamming Distance
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(e) SSSV

Energy Gap
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Shape Pattern Analysis by Regression
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(a) SA

Energy Gap
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(b) SA

Hamming Distance
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Yazhen (at UW-Madison) 37 / 40



Shape Pattern Analysis by Regression
SQA
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(d) SQA
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Shape Pattern Analysis by Regression
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Concluding Remarks

Both inference and computing are inportant for big data.

Interface
• Computing for conducting statistical inference; and statistics for

analyzing computational algorithms.

• Statistics for quantum technology (e.g. quantum computing &
tomography), and quantum computing for statistical computing
and machine learning.
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