Please read these instructions before posting any event on Fermilab Indico
Focus on:
All days
Dec 6, 2017
Dec 7, 2017
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nipigon
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rainy_River
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Thunder_Bay
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kiev
Europe/Kirov
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Uzhgorod
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zaporozhye
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
US/Central
English (United States)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Near-term Applications of Quantum Computing
from
Wednesday, December 6, 2017 (8:00 AM)
to
Thursday, December 7, 2017 (7:30 PM)
Monday, December 4, 2017
Tuesday, December 5, 2017
Wednesday, December 6, 2017
8:40 AM
Welcome and Introduction
-
Marcela Carena
(Fermilab)
Joseph Lykken
(Fermilab)
Welcome and Introduction
Marcela Carena
(Fermilab)
Joseph Lykken
(Fermilab)
8:40 AM - 9:00 AM
Room: Curia II
9:00 AM
Quantum Computing Testbed Approaches
-
James Amundson
(Fermilab)
Quantum Computing Testbed Approaches
James Amundson
(Fermilab)
9:00 AM - 10:00 AM
Room: Curia II
Until recently, the term “applied quantum computing” was best used as an answer to the question “What is a good example of an oxymoron?” Now, however, quantum computing hardware with significant capabilities is on the very near horizon. I describe how we at Fermilab are taking a testbed the topic of applied quantum computing. Even though the killer application for quantum computing in high energy physics has yet to be developed, I describe the steps we are taking toward identifying and implementing quantum solutions to high energy physics problems.
10:00 AM
Machine Learning of a Higgs Decay Classifier via Quantum Annealing
-
Joshua Job
(University of Southern California)
Machine Learning of a Higgs Decay Classifier via Quantum Annealing
Joshua Job
(University of Southern California)
10:00 AM - 11:00 AM
Room: Curia II
In this talk, we describe how we used quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, and mapped it to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data, which may result from the use of event generators in high-energy physics. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics for this test case. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and provides a proof of principle for future work on machine learning applications of quantum and digital annealing machines.
11:00 AM
Break
Break
11:00 AM - 11:15 AM
Room: Art Gallery
11:15 AM
Statistical Analysis of Quantum Computing Experiments
-
Yazhen Wang
(University of Wisconsin, Madison)
Statistical Analysis of Quantum Computing Experiments
Yazhen Wang
(University of Wisconsin, Madison)
11:15 AM - 12:15 PM
Room: Curia II
12:15 PM
Lunch
Lunch
12:15 PM - 1:30 PM
Room: Fermilab Cafeteria
1:30 PM
Systems and Software for Scientific Discovery with Quantum Computing
-
Travis Humble
(Oak Ridge National Laboratory)
Systems and Software for Scientific Discovery with Quantum Computing
Travis Humble
(Oak Ridge National Laboratory)
1:30 PM - 2:30 PM
Room: Curia II
We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while also maintain existing computing infrastructure. We then elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for controlling quantum devices.
2:30 PM
Software for Large-Scale and Near-Term Quantum Computing
-
Fred Chong
(University of Chicago)
Software for Large-Scale and Near-Term Quantum Computing
Fred Chong
(University of Chicago)
2:30 PM - 3:30 PM
Room: Curia II
In this talk, I will discuss our experiences with developing an open-source tool chain for large-scale quantum computing, and our plans for re-targeting these tools for near-term, small-scale physical prototypes. The Scaffold tools are an extensive set of compilation and resource estimation tools for large-scale quantum computing. Scaffold leverages the LLVM compiler framework, as well as parallel mapping and quantum rotation generation tools. Scaffold was designed for scalability, targeting quantum machines with up to millions of quantum bits. Scaffold has allowed us to explore a range of architectural and compiler issues and has contributed to many other research projects across the world. Our future efforts, however, will focus on specializing Scaffold to target smaller-scale machines. Specifically, we plan to expose more machine features and use deep optimization to help close the gap between practical algorithms and prototype machines.
3:30 PM
Break
Break
3:30 PM - 4:00 PM
Room: Art Gallery
4:00 PM
Colloquium: Adventures in quantum optimization with noisy qubits
-
Daniel Lidar
(University of Southern California)
Colloquium: Adventures in quantum optimization with noisy qubits
Daniel Lidar
(University of Southern California)
4:00 PM - 5:00 PM
Room: WH 1 West
Quantum information processing holds great promise, yet large-scale, general purpose “universal" quantum computers capable of solving hard problems are not yet available despite 20+ years of immense worldwide effort. However, special purpose quantum information processors, such as the quantum simulators originally envisioned by Feynman, appear to be within reach. Another type of special purpose quantum information processor is a quantum annealer, designed to speed up the solution to classical optimization problems. In October 2011 USC and Lockheed-Martin jointly founded a quantum computing center housing a commercial quantum annealer built by D- Wave Systems. Starting with 108 qubits, two generations later the current processor at USC has 1098 qubits, and the latest generation deployed elsewhere already has close to 2048 qubits. These processors use superconducting flux qubits to try to find the ground states of Ising spin-glass problems with as many spins as qubits, an NP-hard problem with numerous applications. There has been much controversy surrounding the D-Wave processors, concerning whether they are sufficiently quantum to offer any advantage over classical computing. After introducing quantum annealing I will survey the work we have done to test the D-Wave processors for quantum effects, to test for quantum enhancements by benchmarking against highly optimized classical algorithms, and to perform error correction.
Thursday, December 7, 2017
9:00 AM
Evidence for a Scaling Advantage on a Quantum Annealer
-
Daniel Lidar
(University of Southern California)
Evidence for a Scaling Advantage on a Quantum Annealer
Daniel Lidar
(University of Southern California)
9:00 AM - 10:00 AM
Room: Curia II
The observation of an unequivocal quantum speedup remains an elusive objective for quantum computing. In this talk I will present the first, and so far only example of a scaling advantage for an experimental quantum annealer. In comparison to classical annealing, we find that the D-Wave 2000Q processor exhibits certifiably better scaling than both simulated annealing and spin-vector Monte Carlo. However, we do not find evidence for a quantum speedup: simulated quantum annealing (a variant of quantum Monte Carlo) exhibits the best scaling by a significant margin. Our construction of instance classes exhibiting this behavior opens up the possibility of generating many new such classes, and for further definitive assessments of scaling advantages using current and future quantum annealing devices.
10:00 AM
Quantum Information for Fundamental Physics
-
Daniel Carney
(NIST / University of Maryland)
Quantum Information for Fundamental Physics
Daniel Carney
(NIST / University of Maryland)
10:00 AM - 11:00 AM
Room: Curia II
The tried-and-true method for probing fundamental physics is to measure scattering probabilities with colliders. Recent advances in quantum information-based theory and experimental technologies suggest new methods for understanding elementary physics. In this vein, I will discuss some results on the quantum structure of scattering states, and sketch some preliminary ideas about trying to use novel information-theoretic observables and techniques to explore fundamental theories at energies accessible in labs today.
11:00 AM
Break
Break
11:00 AM - 11:15 AM
Room: Curia II
11:15 AM
Simulating Quantum Field Theories on Quantum Computers
-
Stephen Jordan
(NIST / University of Maryland)
Simulating Quantum Field Theories on Quantum Computers
Stephen Jordan
(NIST / University of Maryland)
11:15 AM - 12:15 PM
Room: Curia II
In some regimes, such as strong coupling, quantum field theory dynamics are difficult to simulate using conventional techniques. In this talk I will describe my joint work with John Preskill and Keith Lee developing quantum algorithms for simulating quantum field theories. I will also comment on potential applications of near-term "pre-threshold" quantum computers to quantum field theory problems.
12:15 PM
Lunch
Lunch
12:15 PM - 1:30 PM
Room: Fermilab Cafeteria
1:30 PM
Quantum Simulations of Abelian and non- Abelian Gauge Theories
-
Uwe-Jens Wiese
(University of Bern)
Quantum Simulations of Abelian and non- Abelian Gauge Theories
Uwe-Jens Wiese
(University of Bern)
1:30 PM - 2:30 PM
Room: Curia II
Besides lattice QCD in particle physics, strongly coupled gauge theories arise, for example, in the condensed matter physics of spin liquids, or in the quantum information theory of Kitaev's toric code, which is a Z(2) lattice gauge theory. Numerical simulations of gauge theories on classical computers, in particular, at high fermion density or in out-of-equilibrium situations, suffer from severe sign problems that prevent the importance sampling underlying Monte Carlo calculations. Quantum simulators are accurately controllable quantum devices that mimic other quantum systems. They do not suffer from sign problems, because their hardware is intrinsically quantum mechanical. Recently, trapped ions, following a laser-driven stroboscopic discrete time evolution through a sequence of quantum gate operations, have been used as a digital quantum simulator for particle-anti-particle pair creation in the Schwinger model. Analog quantum simulators, on the other hand, follow the continuous time-evolution of a tunable model Hamiltonian. Using ultra-cold atoms in optical lattices, analog quantum simulators have been designed for Abelian and non-Abelian lattice gauge theories. Their experimental realization is a challenge for the foreseeable future, which holds the promise to access the real-time dynamics of string breaking, the out-of-equilibrium decay of a false vacuum, or the evolution of a chiral condensate after a quench, from first principles. Quantum link models which realize gauge theories including QCD not with classical fields but with discrete quantum degrees of freedom, are ideally suited for implementation in quantum matter. For example, alkaline-earth atoms, whose nuclear spin represents an SU(N) degree of freedom, naturally embody fermionic rishon constituents of gluons. CP(N-1) models, which are toy models for QCD, can be quantum simulated in a similar way via SU(N) quantum spin ladders.
2:30 PM
Quantum Simulating Lattice Gauge Theories with Optical Lattices
-
Yannick Meurice
(U. of Iowa)
Quantum Simulating Lattice Gauge Theories with Optical Lattices
Yannick Meurice
(U. of Iowa)
2:30 PM - 3:30 PM
Room: Curia II
Optical lattices have been used successfully to quantum simulate the Bose-Hubbard model. We briefly review recent proposals to use similar procedures for lattice gauge theories. The long term objectives are to deal with sign problems and the real time evolution, which is not possible with classical computations. We introduce a gauge-invariant formulation of the Abelian Higgs model in 1+1 dimensions obtained with the tensor renormalization group method. We propose an approximate realization using cold atoms in an optical lattice with a ladder structure. Recently developed Rydberg’s atom manipulations allow to create nearest neighbor interactions with the desired strength. An experimental proof of principle would be to try first simpler examples: the Ising and O(2) models. We report on recent progress in this direction.
3:30 PM
Wrap-up / Fermilab tours
Wrap-up / Fermilab tours
3:30 PM - 6:30 PM
Room: Curia-II