Storing reconstructed 3D points with charge

Gianluca Petrillo

Fermi National Accelerator Laboratory

LArSoft architecture meeting, September 61, 2017

. 2% Fermilab

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017



o The request

Q A proposal

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017 2/13



Charge in space

We need a data product to save a charge together with its absolute position in detector.

Candidate users:
@ WireCell (BNL)

@ SpacePointSolver (Christopher Backhouse)
@ detectors with pixel-based readout

These slides summarise the current status and advance a proposal.

Note that this has nothing to do with the space charge correction pioneered by Mike
Mooney.

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017 3/13



The available products

We have two data products related to position in the detector:

recob: :SpacePoint effectively representing a reconstructed 3D position
@ an array of coordinates
@ an error matrix (triangular)
0 a)?
@ anlID
recob: :Vertex effectively representing a 3D position

@ an array of coordinates
@ anlID

My feeling is that the roles are inverted...

The more proper candidate by name is recob: : SpacePoint.

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017



Where are recob: : SpacePoint used

| have found 8 algorithms using recob: : SpacePoint errors:
@ 1 module uses them fully (Track3DKalmanSPS)

@ a few other algorithms just copy or print or plot them
(and some misinterpret it, too)

Out of 25 modules claiming to produce recob: : SpacePoint:

@ 6 produce the full fit information (5 use SpacePointAlg, 1 uses
SpacePointAlg_TimeSort)

@ 2 put sort-of-meaningful, fixed values for

o 1 puts quality-related information as x? (not a real x?)
o 1 puts full % and dummy x?

@ 2 just copy from existing recob: : SpacePoint

@ 1 chickens out and does not create any

o 12 (the rest) set dummy values for both 0% and x?

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017



A proposal from LArSoft

@ discorporate the errors from recob: : SpacePoint

o
o

have a stand-alone data product for charge
link them by implicit association

+

recob: : SpacePoint becomes a very lightweight object
(which is good, because there may be plenty)

modules won’t need to fill dummy values for fit-related quantities

algorithms using recob: : SpacePoint will work with the output of the “charged”
modules (e.g. WireCell and SpacePointSolver)

compared to adding a data member, modules won'’t need to fill a dummy value for
charge

need to juggle with two data products when charge is needed
(solvable with a “proxy”)

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017 6/13



Proposal details

@ charge saved in its own class recob: : PointCharge, single precision
@ recob: :SpacePoint will retain only the position information

o position stored with the same 3D point type as recob: : Track
e should the ID stay?
o interface for position is preserved and expanded

@ recob: :SpacePointFit will hold the fit information

o error matrix as ROOT SMatrix double precision symmetric 3 x 3 matrix
o x? (still double precision)
o expanded interface (with respect to old recob: : SpacePoint)

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017



Proposal: recob: : SpacePoint

1 struct SpacePoint {

2 using ID_t = int;

3 using Point_t = tracking::Point_t;
4

5 SpacePoint (double x, double y, double z);
6

7 Point_t const& Position() const;

8 double X () const;

9 double Y () const;

10 double Z () const;

11 ID_t ID() const;

12 bi

Position is defined in the “global” reference frame, stored in centrimetres.

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017 8/13



Proposal: recob: :PointCharge

struct PointCharge {
PointCharge (float charge);
float Charge () const;

bi

BSw N

How do we define the charge? |

The association with recob: : SpacePoint will be by protocol only, via what | call
parallel data product requirement: the /" point charge is associated to the /" space point.

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. 6”‘, 2017 9/13



Proposal: recob: : SpacePointFit

1

2

3

4

5 double

6 double

7 double

8 double

9 double
10 double
11 double
12 double
13
L4 }i

Chisqg()

struct SpacePointFit {
using Covariance3D_t
= ROOT: :Math::SMatrix<double, 3U, 3U, ROOT: :Math

const;

VarX () const;
VarY () const;
VarZ () const;

CovXY ()
CovYZ ()
CovZX ()
Cov (std:

Covariance3D_t

const;

const;

const;

:size_t i, std::size_t j) const;
const& Covariance () const;

: :MatRepSym<double, 3U>>;

The collection of recob: : SpacePointFit will also fulfill the parallel data product

requirement.

G. Petrillo (FNAL)

Storing reconstructed 3D points with charge

Sept. 61, 2017




Proposal: proxy and proxy: : SpacePointWithCharge

We may provide a “proxy” collection with the same (unpublished) infrastructure used for

tracking. This is how it would look like:

1

2

3

4

5

6 log <<
7 I U
8 << "
9 }
10 if (!sps
11 log <<

mf::LogInfo log("DumpSpacePoints");

proxy::SpacePointsWithCharge sps(event, spacePointTag);
log << sps.size() << " space points:";
for (autos&& point: sps) {

"[" << point.index () << "] ID=" << point.point().ID()

at " << lar::dump::vector3D (point.position())

with charge " << point.charge();

.empty () )

"\nMiddle point: ID=" << sps[sps.size() / 2].point().ID();

o the collection is iterable and random-accessible

@ each element
— remembers the original index, the space point and the charge
— has a few methods for direct information accessible
— is temporary (r-value) containing pointers and an index

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. G‘h, 2017




Proposal from Brett Viren

From private communication, my interpretation of Brett’s proposal:

1 struct SpacePoint {

2 using ID_t = int;

3 using Point_t = tracking::Point_t;
4

5 SpacePoint (double x, double y, double z, double value = 0.0);
6

7 Point_t const& Position() const;

8 double X () const;

9 double Y () const;

10 double Z () const;
11 float value() const;
12 ID_t ID() const;
13 bi

@ recob::SpacePoint and recob: :PointCharge information all together

@ dummy value if charge is not produced

@ “value” instead of “charge” because somebody might store information that is not
exactly charge

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. G‘h, 2017 12/13



@ we need a way to store charge together with a position
@ a single proposal has been drafted here
@ ... now it’s time for discussion and counterproposals

G. Petrillo (FNAL) Storing reconstructed 3D points with charge Sept. Gth, 2017 13/13



	The request
	A proposal

