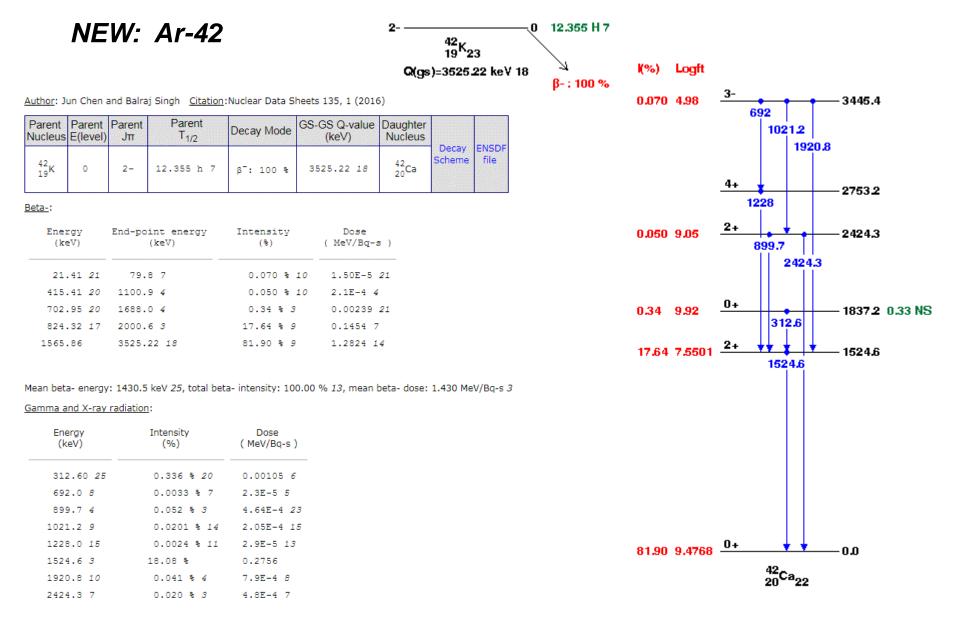
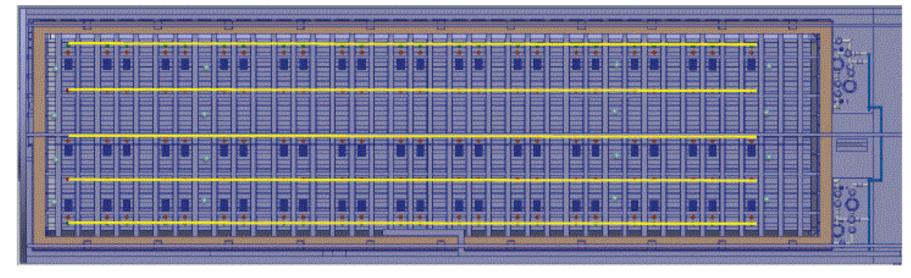
Calibration with Radioactive Sources


Juergen Reichenbacher

DUNE Calibration Task Force Phone Meeting, 7-Sep-2017

Intrinsic Ar-39 & Ar-42 Background



Aug 17, 2017

DUNE - J. Reichenbacher (SDSM&T)

External radioactive source deployments

Radioactive sources/movable TGradiant

- A 58Ni-252Cf source will emit 8-9 MeV gammas which are in the right range for calibration the energy response in the SN region. As absolute energy calibrations would otherwise be difficult this capacity should be foreseen.
 - A Ni source will probably need ~100mm space including N moderator.
- Dynamic T-gradient monitors should also be foreseen at the detector ends and it is reasonable to combine these functions in single larger penetrations. Assume a 250 mm crossing tube.
- 16 penetrations total. 8 roughly centered in each TPC drift and 8 at the ends of the detector. The penetrations at the ends should not be more than 0.5m from the field cage but sufficiently far away not to risk the field.
 - Need to check rate when a natural position is determined.

External radioactive source deployments

⁵⁸Ni(n,γ)⁵⁹Ni

TRI-PP-96-7 Apr 1996

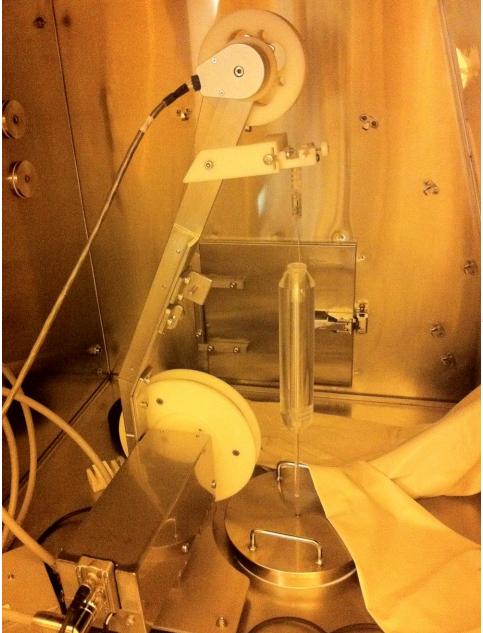
A 7-9 MeV isotopic gamma ray source for detector testing

Joel G. Rogers**, Mark S. Andreacob, and Christian Moisan*

*TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3 *CTI, 810 Innovation Drive, Knozville, TN 37932, U.S.A.

scale

Table 1 - Thermal (n, γ) Rates from natural Ni taken from ref. [3]


Gamma Energy (MeV)	Rate (photons/100 captures)
8.997	26
8.532	11
8.119	2.5
7.817	6
7.528	4
7.22	0.4
7.05	0.6
6.839	9
6.58	2
6.34	1
6.10	1.3
5.99	0.4
5.82	3
5.70	0.6
5.31	1.3

[3] E. Troubetzkoy and H. Goldstein, "A compilation of information on gamma ray spectra resulting from thermal neutron capture", USAEC Report, ORNL-2904 Oak Ridge National Laboratory, 1960.

Using Cf-252 (or even better AmLi) would significantly reduce size of source, such that it would fit a 20 cm diameter feedthru

Aug 17, 2017

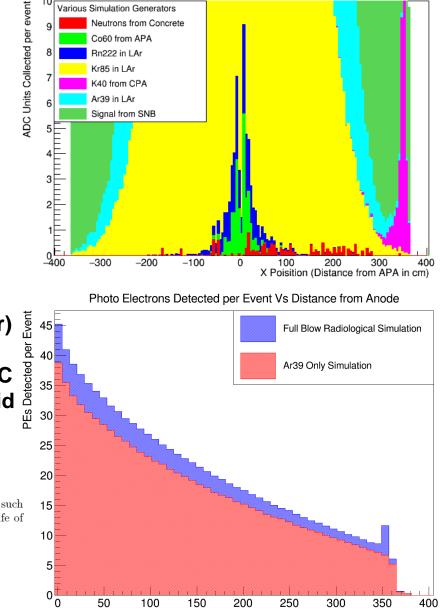
Double Chooz Calibration Deployment System inside Glove Box:

Automated fishline system for target deployments:

+/-2 mm precision over 7 m

-> 2 systems available in Jan 2018

Aug 17, 2017


Internal fixed radioactive sources

Charge collected at distance X for SNB Signal and Background event 006 Various Simulation Generators Neutrons from Concrete Jason Stock 800 م Co60 from APA (2017 APS poster) Rn222 in LAr 700 Kr85 in LAr K40 from CPA Ar39 in LAr Signal from SNB 400 300 200 100 -200 -100100 200 300 -300 X Poisition (Distance from APA in cm)

- -> SNB events require at least some track-reco to stick out of background! (no simple trigger)
- -> But we can spike local points on cathode & FC (electroplating isotopes dissolved in nitric acid and final seal with thin Teflon layer)

Use Thoron (-> TI-208) or beta sources

 β -sources with relatively high end point energies, such as for example ¹⁴⁴Ce (halflife of 284 d, daughter ¹⁴⁴Pr with $\beta - < 2.99 \,\mathrm{MeV}$) or ¹⁰⁶Ru (halflife of 368 d, daughter ¹⁰⁶Rh with $\beta - < 3.54 \,\mathrm{MeV}$).

Charge collected at distance X for SNB Signal and Background


Aug 17, 2017

DUNE - J. Reichenbacher (SDSM&T)

X Position (Distance from APA in cm)

Injected short-lived radioactive sources: Detector Uniformity

- ⇒ ensure uniform detector response: purity and electron lifetime (employ purity monitors)
- ⇒ impact of complicated flow pattern checked with fluid dynamic simulation (employ RTDs)

TI-208 gamma of 2.615 MeV and beta with endpoint energy of up to 1.8 MeV