
NUISANCE Tutorial
Adding Samples
Patrick Stowell, Luke Pickering,
Clarence Wret, Callum Wilkinson

06/09/17

Introduction

• Going to focus on adding a sample into NUISANCE today.

• End result will be a sample implementation that you can load
from a card file, using the same method we saw in the
nuiscomp examples last week.

• Will try to cover
1. Core Sample Structure
2. Actually Adding a sample

07/09/2017 Patrick Stowell 2

Why do I care?

• Adding data into our framework gives people another way to
easily make comparisons with your measurement.

• Rack up those citation counts!

• We also use the same framework for model comparisons/testing
on T2K, so very useful if you ever find yourself having to
implement a generator model /reweight dial.

07/09/2017 Patrick Stowell 3

Processing Structure

07/09/2017 Patrick Stowell 4

Building NUISANCE

• NUISANCE requires a few external dependencies to build
• ROOT
• Any generator and its dependencies.

• So if we want GENIE we have to build GENIESupport aswell…

• Some build notes are on our site:

07/09/2017 Patrick Stowell 5

https://nuisance.hepforge.org/nuisanceinstallation.html

Building NUISANCE (2)

• If you are on a FNAL gpvm you can use /cvmfs/

• Should work for everyone on a FNAL gpvm, let me know if it
fails!

• If you are not on a gpvm you will have to already have your
own installation of NUISANCE on your computer.

07/09/2017 Patrick Stowell 6

git clone http://nuisance.hepforge.org/git/nuisance.git
cd nuisance_tutorial/cvmfsbuild/
source nuisance-dependencies.sh
source nuisance-checkout.sh

Processing Structure

07/09/2017 Patrick Stowell 7

Requesting a sample

• Saw last week that we can request different data comparisons
in NUISANCE by specifying the sample name in a card file.

• What is actually happening when we put a sample here?

07/09/2017 Patrick Stowell 8

<nuisance>
<!-- List of Samples -->
<sample name="MINERvA_CCQE_XSec_1DQ2_nu"

input="GENIE:genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root" />
</nuisance>

Routines Classes
• The card file you read in gets passed to a routines class for the

given application

• Routines parse your options and handle the overall running of
whatever you are trying to do.

• First thing they usually do is setup a JointFCN.

07/09/2017 Patrick Stowell 9

Application Routines Class
nuiscomp src/Routines/ComparisonRoutines.cxx
nuismin src/Routines/MinimiserRoutines.cxx
nuissyst src/Routines/SystematicRoutines.cxx

JointFCN
• JointFCN is just a list of all samples/priors loaded that allows

you to easily process all of them as efficiently as possible.

• When created it checks the configuration for a list of sample
XML entries and tries to create a sample for each one.

• Where an ugly string comparison list instantiates the class.

07/09/2017 Patrick Stowell 10

src/FCN/JointFCN.cxx :: LoadSamples
MeasurementBase* NewLoadedSample = SampleUtils::CreateSample(key);

src/FCN/SampleList.cxx :: CreateSample
...
} else if (!name.compare("MINERvA_CC0pi_XSec_1DThetae_nue")) {
return (new MINERvA_CC0pi_XSec_1DThetae_nue(samplekey));

...

Event Loop

• When JointFCN->ReconfigureSamples() is called, the JointFCN
loops over all the samples it has loaded and processes their
events to produce the MC curves.

• Sample class implementations contain all information required
to figure out which events are signal and what should be filled.

07/09/2017 Patrick Stowell 11

[LOG Reconf]:--- Starting Reconfigure iter. 0
[LOG Reconf]:--- Event Manager Reconfigure
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 0 events. [M, W] = [13, 1]
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 20000 events. [M, W] = [13, 1]
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 40000 events. [M, W] = [13, 1]
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 60000 events. [M, W] = [26, 1]
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 80000 events. [M, W] = [1, 1]
[LOG Reconf]:--- Filled 4104 signal events.
[LOG Reconf]:--- Time taken ReconfigureUsingManager() : 21

Simplified Event Loop
• Every time Reconfigure is called the following steps usually

happen for each sample.

07/09/2017 Patrick Stowell 12

MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

This is not the actual code,
but gives an idea of what

functions are called inside the
Measurement classes

Simplified Event Loop
• Every time Reconfigure is called the following steps usually

happen for each sample.

07/09/2017 Patrick Stowell 13

MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Reset all MC histograms

Simplified Event Loop
• Every time Reconfigure is called the following steps usually

happen for each sample.

07/09/2017 Patrick Stowell 14

MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Gets all weights for parameters
you gave to NUISANCE

Simplified Event Loop
• Every time Reconfigure is called the following steps usually

happen for each sample.

07/09/2017 Patrick Stowell 15

MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Calculates any kinematics inside
the sample ready to be filled

FillEventVariables called
first so that extra

background plots can
also be created if

needed.

Simplified Event Loop
• Every time Reconfigure is called the following steps usually

happen for each sample.

07/09/2017 Patrick Stowell 16

MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Checks if the standard
histograms should
actually be filled

Simplified Event Loop
• Every time Reconfigure is called the following steps usually

happen for each sample.

07/09/2017 Patrick Stowell 17

MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Actually fill the variables
we calculated before into

the histograms

Simplified Event Loop
• Every time Reconfigure is called the following steps usually

happen for each sample.

07/09/2017 Patrick Stowell 18

MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Take the weighted event
spectrum and calculate a
predicted cross-section.

Simplified Event Loop
• Every time Reconfigure is called the following steps usually

happen for each sample.

07/09/2017 Patrick Stowell 19

MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();
Compare MC to data
using covariance, etc.

Adding Data

• To add your data into the existing processing loop you have to
add your own a C++ sample class implementation

• Main design focus is differential cross-sections in 1D and 2D.

• Lots of existing samples for rare cases in the code, and we are
constantly thinking of ways to make handling them easier.

• If you have issues, or you think your sample is more
complicated let us know and we can help with suggestions on
how to implement it.

07/09/2017 Patrick Stowell 20

Adding a Sample

07/09/2017 Patrick Stowell 21

Problems
• Produced a fake data distribution which can be downloaded

from the following repo.

• Data files are located in

• Only one problem to do today
Add MINERvA CC1pi1p 1DTpi data

• Methods to add 2D data are very similar. More complex things
like ratios/cross-correlations/smearing are also possible, but not
covered today sorry.

07/09/2017 Patrick Stowell 22

nuisance_tutorial/tutorial050917_addingsamples/data/

$ git clone https://github.com/NUISANCEMC/nuisance_tutorial.git

Templates
• Sample templates are contained inside the folder

• 3 different types:
• templated1D_bare : Just the required functions, completely

empty. Write everything manually.
• templated1D_brief : Brief notes on the required order to be

followed in each function.
• templated1D_verb : Verbose notes on what each stage of

the file is actually doing.

• Will post verbose solution to following directory afterwards

07/09/2017 Patrick Stowell 23

nuisance_tutorial/tutorial050917_addingsamples/solutions/

nuisance_tutorial/tutorial050917_addingsamples/templates/

Cheat Codes

• Data is fake, and has been generated from genie Default.
• Errors are statistical, from running over 50000 events

• Correlation matrix is just diagonal to keep things simple.
• If you had a non-diagonal covariance the functionality is exactly

the same.

• Fake data definition means you can check your data with
GENIE Default first to see that you get a chi2 of ~0.0.

• Then compare other models and higher stats to it for extra
validation.

07/09/2017 Patrick Stowell 24

MINERvA CC1pip1p 1DTpi
• Data distribution given as a text file:

07/09/2017 Patrick Stowell 25

Cut
1 Initial State Muon Neutrino
2 Final State Muon (CC)
3 Final State pi+ or pi-
4 >0 Final State Protons
5 Muon Theta Angle < 20 degrees
6 Wexp < 1.4 GeV

Bin
Edges

Central
Value

Bin
Error

Last line says the
top bin edge

Alongside our data we need a list of
cuts to apply to MC

0.0 5.5742e-42 3.0825e-43
50.0 8.3869e-42 3.7811e-43
100.0 6.5629e-42 3.3448e-43
150.0 5.2418e-42 2.1137e-43
250.0 3.6650e-42 2.4995e-43
300.0 2.9490e-42 2.2421e-43
350.0 1.5512e-42 1.6261e-43
400.0 1.2785e-42 1.4763e-43
450.0 5.7958e-43 9.9397e-44
500.0 0.0 0.0

MINERvA CC1pip1p 1DTpi
• Have a corresponding diagonal correlation matrix

• Also included information on target/flux. Should already have
some MC files from last week so we will use those instead.

07/09/2017 Patrick Stowell 26

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root

Checklist

• First thing we have to do is add a new class

07/09/2017 Patrick Stowell 27

Requirement Finished
Class File

CMakeLists.txt
Constructor

FillEventVariables
IsSignal

SampleList.cxx

Template Files

• We need to make a new C++ file inside the src directory.

• To avoid writing from scratch, copy the files inside your tutorial
folder to the nuisance src directory.

• Rename the class files to something sensible at the same time.

NAMING FORMAT: EXPERIMENT_CHANNEL_TYPE_DISTRIBUION_EXTRAIDs

07/09/2017 Patrick Stowell 28

$ cp Template1D_verbose.h $NUISANCE/src/MINERvA/MINERvA_CC1pip1p_XSec_1DTpi_nu.h
$ cp Template1D_verbose.cxx $NUISANCE/src/MINERvA/MINERvA_CC1pip1p_XSec_1DTpi_nu.cxx

Renaming
• Then need to rename the functions inside the template class to

our new class name.

• Can do manually in each file or just use sed

• Should end up with something like the file below

07/09/2017 Patrick Stowell 29

$ sed -e “s/tutorial1D/MINERvA_CC1pip1p_XSec_1DTpi_nu/g” ./MINERvA_CC1pip1p_XSec_1DTpi*

MINERvA_CC1pip1p_XSec_1DTpi_nu.h
#ifndef MINERvA_CC1pip1p_XSec_1DTpi_nu_H_SEEN
#define MINERvA_CC1pip1p_XSec_1DTpi_nu_H_SEEN
#include "Measurement1D.h”
class MINERvA_CC1pip1p_XSec_1DTpi_nu : public Measurement1D {

public:
// Main Constructor
MINERvA_CC1pip1p_XSec_1DTpi_nu(nuiskey samplekey);

...

Checklist

• Now we need to actually register the class with CMAKE.

07/09/2017 Patrick Stowell 30

Requirement Finished
Class File 👍

CMakeLists.txt
Constructor

FillEventVariables
IsSignal

SampleList.cxx

CMakeLists
• If you renamed the file correctly, it should be buildable.

• To include it in the build we have to manually add it to the
CMakeLists file in this folder.

07/09/2017 Patrick Stowell 31

$NUISANCE/src/MINERvA/CMakeLists.txt
set(IMPLFILES
MINERvA_CC1pip1p_XSec_1DTpi_nu.cxx

MINERvA_CCQE_XSec_1DQ2_antinu.cxx
…

set(HEADERFILES
MINERvA_CC1pip1p_XSec_1DTpi_nu.h

MINERvA_CCQE_XSec_1DQ2_antinu.h
…

Have to add the .cxx file to the
IMPLFILES list and the .h file to
the HEADERFILES list.

Rebuilding

• With the CMakeLists.txt file updated, now go into the
NUISANCE build directory and make the code again.

07/09/2017 Patrick Stowell 32

cd $NUISANCE/builds/genie2126-nuwrorw/
make install

...
Scanning dependencies of target exp
[28%] Building CXX object
src/MINERvA/CMakeFiles/expMINERvA.dir/MINERvA_CC1pip1p_XSec_1DTpi_nu.cxx.o
MINERvALinking CXX static library libexpMINERvA.a
...
[100%] Built target SignalDefTests

This directory is wherever you
built nuisance using cmake, so
could be different to mine.

Checklist

• If it built successfully, great! But the template is just a
placeholder, we need to add data and cuts to it.

07/09/2017 Patrick Stowell 33

Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor
FillEventVariables

IsSignal
SampleList.cxx

Functions

• If we look inside the header file we can see the 3 functions we
have to define.

• All samples need at least these 3 functions defined to work.

07/09/2017 Patrick Stowell 34

// Main Constructor where we define what data we need to setup
// and sort out scaling factors.
MINERvA_CC1pip1p_XSec_1DTpi_nu(nuiskey samplekey);

// Function to calculate event kinematics we need when binning.
// Called for ALL events
void FillEventVariables(FitEvent *event);

// Function to figure out whether an event
// is a signal event for this sample.
bool isSignal(FitEvent *event);

Checklist

• Lets start with the constructor

• Constructors are a little bit awkward to setup until you are
familiar with the structure.

07/09/2017 Patrick Stowell 35

Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor
FillEventVariables

IsSignal
SampleList.cxx

Constructor

• Has 5 main sections that need to go in order.

1. LoadSampleSettings

2. FinaliseSampleSettings

3. ScalingFactor

4. PlotSetup

5. Finalise

07/09/2017 Patrick Stowell 36

Reads the XML entry for this
sample from the card file

Sets any defaults that weren’t
provided in the card file

Calculates factor needed to get a
cross-section out

Initialise data/covariance
histograms.

Final setup, clones data histogram
to make standard MC histograms.

Load Sample Settings
• When a sample is created the XML key you used to create it is

passed to the sample so that it can read all the options.

• Options accessible at any time in the sample by reading the
fSettings object (src/FitBase/SampleSettings.cxx)

• E.g. Add some extra flag in a specific sample

• Which can be set in the card file

07/09/2017 Patrick Stowell 37

src/MINERvA/MINERvA_CC1pip1p_Xsec_1DTpi_nu.cxx
fWCutValue = fSettings.GetD(“WCut”);

XML cardfile
<sample name=“MINERvA_CC1pip1p_Xsec_1DTpi_nu” WCut=“1.4” ... />

Load Sample Settings

• LoadSampleSettings should be called before any proper settings
are setup.

• Put this at the top of our constructor

07/09/2017 Patrick Stowell 38

std::string descrip = "MINERvA_CC1pip1p_XSec_1DTpi_nu" \
”\n Target: CH” \
”\n Flux: MINERvA FHC numu” \
”\n Signal: CC1pi+/- 1p W<1.4 theta<20deg”;

fSettings = LoadSampleSettings(samplekey);
fSettings.SetDescription(descrip);

Sample Settings
• Users can pass different inputs to SampleSettings but its

annoying if they have to pass them everytime they write a
cardfile

• Better if we setup some defaults aswell, so if a specific option
isn’t provided in the card, NUISANCE knows what to use.

07/09/2017 Patrick Stowell 39

fSettings = LoadSampleSettings(samplekey);

fSettings.SetDescription(descrip);
fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");
fSettings.SetEnuRange(0.0, 100.0);
fSettings.DefineAllowedTargets("C,H");
fSettings.DefineAllowedSpecies("numu");
fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");

fSettings.SetDataInput(FitPar::GetDataBase()+"/MINERvA/CC1pip1p/Tpi/data.csv");
fSettings.SetCovarInput(FitPar::GetDataBase()+”/MINERvA/CC1pip1p/Tpi/correlation.csv”);

FinaliseSampleSettings();

Put all your defaults between Load
and FinaliseSampleSettings.

The ones shown here are the usual
ones included.

SampleSettings : SetTitle

• Pretty self explanatory, set the Title, X, Y, and Z titles for the
standard data and MC histograms.

• In our case these will be:

07/09/2017 Patrick Stowell 40

fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");

SampleSettings : EnuRange

• EnuCuts have to be handled specially by NUISANCE because
they can affect the scaling procedure.

• If your analysis has a TRUE beam energy cut then place the
cut ranges in GeV inside SetEnuRange(low,high)

• If bounded on one side, or you have no EnuCut then use your
experimental range as the limit. (MINERvA ~0.0-100.0GeV)

07/09/2017 Patrick Stowell 41

fSettings.SetEnuRange(1.5, 10.0);

fSettings.SetEnuRange(1.5, 100.0);

fSettings.SetEnuRange(0.0, 100.0);

1.5 < Enu/GeV < 10.0

Enu > 1.5 GeV

No Enu Cut

SampleSettings: Target/Beam

• Define allowed targets/beam functions list things that are
allowed to be passed as inputs.

• We eventually plan to have automated checks, but at the
moment these don’t actually do much…

• Good to add them anyway as it’s an extra guide for people
using the class to make comparisons.

07/09/2017 Patrick Stowell 42

fSettings.DefineAllowedTargets("C,H");
fSettings.DefineAllowedSpecies("numu");

Allowed strings can be found
inside src/Utils/BeamUtils.cxx
and src/Utils/TargetUtils.cxx

SampleSettings: Types
• Saw last week that we could request different ways to handle

the likelihood in the fit (e.g. SHAPE or FREE)

• SampleSettings::SetAllowedTypes defines what is actually
allowed to be included in the type field.

• List all allowed seperated by a slash (/). The second field
defines what you want NUISANCE to use if ”type” not given.

07/09/2017 Patrick Stowell 43

fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");

This is the usual one to use, default is
fixed with a full covariance.

SampleSettings::SetAllowedTypes(allowed_types,
default_types);

Conflicting Types
• Some types are conflicting, e.g. trying to run a SHAPE only fit

with a FREE floating normalization is useless.
• If you want to make NUISANCE check for this, separate all

conflicting types with a comma (,) instead of a slash (/).

• e.g. Allow FIX, FREE, and SHAPE fits, but don’t allow both to
be given at the same time.

07/09/2017 Patrick Stowell 44

nuiscomp output

[LOG Sample]:-- Finalising Sample Settings: MINERvA_CC1pip_XSec_1DTpi_nu
[ERR FATAL]: ERROR: Conflicting fit options provided: SHAPE/FREE
You should only supply one of these options in card file.
Aborted

Constructor
fSettings.SetAllowedTypes("FIX,FREE,SHAPE", "FIX");

SampleSettings: SetInput

• SetDataInput and SetCovarInput tell NUISANCE where the
data sources are located.

• In our case these should point to a text or ROOT file inside the
NUISANCE data directory $NUISANCE/data/MINERvA/

• No data is read at this point, we are just setting up the paths
during SampleSettings::SetDataInput().

• FitPar::GetDataBase() returns data folder for you.

07/09/2017 Patrick Stowell 45

SampleSettings: Input

• First we should copy our data files to the NUISANCE database

• Now our data inputs in the SampleSettings are just

07/09/2017 Patrick Stowell 46

$ cd nuisance_tutorial/tutorial050917_addingsamples/data/MINERvA_CC1pip1p_XSec_1DTpi_nu
$ mkdir $NUISANCE/data/MINERvA/CC1pi1p/
$ mkdir $NUISANCE/data/MINERvA/CC1pi1p/Tpi/
$ cp ./* $NUISANCE/data/MINERvA/CC1pi1p/Tpi/

std::string base = FitPar::GetDataBase();
fSettings.SetDataInput(base+"/MINERvA/CC1pi1p/Tpi/data.csv");
fSettings.SetCovarInput(base+”/MINERvA/CC1pi1p/Tpi/correlation.csv”);

Finalise Sample Settings

• Finalise sample settings goes through and takes all the XML
settings already setup and sets a few different internal flags and
objects inside the Measurement class.

• Importantly, it also creates the MC InputHandler at this point.

• Anything handling the flux/rate/N-events has to come after
this point if it requires access to the InputHandler.

07/09/2017 Patrick Stowell 47

FinaliseSampleSettings();

Settings Implementation

• So far our SampleSettings section should look something like

07/09/2017 Patrick Stowell 48

std::string descrip = "MINERvA_CC1pip1p_XSec_1DTpi_nu" \
”\n Target: CH” \
”\n Flux: MINERvA FHC numu” \
”\n Signal: CC1pi+/- 1p W<1.4 theta<20deg”;

fSettings = LoadSampleSettings(samplekey);

fSettings.SetDescription(descrip);
fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");
fSettings.SetEnuRange(0.0, 100.0);
fSettings.DefineAllowedTargets("C,H");
fSettings.DefineAllowedSpecies("numu");
fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");

std::string base = FitPar::GetDataBase();
fSettings.SetDataInput(base+"/MINERvA/CC1pi1p/Tpi/data.csv");
fSettings.SetCovarInput(base+”/MINERvA/CC1pi1p/Tpi/correlation.csv”);

FinaliseSampleSettings();

Scaling Factor

• As mentioned last week NUISANCE requires the flux and event
rate histograms to properly normalise events.

• How does this work?

07/09/2017 Patrick Stowell 49

𝑅 𝐸# = 	Φ(𝐸#)		×		𝜎(𝐸#) ×		𝑇
Flux Total Xsec splinePredicted rate

given the flux

N-Targets

Scaling Factor Method

• Method is as follows:
1. Bin up the signal events in required distribution
2. Divide by total events to get a fractional spectrum
3. Multiply by Total Rate to get Rate for signal selection
4. Divide by flux integral, just like a normal cross-section.

• Binning signal handled by the event loop, the rest can be
contained into a single scaling factor.

07/09/2017 Patrick Stowell 50

𝐹 = 	
∫𝑅(𝐸#)
�
�

𝑁 ∫ Φ(𝐸#)
01231
0456

Scaling Factor
• Equivalent Scaling factor in NUISANCE is as follows

• The EventRate histogram is kept in units of

• So dividing the the flux integral away gets you

• If you need something else (e.g. /neutron) include extra factors
in the fScaleFactor term.

07/09/2017 Patrick Stowell 51

(10-38 cm2/nucleon) x (Flux-Histogram-Units)

fScaleFactor = GetEventHistogram()->Integral("width") \
/ double(fNEvents)
/ TotalIntegratedFlux("width");

(10-38 cm2/nucleon)

Scaling Factor

• We want just cm2/nucleon so our factor is this.

07/09/2017 Patrick Stowell 52

// Scaling Setup ---
// ScaleFactor setup for DiffXSec/cm2/Nucleon
fScaleFactor = GetEventHistogram()->Integral("width")

* double(1E-38)
/ double(fNEvents)
/ TotalIntegratedFlux("width");

GetEventHistogram() and
GetFluxHistogram() return

TH1D’s from the InputHandler

fNEvents also setup from the
input handler during the
FinalseSampleSettings() call.

TotalIntegratedFlux gets you
the integral between your Enu

cut limits.

Constructor
• So now we should have the following constructor

07/09/2017 Patrick Stowell 53

std::string descrip = "MINERvA_CC1pip1p_XSec_1DTpi_nu" \
”\n Target: CH” \
”\n Flux: MINERvA FHC numu” \
”\n Signal: CC1pi+/- 1p W<1.4 theta<20deg”;

fSettings = LoadSampleSettings(samplekey);

fSettings.SetDescription(descrip);
fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");
fSettings.SetEnuRange(0.0, 100.0);
fSettings.DefineAllowedTargets("C,H");
fSettings.DefineAllowedSpecies("numu");
fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");

std::string base = FitPar::GetDataBase();
fSettings.SetDataInput(base+"/MINERvA/CC1pi1p/Tpi/data.csv");
fSettings.SetCovarInput(base+”/MINERvA/CC1pi1p/Tpi/correlation.csv”);

FinaliseSampleSettings();

// Scaling Setup ---
fScaleFactor = GetEventHistogram()->Integral("width")

* double(1E-38)
/ double(fNEvents)
/ TotalIntegratedFlux("width");

Data Setup

• To setup the data we now need to initialise the histogram

• Lots of helper functions to support this. Look inside
src/FitBase/Measurement1D.h for some.

07/09/2017 Patrick Stowell 54

Measurement1D::SetDataFromTextFile(std::string path_to_file);

virtual void SetDataFromTextFile(std::string datafile);
virtual void SetDataFromRootFile(std::string inhistfile, std::string histname);
virtual void SetPoissonErrors();

virtual void ScaleData(double scale);
virtual void ScaleDataErrors(double scale);

Covariance Setup

• Similar functions to load in correlation matrices.

• In general I recommend using the SetCorrelation functions.
• The other SetCovar functions assume units of 1E-76 on the

entries, so it gets a bit confusing sometimes. Working to fix this

07/09/2017 Patrick Stowell 55

Measurement1D::SetCorrelationFromTextFile(std::string path_to_file);

virtual void SetCovarFromTextFile(std::string covfile, int dim = -1);
virtual void SetCovarFromMultipleTextFiles(std::string covfiles, int dim = -1);
virtual void SetCovarFromRootFile(std::string covfile, std::string histname="");

virtual void SetCorrelationFromTextFile(std::string covfile, int dim = -1);
virtual void SetCorrelationFromRootFile(std::string covfile, std::string histname="");

virtual void ScaleCovar(double scale);

Data/Covar Setup

• Data text file and correlations are already in the format
NUISANCE assumes and we have set them in fSampleSettings.

• Just pass the SetDataFromTextFile function our data input and
it will automatically load in the data histogram for us.

• SetCorrelation function will take the errors on our newly
created data histogram and multiply them by the correlations
to make a covariance.

07/09/2017 Patrick Stowell 56

// Plot Setup ---
SetDataFromTextFile(fSettings.GetDataInput());
SetCorrelationFromTextFile(fSettings.GetCovarInput());

FinaliseMeasurement

• At the end of each constructor we have to call
FinaliseMeasurement.

• This runs a load of extra checks on what has been setup.
• Importantly it clones the data histogram in fDataHist and

uses it create the MC Histogram fMCHist.

07/09/2017 Patrick Stowell 57

// Final setup ---
FinaliseMeasurement();

Our Constructor

07/09/2017 Patrick Stowell 58

MINERvA_CC1pip1p_XSec_1DTpi_nu::MINERvA_CC1pip1p_XSec_1DTpi_nu(nuiskey samplekey) {
// --
std::string descrip = "MINERvA_CC1pip1p_XSec_1DTpi_nu" \

”\n Target: CH” \
”\n Flux: MINERvA FHC numu” \
”\n Signal: CC1pi+/- 1p W<1.4 theta<20deg”;

fSettings = LoadSampleSettings(samplekey);
fSettings.SetDescription(descrip);
fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");
fSettings.SetEnuRange(0.0, 100.0);
fSettings.DefineAllowedTargets("C,H");
fSettings.DefineAllowedSpecies("numu");
fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");
fSettings.SetDataInput(FitPar::GetDataBase() + "/MINERvA/CC1pip1p/Tpi/data.csv");
fSettings.SetCovarInput(FitPar::GetDataBase() + ”/MINERvA/CC1pip1p/Tpi/correlation.csv”);
FinaliseSampleSettings();
// Scaling Setup ---
fScaleFactor = GetEventHistogram()->Integral("width")

* double(1E-38)
/ double(fNEvents)
/ TotalIntegratedFlux("width");

// Plot Setup ---
SetDataFromTextFile(fSettings.GetDataInput());
SetCorrelationFromTextFile(fSettings.GetCovarInput());
// Final setup ---
FinaliseMeasurement();

}

Checklist

• Constructor should now be finished.
• If you want, you can go back to your build folder and make

install to check it builds.

07/09/2017 Patrick Stowell 59

Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor 👍

FillEventVariables
IsSignal

SampleList.cxx

FillEventVariables

• Now have to define what we actually want to fill in our
histogram.

• FitEvent class is passed to FillEventVariables, so the definition
should pull variables out of that event class.

• Data distribution is the final state pion kinetic energy so we
need a way to calculate that from the particle stack.

• Warning: FillEventVariables is called for all events not just
signal, so we need to first explicitly check we have a pion.

07/09/2017 Patrick Stowell 60

FitEvent

• FitEvent class is a common interface that contains a list of all
particles (initial, intermediate, final) in the event.

• For most analyses this is all you should need.

• It is possible to get the generator event if needed, but you can
figure that out on your own as it is strongly discouraged!

• To look at possible helper functions, lets look inside
src/InputHandler/FitEvent.h

07/09/2017 Patrick Stowell 61

FitEvent Functions
• Number of functions in the header. Mostly self explanatory.

• Few things to point out :
• HM means highest momentum.
• FS means Final State
• IS means Initial State

• We want the only pion in the event, so will need the functions

07/09/2017 Patrick Stowell 62

FitEvent::NumFSParticle(int pdg)
FitEvent::GetHMFSParticle(int pdg)

…
inline bool HasFSNuMuon (void) const { return HasFSParticle(14); };
…
inline int NumFSProton (void) const { return NumFSParticle(2212); };
…
inline FitParticle* GetHMFSPiPlus (void) { return GetHMFSParticle(211); };
…

FitParticle
• FitEvent can return FitParticle object pointers.
• If a particle is not found by the helper functions (e.g.

GetHMFS) then you will get a NULL pointer.

• FitParticle objects simply contain:
• fP : 4-momentum,
• fPID : Pdg code
• fStatus : Status of the particle.

• Most important status codes are (kInitialState, kFinalState)

• So to get the TLorentzVector we can do

07/09/2017 Patrick Stowell 63

TLorentzVector ppi = event->GetHMFSParticle(211)->fP;

Particle Groups

• Some of the helper functions also let you pass in multiple
PDG’s and it will group them.

• e.g. Get Total FS Proton and FS Neutron count

• e.g. Get Highest Momentum FS Charged Pion

07/09/2017 Patrick Stowell 64

int nuclPDG[] = {2212, 2112};
int nnucl = event->NumFSParticle(nuclPDG);

int piPDG[] = {211, -211};
FitParticle* hmfspion = event->GetHMFSParticle(piPDG);

Initial Checks

• Can’t calculate Tpi if there is no pion, so first we need to check
that the pion exists.

• If it doesn’t we just return the function.

07/09/2017 Patrick Stowell 65

void MINERvA_CC1pip_XSec_1DTpi_nu::FillEventVariables(FitEvent *event) {

int piPDG[] = {211, -211};

// Check we have a pion to get TPi
if (event->NumFSParticle(piPDG) == 0) return;

// Assign X
fXVar = 0.0;

return;
};

Assigning X

• Can calculate Tpi from the LorentzVector

• Once we have Tpi we need to explicitly tell the sample to treat
Tpi as the X-variable to be binned.

• Similar fYVar must also be set for 2D samples.

07/09/2017 Patrick Stowell 66

TLorentzVector Ppip = event->GetHMFSParticle(piPDG)->fP;
double Tpi = Ppip.E() – Ppip.Mag();

// Assign Tpi to be binned in X
fXVar = Tpi;

FillEventVariables

• Using the functions shown before our function is now:

07/09/2017 Patrick Stowell 67

void MINERvA_CC1pip_XSec_1DTpi_nu::FillEventVariables(FitEvent *event) {

int piPDG[] = {211, -211};

// Check we have a pion to get TPi
if (event->NumFSParticle(piPDG) == 0) return;

// Get Tpi Calculated
TLorentzVector Ppip = event->GetHMFSParticle(piPDG)->fP;
double Tpi = Ppip.E() – Ppip.Mag();

// Assign Tpi to be binned in X
fXVar = Tpi;

return;
};

Checklist

• Over half way through!
• If you want, you can an go back to your build folder and make

install to check it builds.

07/09/2017 Patrick Stowell 68

Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor 👍

FillEventVariables 👍

IsSignal
SampleList.cxx

IsSignal

• Signal definition should use similar functions to those used in
FillEventVariables.

• Extract everything you need from the FitEvent.

• Aim of the function is to return False if an event doesn’t pass
our given signal selection.

07/09/2017 Patrick Stowell 69

Cut
1 Initial State Muon Neutrino
2 Final State Muon (CC)
3 Final State pi+ or pi-
4 >0 Final State Protons
5 Muon Theta Angle < 20 degrees
6 Wexp < 1.4 GeV

Standard Signals

• A few standard signal cuts already defined in
src/Utils/SignalDef.cxx

• Ones there are usually measurement independent so look there
for things like CC0pi/CCINC/etc.

• Some experimental folders have their own too
src/MINERvA/MINERvA_SignalDef.cxx

07/09/2017 Patrick Stowell 70

bool isCC1pip_MINERvA(FitEvent *event, double EnuMin, double EnuMax, bool isRestricted=false);
bool isCCNpip_MINERvA(FitEvent *event, double EnuMin, double EnuMax, bool isRestricted=false);
...

bool isCCINC(FitEvent *event, int nuPDG, double EnuMin = 0, double EnuMax = 0);
bool isNCINC(FitEvent *event, int nuPDG, double EnuMin = 0, double EnuMax = 0);
bool isCC0pi(FitEvent *event, int nuPDG, double EnuMin = 0, double EnuMax = 0);
...

isCCINC
• SignalDef::isCCINC is relevant for a lot of CC samples

• Applies a few cuts at once:
• Is the event Charged Current
• Is Neutrino the correct PDG
• Is the Neutrino Energy within our Enu range

• Handles cuts 1 and 2 in our selection J

07/09/2017 Patrick Stowell 71

bool SignalDef::isCCINC(FitEvent *event,
int nuPDG,
double EnuMin,
double EnuMax)

if (!SignalDef::isCCINC(event, 14, EnuMin, EnuMax)) return false;

Enu ranges accesible in the
class with these objects

Number of Particles

• NumFSParticle functions returns final state particle counts.

• Code below covers cuts 2, 3, and 4

07/09/2017 Patrick Stowell 72

if (event->NumFSLeptons() != 1) return false;

int piPDG[] = {211, -211};
if (event->NumFSParticle(piPDG) != 1) return false;

if (event->NumFSProton() < 1) return false;

Kinematic Cuts : Theta

• Try to put cuts that require calculation at the end after the
simpler multiplicity cuts to improve efficiency.

• Need to calculate theta and W to cut on them.

• Phase space cut just requires muon and neutrino. So can grab
their vectors and calculate the angle quite easily.

• Following code handles cut 5

07/09/2017 Patrick Stowell 73

TLorentzVector pnu = event->GetHMISParticle(14)->fP;
TLorentzVector pmu = event->GetHMFSParticle(13)->fP;

double th_nu_mu = pmu.Vect().Angle(pnu.Vect()) * 180. / M_PI;
if (th_nu_mu >= 20) return false;

Kinematic Cuts : W
• Some cuts may be more complicated, but can usually be

defined from initial and final state particles.
• If they require extra generator information, they are suspcious!

• Functions to calculate some other kinematic quantities can be
found inside src/Utils/FitUtils.cxx

• FitUtils::Wrec calculates us the experimental W for the event
which we can use in for cut 6

07/09/2017 Patrick Stowell 74

double hadMass = FitUtils::Wrec(pnu, pmu);
if (hadMass > 1400.0) return false;

double Wrec(TLorentzVector pnu, TLorentzVector pmu);
double th(TLorentzVector part, TLorentzVector part2);
double Q2QErec(double pl, double costh, double binding, bool neutrin);
double MpPi(TLorentzVector pp, TLorentzVector ppi);

A final Signal Cut
• Piecing all that together gives us:

07/09/2017 Patrick Stowell 75

bool MINERvA_CC1pip1p_XSec_1DTpi_nu::isSignal(FitEvent *event){

// First, make sure it's CCINC
if (!SignalDef::isCCINC(event, 14, EnuMin, EnuMax)) return false;

// Check only one FS lepton
if (event->NumFSLeptons() != 1) return false;

// Check for only one pi+ or pi-
int piPDG[] = {211, -211};
if (event->NumFSParticle(piPDG) != 1) return false;

// Require at least one proton
if (event->NumFSProton() < 1) return false;

// Restricted angle theta_mu < 20 degrees
TLorentzVector pnu = event->GetHMISParticle(14)->fP;
TLorentzVector pmu = event->GetHMFSParticle(13)->fP;
double th_nu_mu = FitUtils::th(pmu, pnu) * 180. / M_PI;
if (th_nu_mu >= 20) return false;

// W experimental < 1400.0
double hadMass = FitUtils::Wrec(pnu, pmu);
if (hadMass > 1400.0) return false;

}

Checklist

• If you want, you can go back to your build folder and make
install to check it builds.

07/09/2017 Patrick Stowell 76

Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor 👍

FillEventVariables 👍

IsSignal 👍

SampleList.cxx

FCN
• Now that our sample is finished and builds successfully we have

to add it the SampleList.cxx file.

• First include our header file at the top of SampleList.cxx

• Then slot in another ugly if statement entry like follows

• Remember to make sure your name doesn’t conflict with
another samples name!

07/09/2017 Patrick Stowell 77

#include "SampleList.h”
#include "MINERvA_CC1pip1p_XSec_1DTpi_nu.h"

} else if (!name.compare("MINERvA_CC1pip1p_XSec_1DTpi_nu")){
return (new MINERvA_CC1pip1p_XSec_1DTpi_nu(samplekey));

Checklist

• Now we definitely have to go back to our build folder and run
“make install” again to build the comparisons application.

07/09/2017 Patrick Stowell 78

Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor 👍

FillEventVariables 👍

IsSignal 👍

SampleList.cxx 👍

Ready to run

• MC files can be found here (non-MINERvA people see backup)

• Edit a card file so the sample name corresponds to whatever we
put in the ugly if statement in the SampleList.cxx file.

• Then run it as normal.

07/09/2017 Patrick Stowell 79

<nuisance>
<sample name=“MINERvA_CC1pip1p_XSec_1DTpi_nu”

input=“GENIE:genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root”
</nuisance>

$ ls /minerva/data/users/jstowell/NUISTUTORIAL/MC/

Final MC

• Should produce you a nice MC plot similar to the one below.

07/09/2017 Patrick Stowell 80

Generator Comparisons

• Class should work with any generator NUISANCE supports

07/09/2017 Patrick Stowell 81

Usual Issues

• Nuiscomp says no sample found:
• Make sure you have put the correct name in your cardfile

and you rebuilt nuisance after you edited SampleList.cxx

• My data histograms are empty (or data file is Zombie):
• Did you make sure to put the data files in the database?

• My Likelihood calculations are crazy:
• Check the covariance is in the correct units and has the

same dimensions as the data.
• This can also be an issue with the covariance itself…

07/09/2017 Patrick Stowell 82

Usual Issues

• My MC Histograms are empty:

• First add debug logging statements to IsSignal to check
that some events make it to the return true stage.

• If none make it to this stage then your signal definitions
could be incorrect.

07/09/2017 Patrick Stowell 83

...
if (hadMass > 1400.0) return false;

// DEBUGGING
ERR(WRN) << “Found a good signal event!” << std::endl;

return true;
}

Usual Issues

• My MC Histograms are empty:

• Second add debug statements to FillEventVariables to check
fXVar is set correctly.

• This usually happens if fXVar is not in the correct units
(e.g. GeV instead of MeV)

07/09/2017 Patrick Stowell 84

// Assign Tpi to be binned in X
fXVar = Tpi;

// LOGGING
ERR(WRN) << “fXVar has been set to : “ << fXVar << std::endl;

Summary

• Hopefully if you have reached this point you got a working
sample.

• There are further examples inside the other folders in the
nuisance_tutorial repo, alongside various examples throughout
the code.

• If you get to a point where you have a finalized signal selection
consider putting it into nuisance to make lots of nice MC plots.

• We want as much data as possible, so email us if you ever get
stuck trying to add a new sample!

07/09/2017 Patrick Stowell 85

Backup

07/09/2017 Patrick Stowell 86

Download MC Files

• Can download MC files by running script inside git repo

07/09/2017 Patrick Stowell 87

$ cd nuisance_tutorial/mc_files/
$ source downloadfiles.sh ALL

Multiple Samples

• NUISANCE reads events from disk, and then distributes them
to relevant sample classes.

• Minimal extra overhead when loading a number of different
distributions or datasets from one MC file.

• Just add an extra sample xml entry for every dataset you care
about and NUISANCE will load them all at once.

07/09/2017 Patrick Stowell 88

<nuisance>
<!-- List of Samples -->
<sample name="MINERvA_CC1pip_XSec_1DTpi_nu"

input="GENIE:genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root" />
<sample name="MINERvA_CC1pip_XSec_1Dth_nu"

input="GENIE:genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root" />
</nuisance>

Multiple Sample Output

• Run this joint sample in a similar fashion.

• Likelihoods for both samples added uncorrelated, to form a
joint total likelihood for the comparison.

• Two sets of histograms also now contained in the output file.

07/09/2017 Patrick Stowell 89

$ nuiscomp –c samplecc1pip.xml –o samplecc1pip.root –n 100000

[LOG Minmzr]:- Getting likelihoods... : -2logL
[LOG Minmzr]:- -> MINERvA_CC1pip_XSec_1DTpi_nu : 44.6792/7
[LOG Minmzr]:- -> MINERvA_CC1pip_XSec_1Dth_nu : 260.352/13
[LOG Fitter]: Likelihood for JointFCN: 305.031

gevgen_nuisance
• Custom gevgen app can be used to generate GENIE events

specially for NUISANCE.
• Automatically saves required histograms into output file.
• Can also run with both combined targets and combined beams

(i.e. nue+nuebar)

07/09/2017 Patrick Stowell 90

gevgen_nuisance [-h]
[-r run#]
 -n nev
-e energy (or energy range)

-p neutrino_pdg
-t target_pdg [DIFFERENT TO GENIE’s]
-f flux_description [DIFFERENT TO GENIE’s]
[-o outfile_name]
[-w]
 [--seed random_number_seed]
[--cross-sections xml_file]
[--event-generator-list list_name]
[--message-thresholds xml_file]
[--unphysical-event-mask mask]
[--event-record-print-level level]
[--mc-job-status-refresh-rate rate]
[--cache-file root_file]

gevgen_nuisance

• Options are similar to the standard gevgen app, but target and
flux are different (and easier!)

• Only works with GENIE 2.12 and later!

• To build this application, build NUISANCE with the following
flags

07/09/2017 Patrick Stowell 91

gevgen_nuisance –f MINERvA_fhc_numu –t CH <other arguments>

cmake –DUSE_GENIE=1 –DBUILD_GEVGEN=1

gevgen_nuisance (2)
• Possible to generate events with the standard gevgen

application and “prepare” them for NUISANCE if needed.

• Example generate MINERvA CH events and prepare them.

• Once the sample is made, need to prepare it using our
PrepareGENIE application (note the target def is different!)

07/09/2017 Patrick Stowell 92

gevgen –f minerva_flux.root,numu –e 0.0,100.0
-t 1000060120[0.9231],1000010010[0.0769]
-r 1 –n 2500000 –-cross-sections gxspl.gz

PrepareGENIE -i gntp.ghep.1.root –f minerva_flux.root,numu
–t 1000060120,1000010010

Target is not fractional! For CH2 use
1000060120,1000010010,1000010010

Have to pass in the
same flux again too..

PrepareNuWro

• NuWro events generated with nuwro-reweight (our special
branch) automatically saves the information needed.

• Otherwise, there is another PrepareNuWro app.

07/09/2017 Patrick Stowell 93

[USAGE]: PrepareNuwro [-h]
[-f]
[-F <FluxRootFile>,<FluxHistName>]
[-o output.root]
inputfile.root [file2.root ...]

-h : Print this message.
-f : Pass -f argument to '$ hadd' invocation.
-F : Read input flux from input descriptor.
-o : Write full output to a new file.

Configs
• NUISANCE keeps a global configuration list accessible

throughout the code.

• Defaults kept in $NUISANCE/parameters/config.xml

• These can be overriden at run time in the card file or on the
command line

• Card File

• Command Line (all applications support –q)

07/09/2017 Patrick Stowell 94

<config NAME=“OVERRIDE_VALUE” />

nuiscomp –c cardfile.xml –o output.root –q NAME=OVERRIDE_VALUE

