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Introduction

• Going to focus on adding a sample into NUISANCE today.

• End result will be a sample implementation that you can load 
from a card file, using the same method we saw in the 
nuiscomp examples last week.

• Will try to cover
1. Core Sample Structure
2. Actually Adding a sample

07/09/2017 Patrick Stowell 2



Why do I care?

• Adding data into our framework gives people another way to 
easily make comparisons with your measurement.

• Rack up those citation counts!

• We also use the same framework for model comparisons/testing 
on T2K, so very useful if you ever find yourself having to 
implement a generator model /reweight dial.
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Processing Structure

07/09/2017 Patrick Stowell 4



Building NUISANCE

• NUISANCE requires a few external dependencies to build
• ROOT
• Any generator and its dependencies.

• So if we want GENIE we have to build GENIESupport aswell…

• Some build notes are on our site:
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https://nuisance.hepforge.org/nuisanceinstallation.html



Building NUISANCE (2)

• If you are on a FNAL gpvm you can use /cvmfs/

• Should work for everyone on a FNAL gpvm, let me know if it 
fails!

• If you are not on a gpvm you will have to already have your 
own installation of NUISANCE on your computer.
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git clone http://nuisance.hepforge.org/git/nuisance.git
cd nuisance_tutorial/cvmfsbuild/
source nuisance-dependencies.sh
source nuisance-checkout.sh



Processing Structure
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Requesting a sample

• Saw last week that we can request different data comparisons 
in NUISANCE by specifying the sample name in a card file.

• What is actually happening when we put a sample here?

07/09/2017 Patrick Stowell 8

<nuisance>  
<!-- List of Samples -->  
<sample name="MINERvA_CCQE_XSec_1DQ2_nu"

input="GENIE:genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root" />
</nuisance>



Routines Classes
• The card file you read in gets passed to a routines class for the 

given application

• Routines parse your options and handle the overall running of 
whatever you are trying to do.

• First thing they usually do is setup a JointFCN.
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Application Routines Class
nuiscomp src/Routines/ComparisonRoutines.cxx
nuismin src/Routines/MinimiserRoutines.cxx
nuissyst src/Routines/SystematicRoutines.cxx



JointFCN
• JointFCN is just a list of all samples/priors loaded that allows 

you to easily process all of them as efficiently as possible.

• When created it checks the configuration for a list of sample 
XML entries and tries to create a sample for each one.

• Where an ugly string comparison list instantiates the class. 
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src/FCN/JointFCN.cxx :: LoadSamples
MeasurementBase* NewLoadedSample = SampleUtils::CreateSample(key);

src/FCN/SampleList.cxx :: CreateSample
...
} else if (!name.compare("MINERvA_CC0pi_XSec_1DThetae_nue")) {    
return (new MINERvA_CC0pi_XSec_1DThetae_nue(samplekey));

...



Event Loop

• When JointFCN->ReconfigureSamples() is called, the JointFCN
loops over all the samples it has loaded and processes their 
events to produce the MC curves.

• Sample class implementations contain all information required 
to figure out which events are signal and what should be filled.
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[LOG Reconf]:--- Starting Reconfigure iter. 0
[LOG Reconf]:--- Event Manager Reconfigure
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 0 events. [M, W] = [13, 1]
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 20000 events. [M, W] = [13, 1]
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 40000 events. [M, W] = [13, 1]
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 60000 events. [M, W] = [26, 1]
[LOG Reconf]:--- MINERvA_CC1pip1p_XSec_1DTpi_nu : Processed 80000 events. [M, W] = [1, 1]
[LOG Reconf]:--- Filled 4104 signal events.
[LOG Reconf]:--- Time taken ReconfigureUsingManager() : 21



Simplified Event Loop
• Every time Reconfigure is called the following steps usually 

happen for each sample.
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MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

This is not the actual code, 
but gives an idea of what 

functions are called inside the 
Measurement classes



Simplified Event Loop
• Every time Reconfigure is called the following steps usually 

happen for each sample.
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MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Reset all MC histograms



Simplified Event Loop
• Every time Reconfigure is called the following steps usually 

happen for each sample.
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MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Gets all weights for parameters 
you gave to NUISANCE



Simplified Event Loop
• Every time Reconfigure is called the following steps usually 

happen for each sample.
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MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Calculates any kinematics inside 
the sample ready to be filled

FillEventVariables called 
first so that extra 

background plots can 
also be created if 

needed.



Simplified Event Loop
• Every time Reconfigure is called the following steps usually 

happen for each sample.
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MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Checks if the standard 
histograms should 
actually be filled



Simplified Event Loop
• Every time Reconfigure is called the following steps usually 

happen for each sample.
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MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Actually fill the variables 
we calculated before into 

the histograms



Simplified Event Loop
• Every time Reconfigure is called the following steps usually 

happen for each sample.
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MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();

Take the weighted event 
spectrum and calculate a 
predicted cross-section.



Simplified Event Loop
• Every time Reconfigure is called the following steps usually 

happen for each sample.
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MeasurementBase::ResetAll();

for (event in MeasurementBase::GetInput()){

weight = FitWeight::CalcWeight(event);

MeasurementBase::FillEventVariables(event);

if (MeasurementBase::IsSignal(event)){
MeasurementBase::FillHistograms(rwweight);

}
}

MeasurementBase::ConvertEventRates()

Chi2 = MeasurementBase::GetLikelihood();
Compare MC to data 
using covariance, etc.



Adding Data

• To add your data into the existing processing loop you have to 
add your own a C++ sample class implementation

• Main design focus is differential cross-sections in 1D and 2D.

• Lots of existing samples for rare cases in the code, and we are 
constantly thinking of ways to make handling them easier.

• If you have issues, or you think your sample is more 
complicated let us know and we can help with suggestions on 
how to implement it.
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Adding a Sample
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Problems
• Produced a fake data distribution which can be downloaded 

from the following repo. 

• Data files are located in 

• Only one problem to do today
Add MINERvA CC1pi1p 1DTpi data

• Methods to add 2D data are very similar. More complex things 
like ratios/cross-correlations/smearing are also possible, but not 
covered today sorry.
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nuisance_tutorial/tutorial050917_addingsamples/data/

$ git clone https://github.com/NUISANCEMC/nuisance_tutorial.git



Templates
• Sample templates are contained inside the folder

• 3 different types:
• templated1D_bare : Just the required functions, completely 

empty. Write everything manually.
• templated1D_brief : Brief notes on the required order to be 

followed in each function.
• templated1D_verb : Verbose notes on what each stage of 

the file is actually doing. 

• Will post verbose solution to following directory afterwards
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nuisance_tutorial/tutorial050917_addingsamples/solutions/

nuisance_tutorial/tutorial050917_addingsamples/templates/



Cheat Codes

• Data is fake, and has been generated from genie Default. 
• Errors are statistical, from running over 50000 events

• Correlation matrix is just diagonal to keep things simple.
• If you had a non-diagonal covariance the functionality is exactly 

the same.

• Fake data definition means you can check your data with 
GENIE Default first to see that you get a chi2 of ~0.0.

• Then compare other models and higher stats to it for extra 
validation.
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MINERvA CC1pip1p 1DTpi
• Data distribution given as a text file:
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# Cut
1 Initial State Muon Neutrino
2 Final State Muon (CC)
3 Final State pi+ or pi-
4 >0 Final State Protons
5 Muon Theta Angle < 20 degrees
6 Wexp < 1.4 GeV

Bin 
Edges

Central 
Value

Bin 
Error

Last line says the 
top bin edge

Alongside our data we need a list of 
cuts to apply to MC

0.0 5.5742e-42 3.0825e-43
50.0 8.3869e-42 3.7811e-43
100.0 6.5629e-42 3.3448e-43
150.0 5.2418e-42 2.1137e-43
250.0 3.6650e-42 2.4995e-43
300.0 2.9490e-42 2.2421e-43
350.0 1.5512e-42 1.6261e-43
400.0 1.2785e-42 1.4763e-43
450.0 5.7958e-43 9.9397e-44
500.0 0.0        0.0



MINERvA CC1pip1p 1DTpi
• Have a corresponding diagonal correlation matrix

• Also included information on target/flux. Should already have 
some MC files from last week so we will use those instead.
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1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  0.0  1.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  0.0  0.0  1.0  0.0  0.0  0.0  0.0  0.0
0.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0  0.0
0.0  0.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0
0.0  0.0  0.0  0.0  0.0  0.0  1.0  0.0  0.0
0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0  0.0
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0

genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root



Checklist

• First thing we have to do is add a new class
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Requirement Finished
Class File

CMakeLists.txt
Constructor

FillEventVariables
IsSignal

SampleList.cxx



Template Files

• We need to make a new C++ file inside the src directory.

• To avoid writing from scratch, copy the files inside your tutorial 
folder to the nuisance src directory.

• Rename the class files to something sensible at the same time.

NAMING FORMAT: EXPERIMENT_CHANNEL_TYPE_DISTRIBUION_EXTRAIDs
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$ cp Template1D_verbose.h   $NUISANCE/src/MINERvA/MINERvA_CC1pip1p_XSec_1DTpi_nu.h
$ cp Template1D_verbose.cxx $NUISANCE/src/MINERvA/MINERvA_CC1pip1p_XSec_1DTpi_nu.cxx



Renaming
• Then need to rename the functions inside the template class to 

our new class name.

• Can do manually in each file or just use sed

• Should end up with something like the file below
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$ sed -e “s/tutorial1D/MINERvA_CC1pip1p_XSec_1DTpi_nu/g” ./MINERvA_CC1pip1p_XSec_1DTpi* 

MINERvA_CC1pip1p_XSec_1DTpi_nu.h
#ifndef MINERvA_CC1pip1p_XSec_1DTpi_nu_H_SEEN
#define MINERvA_CC1pip1p_XSec_1DTpi_nu_H_SEEN
#include "Measurement1D.h”
class MINERvA_CC1pip1p_XSec_1DTpi_nu : public Measurement1D {

public:  
// Main Constructor  
MINERvA_CC1pip1p_XSec_1DTpi_nu(nuiskey samplekey);

...



Checklist

• Now we need to actually register the class with CMAKE.
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Requirement Finished
Class File 👍

CMakeLists.txt
Constructor

FillEventVariables
IsSignal

SampleList.cxx



CMakeLists
• If you renamed the file correctly, it should be buildable.

• To include it in the build we have to manually add it to the 
CMakeLists file in this folder.
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$NUISANCE/src/MINERvA/CMakeLists.txt
set(IMPLFILES
MINERvA_CC1pip1p_XSec_1DTpi_nu.cxx

MINERvA_CCQE_XSec_1DQ2_antinu.cxx
…

set(HEADERFILES
MINERvA_CC1pip1p_XSec_1DTpi_nu.h

MINERvA_CCQE_XSec_1DQ2_antinu.h
…

Have to add the .cxx file to the 
IMPLFILES list and the .h file to 
the HEADERFILES list.



Rebuilding

• With the CMakeLists.txt file updated, now go into the 
NUISANCE build directory and make the code again.
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cd $NUISANCE/builds/genie2126-nuwrorw/
make install

...
Scanning dependencies of target exp
[ 28%] Building CXX object 
src/MINERvA/CMakeFiles/expMINERvA.dir/MINERvA_CC1pip1p_XSec_1DTpi_nu.cxx.o
MINERvALinking CXX static library libexpMINERvA.a
...
[100%] Built target SignalDefTests

This directory is wherever you 
built nuisance using cmake, so 
could be different to mine.



Checklist

• If it built successfully, great! But the template is just a 
placeholder, we need to add data and cuts to it.
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Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor
FillEventVariables

IsSignal
SampleList.cxx



Functions

• If we look inside the header file we can see the 3 functions we 
have to define.

• All samples need at least these 3 functions defined to work.
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// Main Constructor where we define what data we need to setup  
// and sort out scaling factors.  
MINERvA_CC1pip1p_XSec_1DTpi_nu(nuiskey samplekey);  

// Function to calculate event kinematics we need when binning.  
// Called for ALL events  
void FillEventVariables(FitEvent *event);  

// Function to figure out whether an event  
// is a signal event for this sample.  
bool isSignal(FitEvent *event);



Checklist

• Lets start with the constructor

• Constructors are a little bit awkward to setup until you are 
familiar with the structure.
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Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor
FillEventVariables

IsSignal
SampleList.cxx



Constructor

• Has 5 main sections that need to go in order.

1. LoadSampleSettings

2. FinaliseSampleSettings

3. ScalingFactor

4. PlotSetup

5. Finalise
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Reads the XML entry for this 
sample from the card file

Sets any defaults that weren’t 
provided in the card file

Calculates factor needed to get a 
cross-section out

Initialise data/covariance 
histograms.

Final setup, clones data histogram 
to make standard MC histograms.



Load Sample Settings
• When a sample is created the XML key you used to create it is 

passed to the sample so that it can read all the options.

• Options accessible at any time in the sample by reading the 
fSettings object (src/FitBase/SampleSettings.cxx)

• E.g. Add some extra flag in a specific sample

• Which can be set in the card file
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src/MINERvA/MINERvA_CC1pip1p_Xsec_1DTpi_nu.cxx
fWCutValue = fSettings.GetD(“WCut”);

XML cardfile
<sample name=“MINERvA_CC1pip1p_Xsec_1DTpi_nu” WCut=“1.4” ... />



Load Sample Settings

• LoadSampleSettings should be called before any proper settings 
are setup.

• Put this at the top of our constructor
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std::string descrip = "MINERvA_CC1pip1p_XSec_1DTpi_nu" \
”\n Target: CH” \
”\n Flux: MINERvA FHC numu” \
”\n Signal: CC1pi+/- 1p W<1.4 theta<20deg”;  

fSettings = LoadSampleSettings(samplekey);
fSettings.SetDescription(descrip);



Sample Settings
• Users can pass different inputs to SampleSettings but its 

annoying if they have to pass them everytime they write a 
cardfile

• Better if we setup some defaults aswell, so if a specific option 
isn’t provided in the card, NUISANCE knows what to use.
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fSettings = LoadSampleSettings(samplekey);  

fSettings.SetDescription(descrip);  
fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");  
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");  
fSettings.SetEnuRange(0.0, 100.0);  
fSettings.DefineAllowedTargets("C,H");  
fSettings.DefineAllowedSpecies("numu");
fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");  

fSettings.SetDataInput( FitPar::GetDataBase()+"/MINERvA/CC1pip1p/Tpi/data.csv");      
fSettings.SetCovarInput( FitPar::GetDataBase()+”/MINERvA/CC1pip1p/Tpi/correlation.csv”);

FinaliseSampleSettings();

Put all your defaults between Load 
and FinaliseSampleSettings.

The ones shown here are the usual 
ones included.



SampleSettings : SetTitle

• Pretty self explanatory, set the Title, X, Y, and Z titles for the 
standard data and MC histograms.

• In our case these will be:
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fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");  
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");



SampleSettings : EnuRange

• EnuCuts have to be handled specially by NUISANCE because 
they can affect the scaling procedure.

• If your analysis has a TRUE beam energy cut then place the 
cut ranges in GeV inside SetEnuRange(low,high)

• If bounded on one side, or you have no EnuCut then use your 
experimental range as the limit. (MINERvA ~0.0-100.0GeV)
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fSettings.SetEnuRange(1.5,  10.0);

fSettings.SetEnuRange(1.5, 100.0);

fSettings.SetEnuRange(0.0, 100.0);

1.5 < Enu/GeV < 10.0

Enu > 1.5 GeV

No Enu Cut



SampleSettings: Target/Beam

• Define allowed targets/beam functions list things that are 
allowed to be passed as inputs.

• We eventually plan to have automated checks, but at the 
moment these don’t actually do much…

• Good to add them anyway as it’s an extra guide for people 
using the class to make comparisons.
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fSettings.DefineAllowedTargets("C,H");  
fSettings.DefineAllowedSpecies("numu");

Allowed strings can be found 
inside src/Utils/BeamUtils.cxx
and src/Utils/TargetUtils.cxx



SampleSettings: Types
• Saw last week that we could request different ways to handle 

the likelihood in the fit (e.g. SHAPE or FREE)

• SampleSettings::SetAllowedTypes defines what is actually 
allowed to be included in the type field.

• List all allowed seperated by a slash (/). The second field 
defines what you want NUISANCE to use if ”type” not given.
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fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");

This is the usual one to use, default is 
fixed with a full covariance.

SampleSettings::SetAllowedTypes(allowed_types,
default_types);



Conflicting Types
• Some types are conflicting, e.g. trying to run a SHAPE only fit 

with a FREE floating normalization is useless.
• If you want to make NUISANCE check for this, separate all 

conflicting types with a comma (,) instead of a slash (/).

• e.g. Allow FIX, FREE, and SHAPE fits, but don’t allow both to 
be given at the same time.
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nuiscomp output

[LOG Sample]:-- Finalising Sample Settings: MINERvA_CC1pip_XSec_1DTpi_nu
[ERR FATAL ]: ERROR: Conflicting fit options provided: SHAPE/FREE
You should only supply one of these options in card file.
Aborted

Constructor
fSettings.SetAllowedTypes("FIX,FREE,SHAPE", "FIX");



SampleSettings: SetInput

• SetDataInput and SetCovarInput tell NUISANCE where the 
data sources are located.

• In our case these should point to a text or ROOT file inside the 
NUISANCE data directory $NUISANCE/data/MINERvA/

• No data is read at this point, we are just setting up the paths 
during SampleSettings::SetDataInput().

• FitPar::GetDataBase() returns data folder for you.
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SampleSettings: Input

• First we should copy our data files to the NUISANCE database

• Now our data inputs in the SampleSettings are just
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$ cd nuisance_tutorial/tutorial050917_addingsamples/data/MINERvA_CC1pip1p_XSec_1DTpi_nu
$ mkdir $NUISANCE/data/MINERvA/CC1pi1p/
$ mkdir $NUISANCE/data/MINERvA/CC1pi1p/Tpi/
$ cp ./* $NUISANCE/data/MINERvA/CC1pi1p/Tpi/

std::string base = FitPar::GetDataBase();
fSettings.SetDataInput( base+"/MINERvA/CC1pi1p/Tpi/data.csv");      
fSettings.SetCovarInput(base+”/MINERvA/CC1pi1p/Tpi/correlation.csv”);



Finalise Sample Settings

• Finalise sample settings goes through and takes all the XML 
settings already setup and sets a few different internal flags and 
objects inside the Measurement class.

• Importantly, it also creates the MC InputHandler at this point. 

• Anything handling the flux/rate/N-events has to come after 
this point if it requires access to the InputHandler.
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FinaliseSampleSettings();



Settings Implementation

• So far our SampleSettings section should look something like
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std::string descrip = "MINERvA_CC1pip1p_XSec_1DTpi_nu" \
”\n Target: CH” \
”\n Flux: MINERvA FHC numu” \
”\n Signal: CC1pi+/- 1p W<1.4 theta<20deg”;  

fSettings = LoadSampleSettings(samplekey);  

fSettings.SetDescription(descrip);  
fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");  
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");  
fSettings.SetEnuRange(0.0, 100.0);  
fSettings.DefineAllowedTargets("C,H");  
fSettings.DefineAllowedSpecies("numu");
fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");  

std::string base = FitPar::GetDataBase();
fSettings.SetDataInput( base+"/MINERvA/CC1pi1p/Tpi/data.csv");      
fSettings.SetCovarInput(base+”/MINERvA/CC1pi1p/Tpi/correlation.csv”);

FinaliseSampleSettings();



Scaling Factor

• As mentioned last week NUISANCE requires the flux and event 
rate histograms to properly normalise events.

• How does this work?
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𝑅 𝐸# = 	Φ(𝐸#)		×		𝜎(𝐸#) ×		𝑇
Flux Total Xsec splinePredicted rate 

given the flux

N-Targets



Scaling Factor Method

• Method is as follows:
1. Bin up the signal events in required distribution
2. Divide by total events to get a fractional spectrum
3. Multiply by Total Rate to get Rate for signal selection
4. Divide by flux integral, just like a normal cross-section.

• Binning signal handled by the event loop, the rest can be 
contained into a single scaling factor.
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𝐹 = 	
∫𝑅(𝐸#)
�
�

𝑁 ∫ Φ(𝐸#)
01231
0456



Scaling Factor
• Equivalent Scaling factor in NUISANCE is as follows

• The EventRate histogram is kept in units of

• So dividing the the flux integral away gets you

• If you need something else (e.g. /neutron) include extra factors 
in the fScaleFactor term.
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(10-38 cm2/nucleon) x (Flux-Histogram-Units)

fScaleFactor = GetEventHistogram()->Integral("width") \
/ double(fNEvents) 
/ TotalIntegratedFlux("width");

(10-38 cm2/nucleon)



Scaling Factor

• We want just cm2/nucleon so our factor is this.
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// Scaling Setup ---------------------------------------------------
// ScaleFactor setup for DiffXSec/cm2/Nucleon  
fScaleFactor = GetEventHistogram()->Integral("width") 

* double(1E-38) 
/ double(fNEvents) 
/ TotalIntegratedFlux("width"); 

GetEventHistogram() and 
GetFluxHistogram() return 

TH1D’s from the InputHandler

fNEvents also setup from the 
input handler during the 
FinalseSampleSettings() call.

TotalIntegratedFlux gets you 
the integral between your Enu

cut limits.



Constructor
• So now we should have the following constructor
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std::string descrip = "MINERvA_CC1pip1p_XSec_1DTpi_nu" \
”\n Target: CH” \
”\n Flux: MINERvA FHC numu” \
”\n Signal: CC1pi+/- 1p W<1.4 theta<20deg”;  

fSettings = LoadSampleSettings(samplekey);  

fSettings.SetDescription(descrip);  
fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");  
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");  
fSettings.SetEnuRange(0.0, 100.0);  
fSettings.DefineAllowedTargets("C,H");  
fSettings.DefineAllowedSpecies("numu");
fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");  

std::string base = FitPar::GetDataBase();
fSettings.SetDataInput( base+"/MINERvA/CC1pi1p/Tpi/data.csv");      
fSettings.SetCovarInput(base+”/MINERvA/CC1pi1p/Tpi/correlation.csv”);

FinaliseSampleSettings();

// Scaling Setup ---------------------------------------------------
fScaleFactor = GetEventHistogram()->Integral("width") 

* double(1E-38) 
/ double(fNEvents) 
/ TotalIntegratedFlux("width");



Data Setup

• To setup the data we now need to initialise the histogram

• Lots of helper functions to support this. Look inside 
src/FitBase/Measurement1D.h for some.
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Measurement1D::SetDataFromTextFile( std::string path_to_file );

virtual void SetDataFromTextFile(std::string datafile);
virtual void SetDataFromRootFile(std::string inhistfile, std::string histname);
virtual void SetPoissonErrors();

virtual void ScaleData(double scale);
virtual void ScaleDataErrors(double scale);



Covariance Setup

• Similar functions to load in correlation matrices.

• In general I recommend using the SetCorrelation functions.
• The other SetCovar functions assume units of 1E-76 on the 

entries, so it gets a bit confusing sometimes. Working to fix this
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Measurement1D::SetCorrelationFromTextFile( std::string path_to_file );

virtual void SetCovarFromTextFile(std::string covfile, int dim = -1);
virtual void SetCovarFromMultipleTextFiles(std::string covfiles, int dim = -1);
virtual void SetCovarFromRootFile(std::string covfile, std::string histname="");

virtual void SetCorrelationFromTextFile(std::string covfile, int dim = -1);
virtual void SetCorrelationFromRootFile(std::string covfile, std::string histname="");

virtual void ScaleCovar(double scale);



Data/Covar Setup

• Data text file and correlations are already in the format 
NUISANCE assumes and we have set them in fSampleSettings.

• Just pass the SetDataFromTextFile function our data input and 
it will automatically load in the data histogram for us.

• SetCorrelation function will take the errors on our newly 
created data histogram and multiply them by the correlations 
to make a covariance.
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// Plot Setup -------------------------------------------------------
SetDataFromTextFile( fSettings.GetDataInput() );
SetCorrelationFromTextFile( fSettings.GetCovarInput() );



FinaliseMeasurement

• At the end of each constructor we have to call 
FinaliseMeasurement.

• This runs a load of extra checks on what has been setup.
• Importantly it clones the data histogram in fDataHist and 

uses it create the MC Histogram fMCHist.
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// Final setup  ---------------------------------------------------
FinaliseMeasurement();



Our Constructor
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MINERvA_CC1pip1p_XSec_1DTpi_nu::MINERvA_CC1pip1p_XSec_1DTpi_nu(nuiskey samplekey) {
// ----------------------------------------------
std::string descrip = "MINERvA_CC1pip1p_XSec_1DTpi_nu" \

”\n Target: CH” \
”\n Flux: MINERvA FHC numu” \
”\n Signal: CC1pi+/- 1p W<1.4 theta<20deg”;  

fSettings = LoadSampleSettings(samplekey);  
fSettings.SetDescription(descrip);  
fSettings.SetTitle("MINERvA_CC1pip1p_XSec_1DTpi_nu");
fSettings.SetXTitle("T_{#pi} (MeV)");  
fSettings.SetYTitle("d#sigma/dT_{#pi} (cm^{2}/MeV/nucleon)");  
fSettings.SetEnuRange(0.0, 100.0);  
fSettings.DefineAllowedTargets("C,H");  
fSettings.DefineAllowedSpecies("numu");
fSettings.SetAllowedTypes("FIX,FREE,SHAPE/DIAG,FULL", "FIX/FULL");  
fSettings.SetDataInput( FitPar::GetDataBase() + "/MINERvA/CC1pip1p/Tpi/data.csv");      
fSettings.SetCovarInput( FitPar::GetDataBase() + ”/MINERvA/CC1pip1p/Tpi/correlation.csv”);
FinaliseSampleSettings();
// Scaling Setup ---------------------------------------------------
fScaleFactor = GetEventHistogram()->Integral("width") 

* double(1E-38) 
/ double(fNEvents) 
/ TotalIntegratedFlux("width"); 

// Plot Setup -------------------------------------------------------
SetDataFromTextFile( fSettings.GetDataInput() );
SetCorrelationFromTextFile( fSettings.GetCovarInput() );
// Final setup  ---------------------------------------------------
FinaliseMeasurement();

}



Checklist

• Constructor should now be finished. 
• If you want, you can go back to your build folder and make 

install to check it builds.
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Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor 👍

FillEventVariables
IsSignal

SampleList.cxx



FillEventVariables

• Now have to define what we actually want to fill in our 
histogram. 

• FitEvent class is passed to FillEventVariables, so the definition 
should pull variables out of that event class.

• Data distribution is the final state pion kinetic energy so we 
need a way to calculate that from the particle stack.

• Warning: FillEventVariables is called for all events not just 
signal, so we need to first explicitly check we have a pion.
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FitEvent

• FitEvent class is a common interface that contains a list of all 
particles (initial, intermediate, final) in the event.

• For most analyses this is all you should need.

• It is possible to get the generator event if needed, but you can 
figure that out on your own as it is strongly discouraged!

• To look at possible helper functions, lets look inside 
src/InputHandler/FitEvent.h
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FitEvent Functions
• Number of functions in the header. Mostly self explanatory.

• Few things to point out :
• HM means highest momentum.
• FS means Final State
• IS means Initial State

• We want the only pion in the event, so will need the functions

07/09/2017 Patrick Stowell 62

FitEvent::NumFSParticle(int pdg)
FitEvent::GetHMFSParticle(int pdg)

…
inline bool HasFSNuMuon (void) const { return HasFSParticle(14);   };
…
inline int NumFSProton (void) const { return NumFSParticle(2212); };
…
inline FitParticle* GetHMFSPiPlus (void) { return GetHMFSParticle(211);  };
…



FitParticle
• FitEvent can return FitParticle object pointers. 
• If a particle is not found by the helper functions (e.g. 

GetHMFS) then you will get a NULL pointer.

• FitParticle objects simply contain:
• fP : 4-momentum, 
• fPID : Pdg code
• fStatus : Status of the particle.

• Most important status codes are (kInitialState, kFinalState)

• So to get the TLorentzVector we can do
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TLorentzVector ppi = event->GetHMFSParticle(211)->fP;



Particle Groups

• Some of the helper functions also let you pass in multiple 
PDG’s and it will group them.

• e.g. Get Total FS Proton and FS Neutron count

• e.g. Get Highest Momentum FS Charged Pion

07/09/2017 Patrick Stowell 64

int nuclPDG[] = {2212, 2112};  
int nnucl = event->NumFSParticle(nuclPDG);

int piPDG[] = {211, -211};  
FitParticle* hmfspion = event->GetHMFSParticle(piPDG);



Initial Checks

• Can’t calculate Tpi if there is no pion, so first we need to check 
that the pion exists.

• If it doesn’t we just return the function.
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void MINERvA_CC1pip_XSec_1DTpi_nu::FillEventVariables(FitEvent *event) {  

int piPDG[] = {211, -211}; 

// Check we have a pion to get TPi
if (event->NumFSParticle(piPDG) == 0) return;  

// Assign X
fXVar = 0.0;

return;
};



Assigning X

• Can calculate Tpi from the LorentzVector

• Once we have Tpi we need to explicitly tell the sample to treat 
Tpi as the X-variable to be binned.

• Similar fYVar must also be set for 2D samples.
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TLorentzVector Ppip = event->GetHMFSParticle(piPDG)->fP; 
double Tpi = Ppip.E() – Ppip.Mag();

// Assign Tpi to be binned in X
fXVar = Tpi;  



FillEventVariables

• Using the functions shown before our function is now:
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void MINERvA_CC1pip_XSec_1DTpi_nu::FillEventVariables(FitEvent *event) {  

int piPDG[] = {211, -211}; 

// Check we have a pion to get TPi
if (event->NumFSParticle(piPDG) == 0) return;  

// Get Tpi Calculated
TLorentzVector Ppip = event->GetHMFSParticle(piPDG)->fP; 
double Tpi = Ppip.E() – Ppip.Mag();

// Assign Tpi to be binned in X
fXVar = Tpi;  

return;
};



Checklist

• Over half way through!
• If you want, you can an go back to your build folder and make 

install to check it builds.
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Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor 👍

FillEventVariables 👍

IsSignal
SampleList.cxx



IsSignal

• Signal definition should use similar functions to those used in 
FillEventVariables. 

• Extract everything you need from the FitEvent.

• Aim of the function is to return False if an event doesn’t pass 
our given signal selection.
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# Cut
1 Initial State Muon Neutrino
2 Final State Muon (CC)
3 Final State pi+ or pi-
4 >0 Final State Protons
5 Muon Theta Angle < 20 degrees
6 Wexp < 1.4 GeV



Standard Signals

• A few standard signal cuts already defined in 
src/Utils/SignalDef.cxx

• Ones there are usually measurement independent so look there 
for things like CC0pi/CCINC/etc.

• Some experimental folders have their own too 
src/MINERvA/MINERvA_SignalDef.cxx
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bool isCC1pip_MINERvA(FitEvent *event, double EnuMin, double EnuMax, bool isRestricted=false);
bool isCCNpip_MINERvA(FitEvent *event, double EnuMin, double EnuMax, bool isRestricted=false);
...

bool isCCINC(FitEvent *event, int nuPDG, double EnuMin = 0, double EnuMax = 0);
bool isNCINC(FitEvent *event, int nuPDG, double EnuMin = 0, double EnuMax = 0);
bool isCC0pi(FitEvent *event, int nuPDG, double EnuMin = 0, double EnuMax = 0);
...



isCCINC
• SignalDef::isCCINC is relevant for a lot of CC samples

• Applies a few cuts at once:
• Is the event Charged Current
• Is Neutrino the correct PDG
• Is the Neutrino Energy within our Enu range

• Handles cuts 1 and 2 in our selection J
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bool SignalDef::isCCINC(FitEvent *event, 
int nuPDG, 
double EnuMin, 
double EnuMax) 

if (!SignalDef::isCCINC(event, 14, EnuMin, EnuMax)) return false;

Enu ranges accesible in the 
class with these objects



Number of Particles

• NumFSParticle functions returns final state particle counts. 

• Code below covers cuts 2, 3, and 4
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if (event->NumFSLeptons() != 1) return false;

int piPDG[] = {211, -211}; 
if (event->NumFSParticle(piPDG) != 1) return false;

if (event->NumFSProton() < 1) return false;



Kinematic Cuts : Theta

• Try to put cuts that require calculation at the end after the 
simpler multiplicity cuts to improve efficiency.

• Need to calculate theta and W to cut on them.

• Phase space cut just requires muon and neutrino. So can grab 
their vectors and calculate the angle quite easily.

• Following code handles cut 5
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TLorentzVector pnu = event->GetHMISParticle(14)->fP;  
TLorentzVector pmu = event->GetHMFSParticle(13)->fP;  

double th_nu_mu = pmu.Vect().Angle(pnu.Vect()) * 180. / M_PI;  
if (th_nu_mu >= 20) return false;



Kinematic Cuts : W
• Some cuts may be more complicated, but can usually be 

defined from initial and final state particles.
• If they require extra generator information, they are suspcious!

• Functions to calculate some other kinematic quantities can be 
found inside src/Utils/FitUtils.cxx

• FitUtils::Wrec calculates us the experimental W for the event 
which we can use in for cut 6
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double hadMass = FitUtils::Wrec(pnu, pmu);  
if (hadMass > 1400.0) return false;

double Wrec(TLorentzVector pnu, TLorentzVector pmu);
double th(TLorentzVector part, TLorentzVector part2);
double Q2QErec(double pl, double costh, double binding, bool neutrin);
double MpPi(TLorentzVector pp, TLorentzVector ppi);



A final Signal Cut
• Piecing all that together gives us:
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bool MINERvA_CC1pip1p_XSec_1DTpi_nu::isSignal(FitEvent *event){

// First, make sure it's CCINC  
if (!SignalDef::isCCINC(event, 14, EnuMin, EnuMax)) return false;  

// Check only one FS lepton  
if (event->NumFSLeptons() != 1) return false; 

// Check for only one pi+ or pi-
int piPDG[] = {211, -211}; 
if (event->NumFSParticle(piPDG) != 1) return false;  

// Require at least one proton  
if (event->NumFSProton() < 1) return false;  

// Restricted angle theta_mu < 20 degrees  
TLorentzVector pnu = event->GetHMISParticle(14)->fP;  
TLorentzVector pmu = event->GetHMFSParticle(13)->fP;  
double th_nu_mu = FitUtils::th(pmu, pnu) * 180. / M_PI;  
if (th_nu_mu >= 20) return false;  

// W experimental < 1400.0  
double hadMass = FitUtils::Wrec(pnu, pmu);  
if (hadMass > 1400.0) return false;

}



Checklist

• If you want, you can go back to your build folder and make 
install to check it builds.
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Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor 👍

FillEventVariables 👍

IsSignal 👍

SampleList.cxx



FCN
• Now that our sample is finished and builds successfully we have 

to add it the SampleList.cxx file.

• First include our header file at the top of SampleList.cxx

• Then slot in another ugly if statement entry like follows

• Remember to make sure your name doesn’t conflict with 
another samples name!
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#include "SampleList.h”
#include "MINERvA_CC1pip1p_XSec_1DTpi_nu.h"

} else if (!name.compare("MINERvA_CC1pip1p_XSec_1DTpi_nu")){       
return (new MINERvA_CC1pip1p_XSec_1DTpi_nu(samplekey));



Checklist

• Now we definitely have to go back to our build folder and run 
“make install” again to build the comparisons application.
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Requirement Finished
Class File 👍

CMakeLists.txt 👍

Constructor 👍

FillEventVariables 👍

IsSignal 👍

SampleList.cxx 👍



Ready to run

• MC files can be found here (non-MINERvA people see backup)

• Edit a card file so the sample name corresponds to whatever we 
put in the ugly if statement in the SampleList.cxx file.

• Then run it as normal.
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<nuisance>
<sample name=“MINERvA_CC1pip1p_XSec_1DTpi_nu”

input=“GENIE:genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root”
</nuisance>

$ ls /minerva/data/users/jstowell/NUISTUTORIAL/MC/



Final MC

• Should produce you a nice MC plot similar to the one below.
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Generator Comparisons

• Class should work with any generator NUISANCE supports
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Usual Issues

• Nuiscomp says no sample found:
• Make sure you have put the correct name in your cardfile

and you rebuilt nuisance after you edited SampleList.cxx

• My data histograms are empty (or data file is Zombie):
• Did you make sure to put the data files in the database?

• My Likelihood calculations are crazy:
• Check the covariance is in the correct units and has the 

same dimensions as the data.
• This can also be an issue with the covariance itself…
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Usual Issues

• My MC Histograms are empty:

• First add debug logging statements to IsSignal to check 
that some events make it to the return true stage.

• If none make it to this stage then your signal definitions 
could be incorrect.
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...
if (hadMass > 1400.0) return false;

// DEBUGGING
ERR(WRN) << “Found a good signal event!” << std::endl;

return true;
}



Usual Issues

• My MC Histograms are empty:

• Second add debug statements to FillEventVariables to check 
fXVar is set correctly. 

• This usually happens if fXVar is not in the correct units 
(e.g. GeV instead of MeV)
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// Assign Tpi to be binned in X
fXVar = Tpi;  

// LOGGING
ERR(WRN) << “fXVar has been set to : “ << fXVar << std::endl;



Summary

• Hopefully if you have reached this point you got a working 
sample.

• There are further examples inside the other folders in the 
nuisance_tutorial repo, alongside various examples throughout 
the code.

• If you get to a point where you have a finalized signal selection 
consider putting it into nuisance to make lots of nice MC plots.

• We want as much data as possible, so email us if you ever get 
stuck trying to add a new sample!
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Backup
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Download MC Files

• Can download MC files by running script inside git repo
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$ cd nuisance_tutorial/mc_files/
$ source downloadfiles.sh ALL



Multiple Samples

• NUISANCE reads events from disk, and then distributes them 
to relevant sample classes.

• Minimal extra overhead when loading a number of different 
distributions or datasets from one MC file.

• Just add an extra sample xml entry for every dataset you care 
about and NUISANCE will load them all at once.
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<nuisance>  
<!-- List of Samples -->  
<sample name="MINERvA_CC1pip_XSec_1DTpi_nu"

input="GENIE:genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root" />
<sample name="MINERvA_CC1pip_XSec_1Dth_nu"

input="GENIE:genie/gntp.Default.MINERvA_fhc_numu.CH.2500000.root" />
</nuisance>



Multiple Sample Output

• Run this joint sample in a similar fashion.

• Likelihoods for both samples added uncorrelated, to form a 
joint total likelihood for the comparison.

• Two sets of histograms also now contained in the output file.
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$ nuiscomp –c samplecc1pip.xml –o samplecc1pip.root –n 100000

[LOG Minmzr]:- Getting likelihoods...                      : -2logL
[LOG Minmzr]:- -> MINERvA_CC1pip_XSec_1DTpi_nu             : 44.6792/7
[LOG Minmzr]:- -> MINERvA_CC1pip_XSec_1Dth_nu              : 260.352/13
[LOG Fitter]: Likelihood for JointFCN:                      305.031



gevgen_nuisance
• Custom gevgen app can be used to generate GENIE events 

specially for NUISANCE. 
• Automatically saves required histograms into output file.
• Can also run with both combined targets and combined beams 

(i.e. nue+nuebar)
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gevgen_nuisance [-h]              
[-r run#]              
 -n nev
-e energy (or energy range)     

-p neutrino_pdg
-t target_pdg [DIFFERENT TO GENIE’s]
-f flux_description [DIFFERENT TO GENIE’s]
[-o outfile_name]            
[-w]             
 [--seed random_number_seed]              
[--cross-sections xml_file]              
[--event-generator-list list_name]              
[--message-thresholds xml_file]              
[--unphysical-event-mask mask]              
[--event-record-print-level level]              
[--mc-job-status-refresh-rate rate]              
[--cache-file root_file]



gevgen_nuisance

• Options are similar to the standard gevgen app, but target and 
flux are different (and easier!)

• Only works with GENIE 2.12 and later!

• To build this application, build NUISANCE with the following 
flags
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gevgen_nuisance –f MINERvA_fhc_numu –t CH  <other arguments> 

cmake –DUSE_GENIE=1 –DBUILD_GEVGEN=1 



gevgen_nuisance (2)
• Possible to generate events with the standard gevgen

application and “prepare” them for NUISANCE if needed.

• Example generate MINERvA CH events and prepare them.

• Once the sample is made, need to prepare it using our 
PrepareGENIE application (note the target def is different!)
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gevgen –f minerva_flux.root,numu –e 0.0,100.0
-t 1000060120[0.9231],1000010010[0.0769]
-r 1 –n 2500000 –-cross-sections gxspl.gz

PrepareGENIE -i gntp.ghep.1.root –f minerva_flux.root,numu
–t 1000060120,1000010010

Target is not fractional! For CH2 use 
1000060120,1000010010,1000010010

Have to pass in the 
same flux again too..



PrepareNuWro

• NuWro events generated with nuwro-reweight (our special 
branch) automatically saves the information needed.

• Otherwise, there is another PrepareNuWro app.
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[USAGE]: PrepareNuwro [-h] 
[-f]
[-F <FluxRootFile>,<FluxHistName>] 
[-o output.root] 
inputfile.root [file2.root ...]

-h : Print this message.
-f : Pass -f argument to '$ hadd' invocation.
-F : Read input flux from input descriptor.
-o : Write full output to a new file.



Configs
• NUISANCE keeps a global configuration list accessible 

throughout the code.

• Defaults kept in $NUISANCE/parameters/config.xml

• These can be overriden at run time in the card file or on the 
command line

• Card File

• Command Line (all applications support –q)
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<config NAME=“OVERRIDE_VALUE” />

nuiscomp –c cardfile.xml –o output.root –q NAME=OVERRIDE_VALUE


