How to build a MC generator

Tomasz Golan
University of Wroclaw

NuSTEC, Fermilab 2017

Monte Carlo method

Buffon's needle problem

Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor. What is the probability that the needle will lie across a line between two strips?

Georges-Louis Leclerc, Comte de Buffon 18th century

blue are good red are bad

Monte Carlo without computers

If needle length $(l)<$ lines width (t) :

$$
P=\frac{2 l}{t \pi}
$$

MC experiment was performed by Mario Lazzarini in 1901 by throwing 3408 needles:
which can be used to estimate π :

$$
\pi=\frac{2 l}{t P}
$$

$$
\pi=\frac{2 l \cdot 3408}{t \cdot \# r e d}=\frac{355}{113}=3.14159292
$$

From Solitaire to Monte Carlo method

■ Stanisław Ulam was a Polish mathematician

- He invented the Monte Carlo method while playing solitaire
- The method was used in Los Alamos, performed by ENIAC computer

- What is a probability of success in solitaire?
- Too complex for an analytical calculations
- Lets try $N=100$ times and count wins
- With $N \rightarrow \infty$ we are getting closer to correct result

Newton-Pepys problem

Monte Carlo method
Buffon's needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF
CDF discrete CDF continuous Acceptance-rejection Quasi-elastic scattering

Which of the following three propositions has the greatest chance of success?

A Six fair dice are tossed independently and at least one " 6 " appears.

B Twelve fair dice are tossed independently and at least two " 6 "s appear.

C Eighteen fair dice are tossed independently and at least three " 6 "s appear.

Newton-Pepys problem: analytical attempt

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF
CDF discrete CDF continuous Acceptance-rejection Quasi-elastic scattering

- First, lets go back to high school and calculate this analytically
- Let $p=\frac{1}{6}$ be the probability of rolling 6
- The probability of not rolling 6 is $(1-p)$

A six attempts, at least one six

$$
P_{A}=1-(1-p)^{6} \approx 0.6651
$$

B twelve attempts, at least two sixes

$$
P_{B}=1-(1-p)^{12}-\binom{12}{1} p(1-p)^{11} \approx 0.6187
$$

C eighteen attempts, at least three sixes

$$
P_{C}=1-(1-p)^{18}-\binom{18}{1} p(1-p)^{17}-\binom{18}{2} p^{2}(1-p)^{16} \approx 0.5973
$$

Newton-Pepys problem: MC attempt

■ MC attempt is just "performing the experiment", so we will be rolling dices

- Roll $6 n$ times and check if number of sixes is greater or equal n
- Repeat N times and your probability is given by:

$$
P=\frac{\text { number of successes }}{N}
$$

```
def throw (nSixes):
    \(\mathrm{n}=0\)
    for _ in range (6 * nSixes):
        if random.randint \((1,6)==6: n+=1\)
    return n >= nSixes
```

```
def MC (nSixes, nAttempts):
    n = 0
    for _ in range (nAttempts):
        n += throw (nSixes)
        return float (n) / nAttempts
```

if __name__ == "__main__":
for i in range (1, 4):
print MC (i, 1000)

Newton-Pepys problem: summary

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF
CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

■ Your MC result depends on N
■ Results for $N=100$:

$$
\begin{array}{lll}
P_{A}=0.71,0.68,0.76,0.65,0.68 & P_{A}^{\text {true }}=0.6651 \\
P_{B}=0.70,0.56,0.60,0.63,0.69 & P_{B}^{\text {true }}=0.6187 \\
P_{C}=0.62,0.62,0.53,0.57,0.62 & P_{C}^{\text {true }}=0.5973
\end{array}
$$

■ Results for $N=10^{6}$:

$$
\begin{aligned}
P_{A} & =0.6655,0.6648,0.6653,0.6662,0.6653 \\
P_{B} & =0.6188,0.6191,0.6191,0.6190,0.6182 \\
P_{C} & =0.5975,0.5979,0.5972,0.5978,0.5973
\end{aligned}
$$

- Your MC results also depends on the way how random numbers were generated

Pseudorandom number generator

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF
CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

- PRNG is an algorithm for generating a sequence of "random" numbers
- Example: middle-square method (used in ENIAC)
- take n-digit number as your seed
- square it to get $2 n$-digit number (add leading zeroes if necessary)
- n middle digits are the result and the seed for next number
- Middle-square method for $n=4$ and base seed $=1111$:

$$
\begin{aligned}
1111^{2} & =01234321 \rightarrow 2343 \\
2343^{2} & =05489649 \rightarrow 4896 \\
& \vdots \\
1111^{2} & =01234321 \rightarrow 2343
\end{aligned}
$$

Pseudorandom number generator

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF
CDF discrete CDF continuous Acceptance-rejection

Quasi-elastic scattering

- Nowadays, more sophisticated PRNGs exist, but they also suffer on some common problems:
- periodicity / different periodicity for different base seed
- nonuniformity of number distributions
- correlation of successive numbers

Fig. 1. $\operatorname{LCG}\left(2^{31}, 65539,0,1\right)$ Dimension 2: Zoom into the unit interval.

Fig. 2. $\operatorname{LCG}\left(2^{31}, 65539,0,1\right)$ Dimension 3: The 15 planes.

Mathematics and Computers in Simulations 46 (1998) 485-505

MC integration (hit-or-miss method)

Lets do the following integration using MC method:

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(\frac{1}{2} x\right) d x=\left.\frac{1}{2} \frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{4}
$$

- take a random point from the $[0,1] \times[0,1]$ square
- compare it to your $f(x)$

■ repeat N times

- count n points below the function
- you results is given by

$$
\int_{0}^{1} f(x) d x=P_{\square} \cdot \frac{n}{N}=\frac{n}{N}
$$

$\mathrm{N}=100$ (hit-or-miss)

$\mathrm{N}=1000$ (hit-or-miss)

$\mathrm{N}=10000$ (hit-or-miss)

$\mathrm{N}=100000$ (hit-or-miss)

Optimization of MC

Monte Carlo method

Buffon's needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

1

■ You want to avoid generating "red" points as they do not contribute to your integral

- You can choose any rectangle as far as it contains maximum of $f(x)$ in given range

Optimization of MC

Monte Carlo method
Buffon's needle problem
From Solitaire to MC
Newton-Pepys problem PRNG
Hit-or-miss method MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

- Lets consider the following function:

$$
F\left(Q^{2}\right)=\frac{1}{\left(1+Q^{2}\right)^{2}}
$$

more or less dipole form factor

- Integrating this function over Q^{2} is highly inefficient
- However, one can integrate by substitution to get better performance, e.g.

$$
x=\log _{10}\left(Q^{2}\right)
$$

don't forget about Jacobian

MC integration (crude method)

Lets do the following integration using MC method once again:

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(\frac{1}{2} x\right) d x=\left.\frac{1}{2} \frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{4}
$$

- One can approximate integral
$\int_{a}^{b} f(x) d x \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)$
where x_{i} is a random number from $[a, b]$
- It can be shown that crude method is more accurate
 than hit-or-miss
- We will skip the math and look at some comparisons
$N=100$ (hit-or-miss)

$N=1000$ (hit-or-miss)

$\mathrm{N}=100$ (crude)

Random numbers from probability density function

Monte Carlo method
Buffon's needle problem
From Solitaire to MC
Newton-Pepys problem PRNG
Hit-or-miss method MC integration results Optimization of MC Crude method
Methods comparison Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

- How to generate a random number from probability density function?

■ Lets consider $f(x)=3 x^{2}$
■ Which means that $x=1$ should be thrown 2 times more often than $x=\frac{\sqrt{2}}{2}$

Cumulative distribution function

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF

CDF

CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

- Cumulative distribution function of a random variable X :

$$
F(x)=P(X \leq x)
$$

Note: $0 \leq F(x) \leq 1$ for all x
■ Discrete random variable X :

$$
F(x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)
$$

where f is probability mass function (PMF)

- Continuous random variable X :

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

where f is probability density function (PDF)

Cumulative distribution function - discrete example

- Probability mass function $f(x)=3 x^{2}$
with discrete random variables X is $\left\{\sqrt{\frac{1}{30}}, \sqrt{\frac{2}{30}}, \sqrt{\frac{3}{30}}, \sqrt{\frac{4}{30}},\right\}$
- CDF is given by:

$$
F(x)=\left\{\begin{array}{lll}
\frac{1}{10} & \text { if } & x \leq \sqrt{\frac{1}{30}} \\
\frac{3}{10} & \text { if } & x \leq \sqrt{\frac{2}{30}} \\
\frac{6}{10} & \text { if } & x \leq \sqrt{\frac{3}{30}} \\
\frac{10}{10} & \text { if } & x \leq \sqrt{\frac{4}{30}}
\end{array}\right.
$$

■ With $P=1$ the random number is less or equal to $\sqrt{\frac{4}{30}}$, with $P=0.6$ the random number is less or equal $\sqrt{\frac{3}{30}} \cdots$

Cumulative distribution function - discrete example

Monte Carlo method

 Buffon's needle problem From Solitaire to MC Newton-Pepys problem PRNGHit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF

- To generate a random number from X according to $3 x^{2}$:
- generate a random number u from $[0,1]$
- if $u \leq 0.1: x=\sqrt{\frac{1}{30}}$
- else if $u \leq 0.3: x=\sqrt{\frac{2}{30}} \cdots$

■ Results for $N=10000$:

x	n	n / N	$f(x)$
$\sqrt{\frac{1}{30}}$	989	0.0989	0.1
$\sqrt{\frac{2}{30}}$	1959	0.1959	0.2
$\sqrt{\frac{3}{30}}$	2949	0.2949	0.3
$\sqrt{\frac{4}{30}}$	4103	0.4103	0.4

Cumulative distribution function - continuous example

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF

CDF discrete

- Probability density function $f(x)=3 x^{2}$
with continuous random variables X range $[0,1]$
- CDF is given by:

$$
\begin{aligned}
F(x) & =\int_{0}^{x} f(t) d t \\
& =\int_{0}^{x} 3 t^{2} d t \\
& =\left.t^{3}\right|_{0} ^{x}=x^{3}
\end{aligned}
$$

- Blue area gives the probability that $x \leq 0.75$

Cumulative distribution function - continuous example

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF
CDF discrete

CDF continuous

Acceptance-rejection
Quasi-elastic scattering

- To generate a random number from X according to $3 x^{2}$:
- generate a random number u from $[0,1]$
- find x for which $F(x)=u$, i.e. $x=F^{-1}(u)$
- $\quad x$ is your guy

■ Results for $N=10000$:

Unfortunately, usually F^{-1} is unknown, which makes this method pretty useless (at least directly).

Acceptance-rejection method

- Lets consider

Monte Carlo method

Buffon's needle problem
From Solitaire to MC
Newton-Pepys problem PRNG
Hit-or-miss method MC integration results Optimization of MC Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

- CDF is given by

$$
f(x)=A \cdot x^{3} \cdot e^{-x^{2}}
$$

with $x \in[0,1], A=\frac{2 e}{e-2}$

$$
F(x)=\frac{N}{2}\left(x^{2}-1\right) e^{-x^{2}}
$$

■ Since, we do not know F^{-1} we have to find another way to generate x from $f(x)$ distribution

- We will use acceptance-rejection method (do you remember MC integration via hit-or-miss?)

Acceptance-rejection method

From Solitaire to MC
Newton-Pepys problem PRNG
Hit-or-miss method MC integration results Optimization of MC Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

- Evaluate $f_{\max } \geq \max (f)$

Note: $f_{\max }>\max (f)$ will affect performance, but the result will be still correct

■ Generate random x

- Accept x with $P=\frac{f(x)}{f_{\max }}$
- generate a random u from $\left[0, f_{\max }\right]$
- accept if $u<f(x)$
- The plot on the right shows the results for $N=10^{5}$

Acceptance-rejection method - optimization

Hit-or-miss method

- The area under the plot of $f(x)$ is ~ 0.13

■ The total area is 0.4

- Thus, only about 30% of points gives contribution to the final distribution
- One can find $g(x)$ for which CDF method is possible and which encapsulates $f(x)$ in given range and generate x according to $g(x)$

■ For $g(x)=0.4 x$ the total area is 0.2 , so we speed up twice

Acceptance-rejection method - optimization

Hit-or-miss method MC integration results Optimization of MC Crude method Methods comparison Random from PDF CDF
CDF discrete
CDF continuous
Acceptance-rejection
Quasi-elastic scattering

- Cumulative distribution function for $g(x)=2 x$

$$
G(x)=\int_{0}^{x} g(t) d t=x^{2} \Rightarrow G^{-1}(x)=\sqrt{x}
$$

Note: PDF must be normalized to 1 for CDF
■ Generate random number $u \in[0,1]$

- Calculate your $x=G^{-1}(u)$
- Accept x with probability $P=f(x) / g(x)$
instead of using constant $f_{\max }$ we are using $f_{\max }(x) \equiv g(x)$

Quasi-elastic scattering

Building a generator step by step

Quasi-elastic scattering on a free nucleon

Llewellyn-Smith formula

$$
\frac{d \sigma}{d\left|q^{2}\right|}\binom{\nu_{l}+n \rightarrow l^{-}+p}{\bar{\nu}_{l}+p \rightarrow l^{+}+n}=\frac{M^{2} G_{F}^{2} \cos \theta_{C}}{8 \pi E_{\nu}^{2}}\left[A\left(q^{2}\right) \mp B\left(q^{2}\right) \frac{(s-u)}{M^{2}}+C\left(q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right]
$$

Notation

- Constants: M - nucleon mass, G_{F} - Fermi constant, θ_{C} - Cabibbo angle,

■ $q^{2}=\left(k-k^{\prime}\right)^{2}=\left(p^{\prime}-p\right)^{2}$ - four-momentum squared, where $k, k^{\prime}, p, p^{\prime}$ are four-momenta of initial and final lepton, initial and final nucleon

■ E_{ν} - neutrino energy
■ $s=\left(k+k^{\prime}\right)^{2}$ and $u=\left(k-p^{\prime}\right)^{2}$ - Mandelstam variables

Quasi-elastic scattering on a free nucleon

Llewellyn-Smith formula

$$
\frac{d \sigma}{d\left|q^{2}\right|}\binom{\nu_{l}+n \rightarrow l^{-}+p}{\bar{\nu}_{l}+p \rightarrow l^{+}+n}=\frac{M^{2} G_{F}^{2} \cos \theta_{C}}{8 \pi E_{\nu}^{2}}\left[A\left(q^{2}\right) \mp B\left(q^{2}\right) \frac{(s-u)}{M^{2}}+C\left(q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right]
$$

General idea

■ Having k and p, generate k^{\prime} and p^{\prime}

- Calculate q^{2} and $(s-u)=4 M E_{\nu}+q^{2}-m^{2}$ based on generated kinematics
- Calculate cross section
- Repeat N times and the result is given by:

$$
\sigma_{t o t a l} \sim \frac{1}{N} \sum_{i=1}^{N} \sigma\left(q_{i}^{2}\right)
$$

Generating kinematics

CMS

- Lets consider kinematics in center-of-mass system
- Mandelstam s is invariant under Lorentz transformation

$$
s=(k+p)^{2}=\left(E+E_{p}\right)^{2}-(\vec{k}+\vec{p})^{2}=\left(E^{*}+E_{p}^{*}\right)^{2}
$$

- \sqrt{s} is the total energy in CMS

$$
\sqrt{s}=E^{*}+E_{p}^{*}=\sqrt{p^{* 2}+m^{2}}+\sqrt{p^{*^{2}}+M^{2}}
$$

■ We will use it to calculate $p *$

Generating kinematics

- Lets do some simple algebra:

$$
\begin{aligned}
\sqrt{s} & =E^{*}+E_{p}^{*}=\sqrt{p^{* 2}+m^{2}}+\sqrt{p^{*^{2}}+M^{2}} \\
\sqrt{s} & =E^{*}+\sqrt{E^{* 2}-m^{2}+M^{2}} \\
s & =E^{* 2}+E^{* 2}-m^{2}+M^{2}+2 E^{*} E_{p}^{*} \\
s & =2 E^{*}\left(E^{*}+E_{p}^{*}\right)-m^{2}+M^{2} \\
s & =2 E^{*} \sqrt{s}-m^{2}+M^{2} \\
E^{*} & =\frac{s+m^{2}-M^{2}}{2 \sqrt{s}} \\
E_{p}^{*} & =\frac{s+M^{2}-m^{2}}{2 \sqrt{s}} \text { (analogously) }
\end{aligned}
$$

- After more algebra we get:

$$
p^{*}=\sqrt{E^{* 2}-m^{2}}=\frac{\left[s-(m-M)^{2}\right] \cdot\left[s-(m+M)^{2}\right]}{2 \sqrt{s}}
$$

Generating kinematics

Monte Carlo method
Quasi-elastic scattering QEL on free N Generating kinematics LAB \leftrightarrows CMS
Cross section
Generating events
A few more steps

■ We use spherical coordinate system to determine momentum direction in CMS:

$$
\vec{p}^{*}=p^{*} \cdot(\sin \theta \cos \phi, \quad \sin \theta \sin \phi, \quad \cos \theta)
$$

- Generate random angles:

$$
\begin{aligned}
\phi & =2 \pi \cdot \text { random }[0,1] \Rightarrow \sin \phi, \cos \phi \\
\cos \theta & =2 \cdot \text { random }[0,1]-1 \Rightarrow \sin \theta, \cos \theta
\end{aligned}
$$

- All we need to do is to go back to LAB frame

$\mathrm{LAB} \leftrightarrows \mathrm{CMS}$

- Lorentz boost in direction $\hat{n}=\frac{\vec{v}}{v}$ of (t, \vec{r}) :

$$
\begin{aligned}
t^{\prime} & =\gamma(t-v \hat{n} \cdot \vec{r}) \\
\vec{r}^{\prime} & =\vec{r}+(\gamma-1)(\hat{n} \cdot \vec{r}) \hat{n}-\gamma t v \hat{n}
\end{aligned}
$$

■ In our case

$$
\vec{v}=\frac{\vec{p}_{\nu}+\vec{p}_{N}}{E_{\nu}+E_{N}}
$$

- Boost from LAB to CMS in \vec{v} direction

■ Boost from CMS to LAB in $-\vec{v}$ direction

CMS

Calculating cross section

Llewellyn-Smith formula

$$
\frac{d \sigma}{d\left|q^{2}\right|}\binom{\nu_{l}+n \rightarrow l^{-}+p}{\bar{\nu}_{l}+p \rightarrow l^{+}+n}=\frac{M^{2} G_{F}^{2} \cos \theta_{C}}{8 \pi E_{\nu}^{2}}\left[A\left(q^{2}\right) \mp B\left(q^{2}\right) \frac{(s-u)}{M^{2}}+C\left(q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right]
$$

Calculation

■ Once we have p^{\prime} and k^{\prime} in LAB frame we can calculate q^{2} and $(s-u)$

- Once we have q^{2} we can calculate $A\left(q^{2}\right), B\left(q^{2}\right), C\left(q^{2}\right)$
- We have everything to calculate cross section

■ Do we? Or maybe we are still missing something?

Calculating cross section

Llewellyn-Smith formula

$$
\frac{d \sigma}{d\left|q^{2}\right|}\binom{\nu_{l}+n \rightarrow l^{-}+p}{\bar{\nu}_{l}+p \rightarrow l^{+}+n}=\frac{M^{2} G_{F}^{2} \cos \theta_{C}}{8 \pi E_{\nu}^{2}}\left[A\left(q^{2}\right) \mp B\left(q^{2}\right) \frac{(s-u)}{M^{2}}+C\left(q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right]
$$

Calculation

- Once we have p^{\prime} and k^{\prime} in LAB frame we can calculate q^{2} and $(s-u)$
- Once we have q^{2} we can calculate $A\left(q^{2}\right), B\left(q^{2}\right), C\left(q^{2}\right)$
- We have everything to calculate cross section

■ Do we? Or maybe we are still missing something?

We change the variable we integrate over! We need Jacobian!

Calculating cross section

- Express q^{2} in terms of angle:

$$
q^{2}=\left(k-k^{\prime}\right)^{2}=m^{2}-2 k k^{\prime}=m^{2}-2 E E^{\prime}+2|\vec{k}|\left|\overrightarrow{k^{\prime}}\right| \cos \theta
$$

- Thus, the Jacobian is given by:

$$
d q^{2}=2|\vec{k}|\left|\overrightarrow{k^{\prime}}\right| d(\cos \theta)
$$

Note: must be calculated in CMS

- Total cross section is given by:

$$
\begin{aligned}
\sigma & =\int_{-1}^{1} \frac{M^{2} G_{F}^{2} \cos \theta_{C}}{8 \pi E_{\nu}^{2}}\left[A\left(q^{2}\right) \mp B\left(q^{2}\right) \frac{(s-u)}{M^{2}}+C\left(q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right] 2|\vec{k}|\left|\overrightarrow{k^{\prime}}\right| d \cos \theta \\
\sigma_{M C} & =\frac{2}{N} \sum_{i=1}^{N} \frac{M^{2} G_{F}^{2} \cos \theta_{C}}{8 \pi E_{\nu}^{2}}\left[A\left(q_{i}^{2}\right) \mp B\left(q_{i}^{2}\right) \frac{\left(s_{i}-u_{i}\right)}{M^{2}}+C\left(q_{i}^{2}\right) \frac{\left(s_{i}-u_{i}\right)^{2}}{M^{4}}\right] 2\left|\overrightarrow{k_{i}}\right|\left|\vec{k}_{i}^{\prime}\right|
\end{aligned}
$$

Calculating cross section

Monte Carlo method
Quasi-elastic scattering QEL on free N Generating kinematics $\mathrm{LAB} \leftrightarrows \mathrm{CMS}$

Cross section

Generating events
A few more steps

- We want to avoid any sharp peaks

■ They affect our efficiency and accuracy

- Lets change variable once again:

$$
\cos \theta=1-2 x^{2}
$$

where $x \in[0,1]$

- Note extra Jacobian and new integration limits
$2 \int_{-1}^{1} d(\cos \theta) \rightarrow \int_{1}^{0} d x(-4 x) \rightarrow \int_{0}^{1} 4 x d x$

Calculating cross section

- Finally, the cross section is given by:

$$
\begin{aligned}
\sigma & =\int_{0}^{1} \frac{M^{2} G_{F}^{2} \cos \theta_{C}}{8 \pi E_{\nu}^{2}}\left[A\left(q^{2}\right) \mp B\left(q^{2}\right) \frac{(s-u)}{M^{2}}+C\left(q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right] 2|\vec{k}|\left|\vec{k}^{\prime}\right| 4 x d x \\
\sigma_{M C} & =\frac{1}{N} \sum_{i=1}^{N} \frac{M^{2} G_{F}^{2} \cos \theta_{C}}{8 \pi E_{\nu}^{2}}\left[A\left(q_{i}^{2}\right) \mp B\left(q_{i}^{2}\right) \frac{\left(s_{i}-u_{i}\right)}{M^{2}}+C\left(q_{i}^{2}\right) \frac{\left(s_{i}-u_{i}\right)^{2}}{M^{4}}\right] 2\left|\vec{k}_{i}\right|\left|\vec{k}_{i}^{\prime}\right| 4 x
\end{aligned}
$$

■ In conclusion: do some kinematics and some boosts between CMS and LAB, change integration variable several times... and you are ready to calculate total cross section

- Now we need to generate some events. We want them to be distributed according to our cross section formula.

Generating events

Monte Carlo method
Quasi-elastic scattering QEL on free N Generating kinematics LAB $\leftrightarrows \mathrm{CMS}$
Cross section Generating events
A few more steps

■ Generate $x \in[0: 1]$

- Do kinematics

$$
\begin{aligned}
x & \rightarrow \cos \theta \\
\cos \theta & \rightarrow k^{\prime *}, p^{\prime *} \\
k^{\prime *}, p^{\prime *} & \rightarrow k^{\prime}, p^{\prime}
\end{aligned}
$$

- Calculate cross section σ
- Accept an event with the probability given by

$$
P=\frac{\sigma}{\sigma_{\max }}
$$

- And you almost have you MC neutrino-event generator, just a few more steps...

A few more steps

■ add other dynamics: resonance pion production, deep inelastic scattering...

■ add support for nucleus as a target
■ if you have nucleus add some two-body current interactions
■ if you have nucleus add some nuclear effects: Pauli blocking, final state interactions, formation zone...

- add support for neutrino beam
- add support for detector geometry

■ add some interface to set up simulations parameters and saving the output

- and your MC is done!

