
How to build a MC generator

Tomasz Golan

University of Wroclaw

NuSTEC, Fermilab 2017



Monte Carlo method



Buffon’s needle problem
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Suppose we have a floor made of parallel
strips of wood, each the same width, and
we drop a needle onto the floor. What is
the probability that the needle will lie
across a line between two strips?

Georges-Louis Leclerc,
Comte de Buffon

18th century

blue are good

red are bad

Monte Carlo without computers

If needle length (l) < lines width (t):

P =
2l

tπ

which can be used to estimate π:

π =
2l

tP

MC experiment was performed by Mario
Lazzarini in 1901 by throwing 3408
needles:

π =
2l · 3408
t ·#red

=
355

113
= 3.14159292



From Solitaire to Monte Carlo method

Tomasz Golan MC generators @ NuSTEC 4 / 40

■ Stanis law Ulam was a Polish
mathematician

■ He invented the Monte Carlo method
while playing solitaire

■ The method was used in Los Alamos,
performed by ENIAC computer

■ What is a probability of success in
solitaire?

◆ Too complex for an analytical
calculations

◆ Lets try N = 100 times and
count wins

◆ With N → ∞ we are getting
closer to correct result
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Which of the following three
propositions has the greatest
chance of success?

A Six fair dice are tossed
independently and at least
one “6” appears.

B Twelve fair dice are tossed
independently and at least
two “6”s appear.

C Eighteen fair dice are
tossed independently and at
least three “6”s appear.



Newton-Pepys problem: analytical attempt
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■ First, lets go back to high school and calculate this analytically

■ Let p = 1
6 be the probability of rolling 6

■ The probability of not rolling 6 is (1− p)

A six attempts, at least one six

PA = 1− (1− p)6 ≈ 0.6651

B twelve attempts, at least two sixes

PB = 1− (1− p)12 −
(

12

1

)

p(1− p)11 ≈ 0.6187

C eighteen attempts, at least three sixes

PC = 1−(1−p)18−
(

18

1

)

p(1−p)17−
(

18

2

)

p2(1−p)16 ≈ 0.5973



Newton-Pepys problem: MC attempt
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■ MC attempt is just “performing the
experiment”, so we will be rolling
dices

■ Roll 6n times and check if number of
sixes is greater or equal n

■ Repeat N times and your probability
is given by:

P =
number of successes

N

def throw (nSixes):

n = 0

for _ in range (6 * nSixes):

if random.randint (1, 6) == 6: n += 1

return n >= nSixes

def MC (nSixes, nAttempts):

n = 0

for _ in range (nAttempts):

n += throw (nSixes)

return float (n) / nAttempts

if __name__ == "__main__":

for i in range (1, 4):

print MC (i, 1000)
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■ Your MC result depends on N

■ Results for N = 100:

PA = 0.71, 0.68, 0.76, 0.65, 0.68 P true
A = 0.6651

PB = 0.70, 0.56, 0.60, 0.63, 0.69 P true
B = 0.6187

PC = 0.62, 0.62, 0.53, 0.57, 0.62 P true
C = 0.5973

■ Results for N = 106:

PA = 0.6655, 0.6648, 0.6653, 0.6662, 0.6653

PB = 0.6188, 0.6191, 0.6191, 0.6190, 0.6182

PC = 0.5975, 0.5979, 0.5972, 0.5978, 0.5973

■ Your MC results also depends on the way how random numbers
were generated



Pseudorandom number generator
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■ PRNG is an algorithm for generating a sequence of “random”
numbers

■ Example: middle-square method (used in ENIAC)

◆ take n-digit number as your seed

◆ square it to get 2n-digit number (add leading zeroes if
necessary)

◆ n middle digits are the result and the seed for next number

■ Middle-square method for n = 4 and base seed = 1111:

11112 = 01234321 → 2343

23432 = 05489649 → 4896
...

11112 = 01234321 → 2343
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■ Nowadays, more sophisticated PRNGs exist, but they also
suffer on some common problems:

◆ periodicity / different periodicity for different base seed

◆ nonuniformity of number distributions

◆ correlation of successive numbers

Mathematics and Computers in Simulations 46 (1998) 485-505



MC integration (hit-or-miss method)
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Lets do the following integration using MC method:

∫ 1

0

f(x)dx =

∫ 1

0

(

1

2
x

)

dx =
1

2

x2

2

∣

∣

∣

∣

1

0

=
1

4

■ take a random point from
the [0, 1]× [0, 1] square

■ compare it to your f(x)

■ repeat N times

■ count n points below the
function

■ you results is given by

∫ 1

0

f(x)dx = P� · n

N
=

n

N

y

x

f(x) = 1
2x

1

1
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y

x

f(x) = 1
2x

1

1

y

x

f(x) = 1
2x

0.5

1

■ You want to avoid generating “red” points as they do not
contribute to your integral

■ You can choose any rectangle as far as it contains maximum of
f(x) in given range



Optimization of MC
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■ Lets consider the following
function:

F (Q2) =
1

(1 +Q2)2

more or less dipole form
factor

■ Integrating this function
over Q2 is highly inefficient

■ However, one can integrate
by substitution to get
better performance, e.g.

x = log10(Q
2)

don’t forget about Jacobian

2 4 6 8 10
0

0.1

0.2

Q2

F
(Q

2
)

−2 −1 0 1
0

0.5

1

x = log10(Q
2)

F
(x
)



MC integration (crude method)
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Lets do the following integration using MC method once again:

∫ 1

0

f(x)dx =

∫ 1

0

(

1

2
x

)

dx =
1

2

x2

2

∣

∣

∣

∣

1

0

=
1

4

■ One can approximate
integral

∫ b

a

f(x)dx ≈ b− a

N

N
∑

i=1

f(xi)

where xi is a random
number from [a, b]

■ It can be shown that crude
method is more accurate
than hit-or-miss

■ We will skip the math and
look at some comparisons

y

x

f(x) = 1
2x
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Random numbers from probability density function
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■ How to generate a random
number from probability
density function?

■ Lets consider f(x) = 3x2

■ Which means that x = 1
should be thrown 2 times
more often than x =

√
2
2

0 0.5 1
0

1

2

3

x

y



Cumulative distribution function
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■ Cumulative distribution function of a random variable X:

F (x) = P (X ≤ x)

Note: 0 ≤ F (x) ≤ 1 for all x

■ Discrete random variable X:

F (x) =
∑

xi≤x

f(xi)

where f is probability mass function (PMF)

■ Continuous random variable X:

F (x) =

x
∫

−∞

f(t)dt

where f is probability density function (PDF)



Cumulative distribution function - discrete example
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■ Probability mass function f(x) = 3x2

with discrete random variables X is {
√

1
30 ,

√

2
30 ,

√

3
30 ,

√

4
30 , }

■ CDF is given by:

F (x) =































1
10 if x ≤

√

1
30

3
10 if x ≤

√

2
30

6
10 if x ≤

√

3
30

10
10 if x ≤

√

4
30

0 0.2 0.4
0
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1

x

F
(x
)

■ With P = 1 the random number is less or equal to
√

4
30 , with

P = 0.6 the random number is less or equal
√

3
30 ...



Cumulative distribution function - discrete example
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■ To generate a random number from X according to 3x2:

◆ generate a random number u from [0, 1]

◆ if u ≤ 0.1: x =
√

1
30

◆ else if u ≤ 0.3: x =
√

2
30 ...

■ Results for N = 10000:

x n n/N f(x)
√

1
30 989 0.0989 0.1

√

2
30 1959 0.1959 0.2

√

3
30 2949 0.2949 0.3

√

4
30 4103 0.4103 0.4



Cumulative distribution function - continuous example
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■ Probability density function f(x) = 3x2

with continuous random variables X range [0, 1]

■ CDF is given by:

F (x) =

x
∫

0

f(t)dt

=

x
∫

0

3t2dt

= t3
∣

∣

x

0
= x3 0 0.5 1

0

0.5

1

x

F
(x
)

■ Blue area gives the probability that x ≤ 0.75



Cumulative distribution function - continuous example
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■ To generate a random number from X according to 3x2:

◆ generate a random number u from [0, 1]

◆ find x for which F (x) = u, i.e. x = F−1(u)

◆ x is your guy

■ Results for N = 10000:

0 0.5 1
0

1

2

3

x

n
/N

/w
id

th

Unfortunately, usually F−1 is
unknown, which makes this
method pretty useless (at least
directly).



Acceptance-rejection method
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■ Lets consider

f(x) = A · x3 · e−x2

with x ∈ [0, 1], A = 2e
e−2

■ CDF is given by

F (x) =
N

2
(x2 − 1)e−x2 0 0.5 1

0

0.2

0.4
f(x) = x3 · e−x

2

x

y

■ Since, we do not know F−1 we have to find another way to
generate x from f(x) distribution

■ We will use acceptance-rejection method (do you remember
MC integration via hit-or-miss?)
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■ Evaluate fmax ≥ max(f)

Note: fmax > max(f) will
affect performance, but the
result will be still correct

■ Generate random x

■ Accept x with P = f(x)
fmax

◆ generate a random u
from [0, fmax]

◆ accept if u < f(x)

■ The plot on the right shows
the results for N = 105
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Acceptance-rejection method - optimization

Monte Carlo method
Buffon’s needle problem
From Solitaire to MC
Newton-Pepys problem
PRNG
Hit-or-miss method
MC integration results
Optimization of MC
Crude method
Methods comparison
Random from PDF
CDF
CDF discrete
CDF continuous
Acceptance-rejection

Quasi-elastic scattering

Tomasz Golan MC generators @ NuSTEC 25 / 40

■ The area under the plot of
f(x) is ∼ 0.13

■ The total area is 0.4

■ Thus, only about 30% of
points gives contribution to
the final distribution

■ One can find g(x) for
which CDF method is
possible and which
encapsulates f(x) in given
range and generate x
according to g(x)

■ For g(x) = 0.4x the total
area is 0.2, so we speed up
twice
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Acceptance-rejection method - optimization
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■ Cumulative distribution function for g(x) = 2x

G(x) =

∫ x

0

g(t)dt = x2 ⇒ G−1(x) =
√
x

Note: PDF must be normalized to 1 for CDF

■ Generate random number u ∈ [0, 1]

■ Calculate your x = G−1(u)

■ Accept x with probability P = f(x)/g(x)

instead of using constant fmax we are using fmax(x) ≡ g(x)



Quasi-elastic scattering
Building a generator step by step



Quasi-elastic scattering on a free nucleon
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Llewellyn-Smith formula

dσ

d|q2|

(

νl + n → l− + p

ν̄l + p → l+ + n

)

=
M2G2

F cos θC
8πE2

ν

[

A(q2)∓B(q2)
(s− u)

M2
+ C(q2)

(s− u)2

M4

]

Notation

■ Constants: M - nucleon mass, GF - Fermi constant, θC - Cabibbo angle,

■ q2 = (k − k′)2 = (p′ − p)2 - four-momentum squared, where k, k′, p, p′ are
four-momenta of initial and final lepton, initial and final nucleon

■ Eν - neutrino energy

■ s = (k + k′)2 and u = (k − p′)2 - Mandelstam variables



Quasi-elastic scattering on a free nucleon
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Llewellyn-Smith formula

dσ

d|q2|

(

νl + n → l− + p

ν̄l + p → l+ + n

)

=
M2G2

F cos θC
8πE2

ν

[

A(q2)∓B(q2)
(s− u)

M2
+ C(q2)

(s− u)2

M4

]

General idea

■ Having k and p, generate k′ and p′

■ Calculate q2 and (s− u) = 4MEν + q2 −m2 based on generated kinematics

■ Calculate cross section

■ Repeat N times and the result is given by:

σtotal ∼
1

N

N
∑

i=1

σ(q2i )



Generating kinematics
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LAB

~pν
~pN

CMS

~p∗ ~p∗

■ Lets consider kinematics in center-of-mass system

■ Mandelstam s is invariant under Lorentz transformation

s = (k + p)2 = (E + Ep)
2 − (~k + ~p)2 = (E∗ + E∗

p)
2

■

√
s is the total energy in CMS

√
s = E∗ + E∗

p =
√

p∗2 +m2 +
√

p∗2 +M2

■ We will use it to calculate p∗



Generating kinematics
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■ Lets do some simple algebra:

√
s = E∗ + E∗

p =
√

p∗2 +m2 +
√

p∗2 +M2

√
s = E∗ +

√

E∗2 −m2 +M2

s = E∗2 + E∗2 −m2 +M2 + 2E∗E∗
p

s = 2E∗(E∗ + E∗
p)−m2 +M2

s = 2E∗√s−m2 +M2

E∗ =
s+m2 −M2

2
√
s

E∗
p =

s+M2 −m2

2
√
s

(analogously)

■ After more algebra we get:

p∗ =
√

E∗2 −m2 =
[s− (m−M)2] · [s− (m+M)2]

2
√
s



Generating kinematics
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■ We use spherical coordinate
system to determine
momentum direction in
CMS:

~p∗ = p∗·(sin θ cosφ, sin θ sinφ, cos θ)

x

y

z

p∗

φ

θ

■ Generate random angles:

φ = 2π · random[0, 1] ⇒ sinφ, cosφ

cos θ = 2 · random[0, 1]− 1 ⇒ sin θ, cos θ

■ All we need to do is to go back to LAB frame



LAB ⇆ CMS
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■ Lorentz boost in direction n̂ = ~v
v

of (t, ~r):

t′ = γ (t− vn̂ · ~r)
~r′ = ~r + (γ − 1)(n̂ · ~r)n̂− γtvn̂

■ In our case

~v =
~pν + ~pN
Eν + EN

■ Boost from LAB to CMS in
~v direction

■ Boost from CMS to LAB in
−~v direction

LAB

~pν
~pN

CMS

~p∗ ~p∗



Calculating cross section
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Llewellyn-Smith formula

dσ

d|q2|

(

νl + n → l− + p

ν̄l + p → l+ + n

)

=
M2G2

F cos θC
8πE2

ν

[

A(q2)∓B(q2)
(s− u)

M2
+ C(q2)

(s− u)2

M4

]

Calculation

■ Once we have p′ and k′ in LAB frame we can calculate q2 and (s− u)

■ Once we have q2 we can calculate A(q2), B(q2), C(q2)

■ We have everything to calculate cross section

■ Do we? Or maybe we are still missing something?



Calculating cross section
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Llewellyn-Smith formula

dσ

d|q2|

(

νl + n → l− + p

ν̄l + p → l+ + n

)

=
M2G2

F cos θC
8πE2

ν

[

A(q2)∓B(q2)
(s− u)

M2
+ C(q2)

(s− u)2

M4

]

Calculation

■ Once we have p′ and k′ in LAB frame we can calculate q2 and (s− u)

■ Once we have q2 we can calculate A(q2), B(q2), C(q2)

■ We have everything to calculate cross section

■ Do we? Or maybe we are still missing something?

We change the variable we integrate over! We need Jacobian!



Calculating cross section

Tomasz Golan MC generators @ NuSTEC 36 / 40

■ Express q2 in terms of angle:

q2 = (k − k′)2 = m2 − 2kk′ = m2 − 2EE′ + 2|~k||~k′| cos θ

■ Thus, the Jacobian is given by:

dq2 = 2|~k||~k′|d(cos θ)
Note: must be calculated in CMS

■ Total cross section is given by:

σ =

1
∫

−1

M2G2

F cos θC
8πE2

ν

[

A(q2)∓B(q2)
(s− u)

M2
+ C(q2)

(s− u)2

M4

]

2|~k||~k′|d cos θ

σMC =
2

N

N
∑

i=1

M2G2

F cos θC
8πE2

ν

[

A(q2i )∓B(q2i )
(si − ui)

M2
+ C(q2i )

(si − ui)
2

M4

]

2|~ki||~k
′

i|
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■ We want to avoid any
sharp peaks

■ They affect our efficiency
and accuracy

■ Lets change variable once
again:

cos θ = 1− 2x2

where x ∈ [0, 1]

■ Note extra Jacobian and
new integration limits

2

1
∫

−1

d(cos θ) →
0

∫

1

dx(−4x) →
1

∫

0

4xdx

−1 −0.5 0 0.5 1
0

0.5

1

cos θ

d
σ

d
c
o
s
θ

[a
rb

it
ra

ry
u

n
it

s]
0 0.5 1

0

0.5

1

x

d
σ

d
x

[a
rb

it
ra

ry
u

n
it

s]



Calculating cross section

Tomasz Golan MC generators @ NuSTEC 38 / 40

■ Finally, the cross section is given by:

σ =

1
∫

0

M2G2

F cos θC
8πE2

ν

[

A(q2)∓B(q2)
(s− u)

M2
+ C(q2)

(s− u)2

M4

]

2|~k||~k′|4xdx

σMC =
1

N

N
∑

i=1

M2G2

F cos θC
8πE2

ν

[

A(q2i )∓B(q2i )
(si − ui)

M2
+ C(q2i )

(si − ui)
2

M4

]

2|~ki||~k
′

i|4x

■ In conclusion: do some kinematics and some boosts between CMS and LAB, change
integration variable several times... and you are ready to calculate total cross section

■ Now we need to generate some events. We want them to be distributed according to
our cross section formula.
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■ Generate x ∈ [0 : 1]

■ Do kinematics

x → cos θ

cos θ → k′∗, p′∗

k′∗, p′∗ → k′, p′

...

■ Calculate cross section σ

0 0.5 1
0

σmax

x

d
σ

d
x

[a
rb

it
ra

ry
u

n
it

s]

■ Accept an event with the probability given by

P =
σ

σmax

■ And you almost have you MC neutrino-event generator, just a
few more steps...
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■ add other dynamics: resonance pion production, deep inelastic
scattering...

■ add support for nucleus as a target

■ if you have nucleus add some two-body current interactions

■ if you have nucleus add some nuclear effects: Pauli blocking,
final state interactions, formation zone...

■ add support for neutrino
beam

■ add support for detector
geometry

■ add some interface to set
up simulations parameters
and saving the output

■ and your MC is done!
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