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■ Monte Carlo generators
simulate interactions

■ Physicists have been using
them since ENIAC

■ Some common generators used
in neutrino community:

◆ transport of particles through matter: Geant4, FLUKA

◆ high-energy collisions of elementary particles: PYTHIA

◆ neutrino interactions: GENIE, GIBUU, NEUT,
NUANCE, NuWro
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Theory ExperimentMC generators

■ Monte Carlo event generators connect experiment (what we
see) and theory (what we think we should see)

■ Any neutrino analysis relies on MC generators

■ From neutrino beam simulations, through neutrino interactions,
to detector simulations

■ Used to evaluate systematic uncertainties, backgrounds,
acceptances...
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Neutrino
production

Neutrino
interaction

Final state
propagation

e.g. GEANT4 e.g. GENIE e.g. GEANT4

EXPERIMENT

MONTE CARLO
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“You use Monte Carlo until you understand the problem”

Mark Kac

■ In perfect world MC
generators would contain
“pure” theoretical models

■ In real world theory does
not cover everything

■ Neutrino and non-neutrino
data are used to tune
generators

MC

Data

inputinput



How to build generator
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INGREDIENTS:

theorytheory ν dataν data other dataother data

educated guesseseducated guesses

Phase space

RECIPE:



Neutrino interactions: free nucleon
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■ Llewellyn-Smith model is
usually used for charged
current quasi-elastic
scattering

■ Not much difference here
between generators (but
default parameters)

ν/l

ν

N’

N

Z0/W±

■ Nucleon structure is
parametrized by form
factors

■ Vector → Conserved Vector Current (CVC)

■ Pseudo-scalar → Partially Conserved Axial Current (PCAC)

■ Axial → dipole form with one free parameter (axial mass, MA)



Rein-Sehgal model
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ν/l

ν N

∆

π

N’

Z0/W±

■ Rein-Sehgal model describes single
pion production through baryon
resonances below W = 2 GeV

■ It is used by GENIE and NEUT

■ However, GENIE includes only 16
resonances and interference between
them is neglected
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■ Quark-parton model is used
for deep inelastic scattering

■ Bodek-Young modification
to the parton distributions
at low Q2 is included by
most generators

ν/l

ν

Z0/W±

Hadronization

Hadrons

■ Hadronization is the
process of formation
hadrons from quarks

■ Pythia is widely used at
high invariant masses
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■ AGKY hadronization model
is used in GENIE Hadrons

■ It includes phenomenological description of the low invariant
mass based on Koba-Nielsen-Olesen (KNO) scaling

■ Pythia is used for the high invariant mass

■ The smooth transition between two models is made in a
window W ∈ [2.3, 3.0] GeV

W tr
min W tr

max

KNO PYTHIA
Linear

transition
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π production

∆ resonance
Adler-Rarita-Schwinger

Quark-parton
model

RES DIS

W
< 1.6

GeV

W > 1.6 GeV

RES/DIS distinguish is arbitrary for each MC generator!



Transition region
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■ We factorized the reality to RES and DIS

■ We must be careful to avoid double counting

■ The smooth transition between RES and DIS is performed by each generator (but in
slightly different way)

■ E.g. in GENIE:

d2σRES

dQ2dW
=

∑

k

(

d2σR−S

dQ2dW

)

k

·Θ(Wcut −W )

d2σDIS

dQ2dW
=

d2σDIS,BY

dQ2dW
·Θ(W −Wcut) +

d2σDIS,BY

dQ2dW
·Θ(Wcut −W ) ·

∑

m

fm

where k - sum over resonances in Rein-Sehgal model, m - sum over multiplicity,
fm = Rm · Pm with Pm - probability of given multiplicity (taken form hadronization
model), Rm - tunable parameter



Neutrino interactions: nucleus
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■ In impulse approximation
neutrino interacts with a
single nucleon

■ If |~q| is low the impact area
usually includes many
nucleons

■ For high |~q| IA is justified

n

n

n

n

n

n
p

p

p

p

p

p

ν

ν

■ Squares of transition matrices are summed up and interference
terms are neglected

σA =
Z
∑

i=1

σp +
A−Z
∑

i=1

σn

■ High |~q| means more than 400 MeV. However, IA is always
assumed
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Nucleons move freely
within the nuclear vol-
ume in constant bind-
ing potential.

neutrons protons

neutrons
potential

protons
potential
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Spectral function
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The probability of removing
of a nucleon with momentum
~p and leaving residual nucleus
with excitation energy E.

P (~p,E) = PMF (~p,E) + Pcorr(~p,E)

l′
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Two Body Current

2 particles - 2 holes (2p-2h)

Meson Exchange Current (MEC)

l′

l

V
M

Models in generators

■ Nieves model (GENIE, NEUT, NuWro)

■ Transverse Enhancement (TE) model by Bodek (NuWro)

■ Dytman model (GENIE)



Two-body current interactions

Tomasz Golan MC generators @ NuSTEC 20 / 40

■ Nieves model is microscopic calculation

■ TE model introduce 2p− 2h contribution by modification of the vector magnetic
form factors

Total MEC cross section
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Two-body current interactions
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■ Both models provide only the inclusive double differential cross section for the final
state lepton

■ Final nucleons momenta are set isotropically in CMS

Nieves
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■ Rein-Sehgal model is
commonly used for
coherent pion production

■ Note: it is different model
than for RES

■ Berger-Sehgal model
replaces RS (NuWro,
GENIE)

ν/l

ν

π

A,Z A,Z

Z0/W±

Comments

■ In COH the residual nucleus is left in the same state (not
excited)

■ The interaction occurs on a whole nucleus - no final state
interactions
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Nucleon (IA*) np-nh (semi-IA) Nucleus

Neutrino

(Q)EL

RES

DIS

MEC (2p2h) Coherent π

Final state interactions

*IA = Impulse Approximation
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FSI describe the propagation of particles created in a primary
neutrino interaction through nucleus

All MC generators (but GIBUU) use intranuclear cascade model
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■ In INC model particles
are assumed to be classical
and move along
the straight line.

■ The probability of passing
a distance λ (small enough to assume constant nuclear density)
without any interaction is given by:

P (λ) = e−λ/λ̃

λ̃ = (σρ)−1 - mean free path

σ - cross section

ρ - nuclear density

Can be easily handled

with MC methods.



The algorithm for intranuclear cascade
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Calculate:

λ̃(r) = [σρ(r)]−1

r
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Tomasz Golan MC generators @ NuSTEC 27 / 40

Calculate:

λ̃(r) = [σρ(r)]−1

λ = λ̃ · ln(P )

P = rand[0, 1]
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Calculate:

λ̃(r) = [σρ(r)]−1

λ = λ̃ · ln(P )

P = rand[0, 1]

move particle by

min(λ, λmax)
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Calculate:

λ̃(r) = [σρ(r)]−1

λ = λ̃ · ln(P )

P = rand[0, 1]

move particle by

min(λ, λmax)

Check r′ > R

R - nucleus radius

r ′
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Calculate:
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Calculate:

λ̃(r) = [σρ(r)]−1

λ = λ̃ · ln(P )

P = rand[0, 1]

move particle by

min(λ, λmax)

Check r′ > R
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Yes
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No

Check
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Yes

Generate

the interaction.

xm
ax



The algorithm for intranuclear cascade

Tomasz Golan MC generators @ NuSTEC 27 / 40

Calculate:

λ̃(r) = [σρ(r)]−1

λ = λ̃ · ln(P )

P = rand[0, 1]

move particle by

min(λ, λmax)

Check r′ > R

R - nucleus radius

Yes

The particle

leaves nucleus.

No

Check

λ < λmax. No

Yes

Generate

the interaction.

Check

Pauli blocking.
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■ The main input to the INC model is the particle-nucleon cross
section

■ Total cross section affects the mean free path

■ Ratios of cross sections

σqel

σtotal
,

σcex

σtotal
,

σabs

σtotal
, ...

are used to determine what kind of scattering happened

■ NuWro and Neut use Oset model for low-energy pions and
data-driven cross sections for all other cases

■ GENIE has two models of FSI
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FSI

Intranuke

hN Intranuke hA Intranuke

■ intranuclear cascade

■ data-driven cross sections

■ Oset model for pions

■ INC-like with one
“effective” interaction

■ tuned do hadron-nucleus
data

■ easy to reweight



Formation time
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γ γ

γ γ

e e

■ The concept of
formation time
was introduced by
Landau and Pomeranchuk
in the context of electrons
passing through a layer of material.

■ For high energy electrons they observed less radiated energy
then expected.

■ The energy radiated in such process is given by:

dI

d3k
∼

∣

∣

∣

∣

∫ ∞

−∞

~j(~x, t)ei(ωt−~k·~x(t))d3xdt

∣

∣

∣

∣

2

~x(t) describes the trajectory of the electron.

ω, ~k are energy and momentum of the emitted photon.



Landau Pomeranchuk effect
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γ γ

γ γ

e e

Formation zone

■ Assuming the trajectory to be a series of
straight lines (the current density
j ∼ δ3(~x− ~vt)) the radiation integral is:

∼

∫

path

ei(
~k~v−ω)tdt

■ Formation time is defined as:

tf ≡
1

ω − ~k~v
=

E

kp
=

E

me

1

ωr.f.
= γTr.f.

k, p - photon, electron four-momenta

ωr.f. - photon frequency in the rest

frame of the electron

■ Formation time can be interpreted as
the “birth time” of photon.

■ If time between collisions t >> tf ,
there is no interference and total
radiated energy is just the average
emitted in one collision multiplied by
the number of collisions.

■ If t << tf , a photon is produced
coherently over entire length of
formation zone, which reduces the
bremsstrahlung.



Formation time in INC
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■ One may expect a similar effect in hadron-nucleus scattering.

■ In terms of INC it means that particles produced in
primary vertex travel some distance, before they can interact.

■ There are several parametrization used in MC generators

■ Ranft parametrization:

tf = τ0
E ·M

µ2
T

where E, M - nucleon energy and mass, µ2
T = M2 + p2T - transverse mass

■ SKAT parametrization (similar but with pT = 0)

■ NEUT and GENIE use SKAT parametrization

■ NuWro uses Ranft parametrization for DIS and includes a ∆ lifetime for RES
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〈Eν〉 ∼ 24 GeV

π

π

π

π

■ Nomad data from
Nucl. Phys. B609 (2001) 255.

■ The average number
of backward going negative pions
with the momentum
from 350 to 800 MeV/c.

■ In this neutrino
energy range
Bπ− are an
effect of FSI.

■ The observable is
very sensitive
to formation time
effect.
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Neutrino-nucleus interactions
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For all channels (but coherent) neutrino interactions are factorized in the following way

IA νN hadronization formation time FSI

n

p

n

p

π−

π−

n
π+

p

π0

n

p

π0

π− π+

n n

p

■ Is the physics really factorized this way?

■ This factorization is common for all generators

■ However, some pieces are done in different way
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〈Eν〉

∼ 1 GeV

1µ

0π± (0π
0

−)

1π0 (1π+)

■ The cross section
for π0 (π+) production
through charge current
measured by MiniBooNE

■ The signal is defined as: charged leptons, no charged pions and
one neutral pion (one positive pion and no other pions) in the
final state.

■ The result depends on primary vertex and FSI, as pion can be:

◆ produced in primary vertex

◆ produced in FSI

◆ affected by charge exchange

◆ absorbed



MiniBooNE data for CC π production
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MiniBooNE data for CC π production
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■ MC generators are irreplaceable
tools in high-energy physics

■ People use them before
experiment exists
(feasibility studies, requirements ...)

■ And during data analysis
(systematics uncertainties, backgrounds ...)

■ There are several neutrino event generators and they all differ
slightly

■ And, unfortunately, there is no one right generator
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