Neutrino induced pion production reaction 3

Toru Sato

Osaka University

Nov. 2017

- Neutrino induced meson production reaction beyond $\Delta(1232).$
- Delta propagation in nuclei and coherent pion production

electroweak meson production reaction beyond Delta

- explore higher mass resonances (original motivation to develop a reaction model)
- smooth transition from resonance to DIS

new feature

• many N^* and Δ resonances $M_R < 2GeV$

- opening of $\eta N, \pi \pi N, K\Lambda, K\Sigma, ,$, channels
 - \rightarrow needs multi-channel unitarity including three-body($\pi\pi N$).

Extension of coupled channel model

Extend coupled channel model (ANL-Osaka model):

- include N^*, Δ resonances
- coupled channel model $\pi N, \eta N, \pi \pi N(\sigma N, \rho N, \pi \Delta), K\Lambda, K\Sigma$

• Satisfy three $body(\pi\pi N)$ unitarity

Step 1:

Analysis of πN reactions. (W < 2.3 GeV) [fix strong interaction part of model]

Step 2

Analysis of γ, γ^* induced meson production reactions on proton and neutron. $(\sigma/d\Omega, P, \Sigma, ..)$. [fix model of Vector current]

Step 3

Axial vector coupling of N to N^*, Δ : use PCAC. Q^2 dependence: assume dipole

Overview of neutrino induced reaction (ANL-Osaka Model) $d\sigma/dW/dQ^2$ at $E_{\nu}=2GeV$

7 / 24

W dependence

 $d\sigma/dW$ for single pion production $E_{\nu} = 40 GeV$

BEBC NP343,285(1990)

T. Sato (Osaka U.)

- pion-nucleus reaction
- Delta hole model
- Coherent pion production

Delta propagation in nuclei

pion-nucleus reaction

T. -S. H. Lee and R. P. Redwine, Annu. Rev. Nucl. Part. Sci. 52 (2002) 23

- Δ peak becomes wider
- Important channels of π nucleus reaction:elastic,inelastic,pion absorption

T. Sato (Osaka U.)

- Assumption : Δ -hole doorway state
- $\bullet\,$ Medium effects on pion and delta are in $\Delta\text{-hole}$ Green function

pi-A elastic

Coherent pion production

Delta-hole Green's function

$$G_{\Delta h}^{-1} = E - H_{\Delta} - M_0 - \Sigma_{\Delta}(E - H_{\Delta}) - \Sigma_{Pauli} - W_{el} - W_{SP}$$

with $H_{\Delta} = T_{\Delta} + V_{\Delta} + H_{A-1}$

T-matrix for pion elastic scattering.

$$T_{P,P} = PH_{\pi N\Delta}G_{\Delta h}(E)H_{\pi N\Delta}P$$

• Introduce Fock Space projection operator

$$P o \pi + \operatorname{Gr.} \quad D o \Delta h \quad Q o \operatorname{No}\pi, \dots$$

- PHQ = 0 (doorway state assumption).
- Projecting out P and Q and they re-appear as effective interaction in D space.

Delta-hole Green's function

$$G_{\Delta h}^{-1} = E - H_{\Delta} - M_0 - \Sigma_{\Delta} (E - H_{\Delta}) - \Sigma_{Pauli} - W_{el} - W_{SP}$$

with $H_{\Delta} = T_{\Delta} + V_{\Delta} + H_{A-1}$

- Non-local Green's function due to T_{Δ}
- Σ_{Δ} : πN self energy of free delta. ($G_{\Delta}^{0} = \frac{1}{\omega M_{0} \Sigma_{\Delta}(\omega)}$)
- Σ_{Pauli} : correction due to forbidden state
- $W_{el} = DH_{\pi N\Delta} \frac{P}{E T_{\pi} H_A + i\epsilon} H_{\pi N\Delta} D$: pion-nucleus elastic scattering.
- $W_{SP} = DH_{\pi N\Delta} \frac{Q}{E H_Q + i\epsilon} H_{\pi N\Delta} D$: spreading potential(pion absorption..).

Imaginary part of Δh state ($\pi^{16}O$)

Fig. 1. Decomposition of Im $\epsilon_A = \Gamma/2 + (\epsilon_1)\epsilon(t_1)$ for 0⁻ partial wave into contributions from pion term, Im ϵ_m , Pauli blocking, Im ϵ_p , and isobar binding and background potential, Im ϵ_{Δ} . Im $\hat{\epsilon} = \Gamma/2 + \langle \hat{D} \rangle \pi \langle \hat{D} \rangle$, where $|\hat{D}$ is the dominant 0⁻ doorway state and $\Gamma/2$ is the free half width of the isobar.

M. Hirata, J.H.Koch, F.Lenz, E.J.Moniz PL 70B(1977)281.

 $Im(\epsilon_{\pi}) = Im(W_{el})$ $Im(\epsilon_{\Delta}) = Im(W_{sp})$ $-Im(\epsilon_{F}) = Im(\Sigma_{Pauli})$

Neutrino induced Coherent pion production

Coherent pion production is 'elastic' scattering

$$a + |Ground > \rightarrow b + |Ground >, \quad \mathcal{F} = < Ground |f|Ground >$$

$$\sigma_{coh} = |f_1 + f_2 + \dots f_A|^2 \propto A^2 \qquad (\sigma_{inel} = \sum_h |f_h|^2 \propto A)$$
Coherent

Selects particular operator of pion production mechanism: quantum number transferred from (a, b) to nuclei is 0⁺0. no spin, angular momentum , isospin transfer to nuclei
 momentum transfer to nucleus is limited by nuclear size. |p
[¯]_μ − p
[¯]_μ − p
[¯]_π|² < 1/R²_A

T. Sato (Osaka U.)

(

Neutrino induced coherent pion production and PCAC

'parallel kinematic' plus massless lepton

$$Tr(l^{\alpha}l^{\beta}) \propto p_{\nu}^{\alpha}p_{l}^{\beta} + p_{\nu}^{\beta}p_{l}^{\alpha} - g^{\mu\nu}(p_{\nu} \cdot p_{l}) + i\epsilon^{\alpha\beta\gamma\rho}p_{\nu,\gamma}p_{l,\rho} \propto q^{\alpha}q^{\beta}$$

$$|< l\beta |H_W|\nu\alpha>|^2 \propto |<\beta |q\cdot A|\alpha>|^2$$

The neutrino reaction of parallel kinematics can be given by soft pion absorption reaction.

$$\sigma(\nu + \alpha \to l + \beta) \propto f_{\pi}^2 \sigma(\pi(m_{\pi}^2 = 0)\alpha \to \beta)$$

S. L. Adler, PR 135 B963 (1964)

Extrapolation:

- Non-zero Q^2 region
- Finite lepton mass correction
- (Use empirical π A elastic cross section)
 Ch. Berger and L. H. Sehgal, PRD 79 (2009) 053003

- use reaction model of weak pion production on nucleon for non-resonant and resonant mechanism.(lecture 2)
- interaction of pion with nuclei and propagation of delta inside nuclei are taken into account by using delta-hole model.
- No parameters left to tune for coherent pion production, results are prediction.

Note

- Use local density approximation of Delta-hole model. B. Karaoglu, E. J. Moniz, PRC33 (1986)794.
- on non-resonant mechanism: DWBA
- Determine spreading potential from the analysis of pion nucleus elastic, total and absorption cross section.
- coherent pion photoproduction as a test of reaction model.

solid (full), dash (without FSI,medium effect in $G^{\Delta h}$), dot(with medium effect), dash-dot(delta only) $E_{\gamma L}=173,~290 {\rm MeV}$

S. Nakamura, T. Sato, T. -S. H. Lee, B. Szczerbinska, K. Kubodera, PRC81 035502 (2010)

solid (full), dash (without FSI,medium effect in $G^{\Delta h}$), dot(with medium effect), dash-dot(delta only), $E_{\nu} = 1 GeV$

Channel (EXP.)	$CC\pi^+(K2K)$	$CC\pi^+(T2K)$	$NC\pi^0(MiniBooNE)$
Data	< 7.7	$3.3 \pm 0.8^{+1.3}_{-1.2}$	$7.7\pm1.6\pm3.6$
		$3.9 \pm 1.0^{+1.5}_{-1.4}$	
Alvarez-Ruso et al.	8.3 (4.4)	[5.3]	3.9 (2.0)
Berger et al.	0.62×12	-	-
Nakamura et al.	6.3	3.1	2.8
Hernández et al.	6.1 ± 1.3	-	2.6 ± 0.5

- CC and NC coherent pion production cross sections from several theoretical calculations in comparison with data. The unit is $10^{-40} {\rm cm}^2$.
- In the second, third, and fourth columns, theoretical cross sections have been convoluted with the neutrino fluxes used in K2K, T2K, and MiniBooNE experiments, respectively.
- The two results of the T2K are from different analyses in which different coherent pion production models were used.
- references are given in S. X. Nakamura et al. Rep. Prog. Phys 80(2017)056301

meson production reaction beyond Delta

- Reaction model(W < 2GeV) for neutrino induced meson production including $\pi N, \eta N, KY, \pi \pi$ N are developed.
- Model is constrained by currently available meson production data.
- N^*, Δ , Non-resonant mechanism, interference among amplitudes are important.
- Only simple dipole form is examined for N to resonance axial transition form factors.
- coherent pion production
 - Medium effects to the propagation of Delta is very important. (pion rescattering, absorption).
 - Microscopic theoretical models give rather stable predictions for coherent reaction cross section and consistent with $CC\pi^+$ data.
 - Inelastic reactions to the low energy excited nuclear states are not fully explored yet.