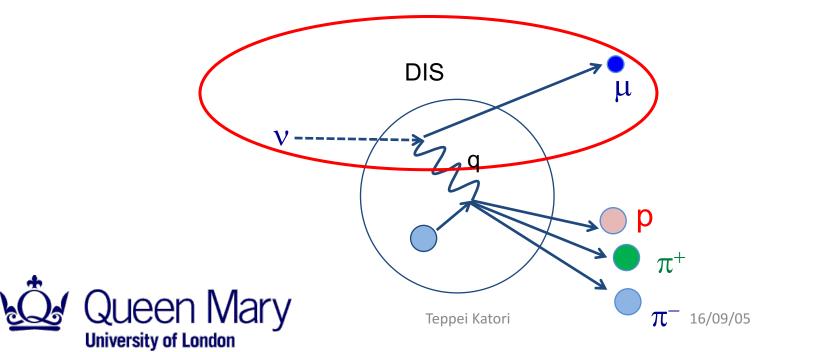
## **DIS and Hadronization systematic errors**

- 0. Introduction
- 1. DIS Bodek-Yang parameterization
- 2. DIS differential cross section error
- 3. DIS A-scaling error
- 4. DIS PDF error
- 5. Low-W hadronization error
- 6. High-W hadronization error
- 7. Conclusion

Teppei Katori and Shivesh Mandalia NuSTEC meeting, Nov. 16, 2017




Teppei Katori

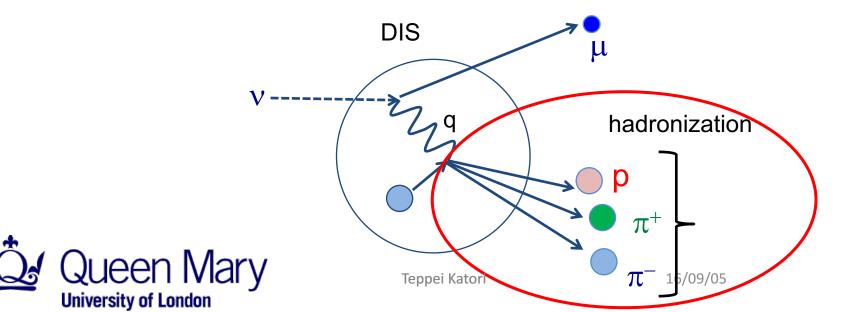
## 0. Neutrino cross section overview

#### Deep Inelastic Scattering (DIS)

- It defines the probability to scatter a charged lepton by an incident lepton with given energy
- DIS cross section is function of x and y, this is the differential cross section
- DIS cross section integrated in x and y is called total cross section and function of neutrino energy



## 0. Neutrino cross section overview


#### Deep Inelastic Scattering (DIS)

- It defines the probability to scatter a charged lepton by an incident lepton with given energy
- DIS cross section is function of x and y, this is the differential cross section
- DIS cross section integrated in x and y is called total cross section and function of neutrino energy

#### Hadronization

- Hadronization is a process to generate hadrons from given energy-momentum transfer
- number of hadrons (multiplicity), energy, and momentum of outgoing Hadrons are computed, somehow.

DIS and Hadronization are modelled independently



3

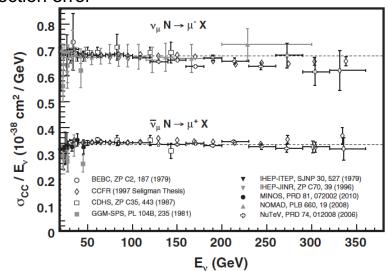
## 0. Neutrino cross section overview

#### Deep Inelastic Scattering (DIS)

- It defines the probability to scatter a charged lepton by an incident lepton with given energy
- DIS cross section is function of x and y, this is the differential cross section
- DIS cross section integrated in x and y is called total cross section and function of neutrino energy

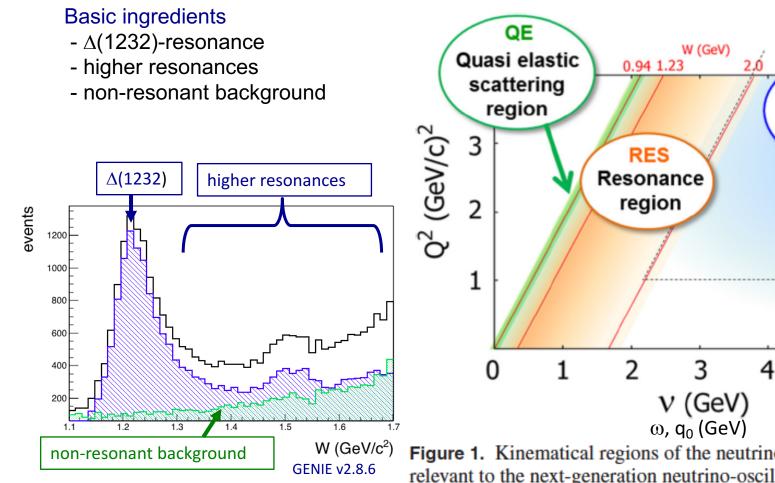
#### Hadronization

- Hadronization is a process to generate hadrons from given energy-momentum transfer
- number of hadrons (multiplicity), energy, and momentum of outgoing Hadrons are computed, somehow.


DIS and Hadronization are modelled independently

#### DIS total cross section error ~ 2%

- $\sigma(v)/E = 0.677 \pm 0.014 \times 10^{-38} \text{ (cm}^2/\text{GeV)}$
- This is the error of the charged lepton production rate by a neutrino with given energy (30-200 GeV)


Teppei Katori

- Most of our analyses need errors of differential cross section error





## 0. SIS region physics



Rep. Prog. Phys. 80 (2017) 056301

**Figure 1.** Kinematical regions of the neutrino-nucleus interaction relevant to the next-generation neutrino-oscillation experiments. The energy transfer to a nucleus and the squared four-momentum transfer are denoted by  $\nu$  and  $Q^2$ , respectively.



Teppei Katori, Queen Mary University of London 2017/04/1 8 6

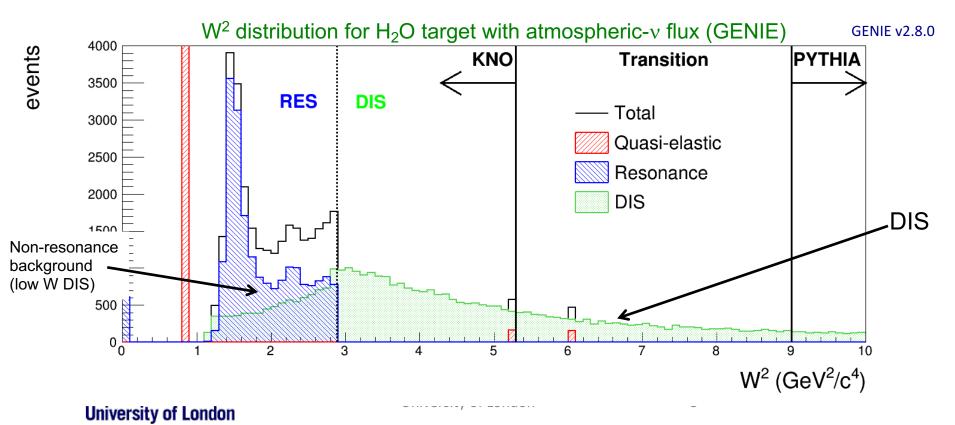
DIS

Deep inelastic

scattering

region

5


AGKY, EPJC63(2009)1 TK and Mandalia,JPhysG42(2015)115004

## 0. GENIE SIS model

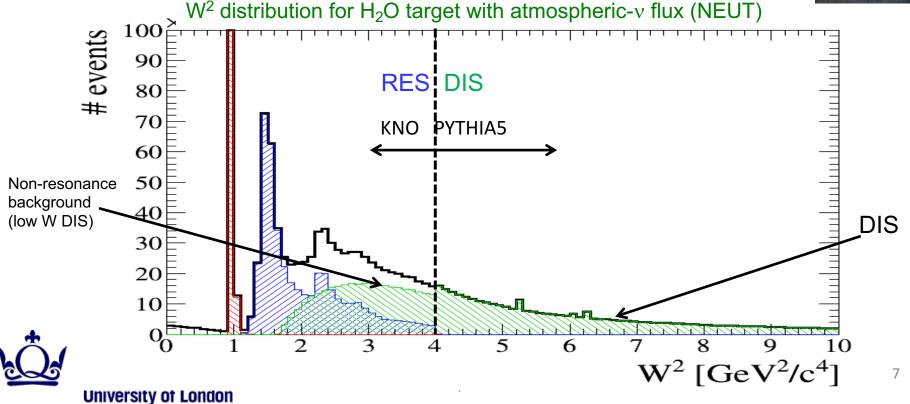
Cross section  $W^2 < 2.9 \text{ GeV}^2$  : RES  $W^2 > 2.9 \text{ GeV}^2$  : DIS Hadronization  $W^2 < 5.3 \text{ GeV}^2$  : KNO scaling based model  $2.3 \text{ GeV}^2 < W^2 < 9.0 \text{ GeV}^2$  : transition  $9.0 \text{ GeV}^2 < W^2$  : PYTHIA6

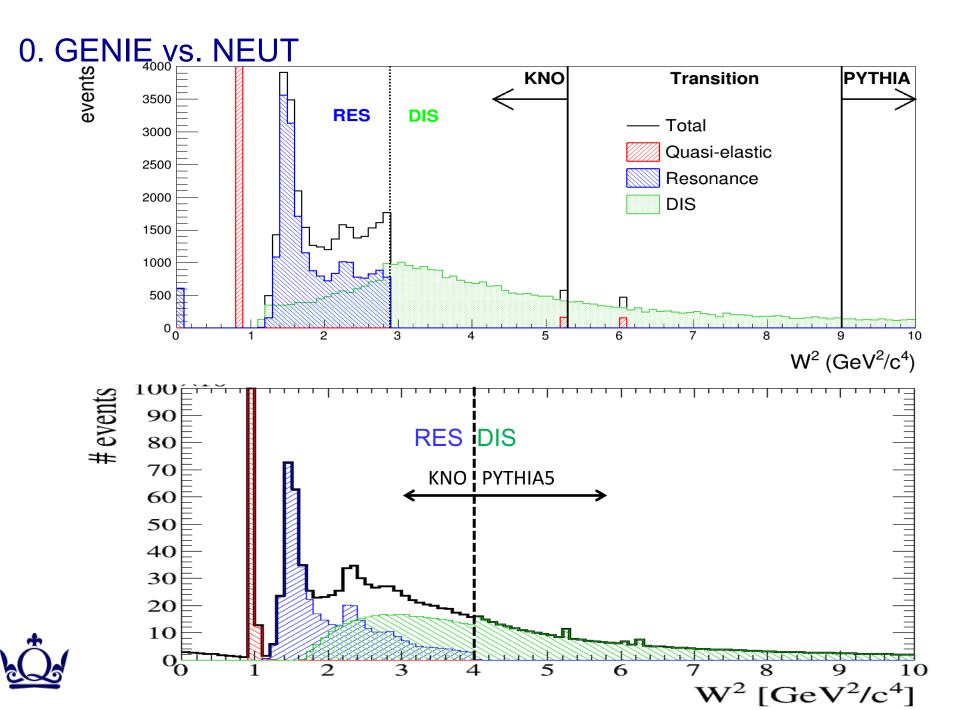
There are 2 kind of "transitions" in SIS region

- cross-section
- hadronization



## 0. NEUT SIS model


Cross section W<sup>2</sup><4 GeV<sup>2</sup> : RES W<sup>2</sup>>4 GeV<sup>2</sup> : DIS Hadronization W<sup>2</sup><4GeV<sup>2</sup> : KNO scaling based model 4GeV<sup>2</sup><W<sup>2</sup> : PYTHIA5


#### There are 2 kind of "transitions" in SIS region

- cross-section
- hadronization

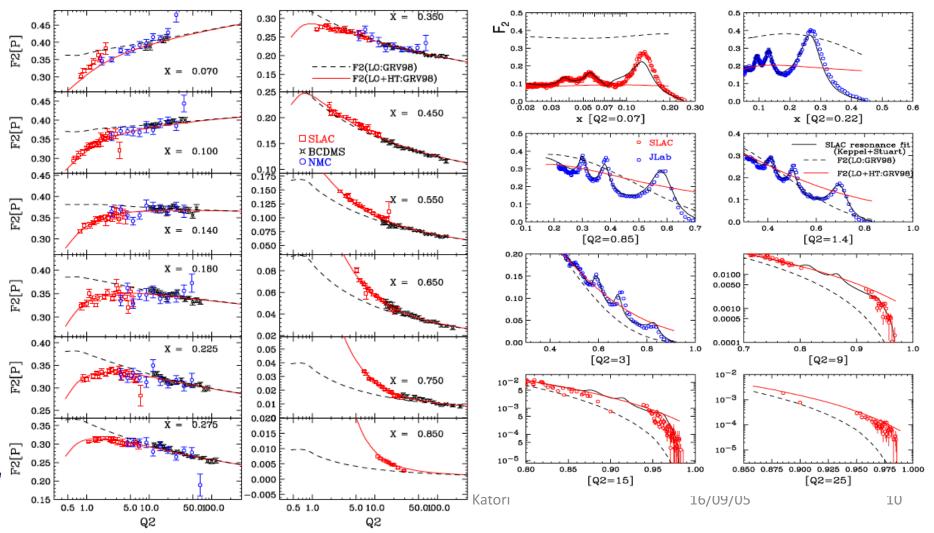
Christophe Bronner (IPMU)







## 0. DIS-hadronization error check list


- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

| DIS or<br>Hadronization | type of error                               | approach                                     | size                   |
|-------------------------|---------------------------------------------|----------------------------------------------|------------------------|
| DIS                     | Bodek-Yang correction                       | play with Bodek-Yang<br>parameters (by eyes) | expected to be tiny    |
| DIS                     | differential xs                             | NuTeV-GENIE comparison (bottom-up)           | ????                   |
| DIS                     | A-scaling                                   | MINERvA-GENIE<br>(bottom-up)                 | ????                   |
| DIS                     | PDF                                         | From nuclear PDF, CT10?<br>nCTEQ? (top-down) | ????                   |
| Hadronization           | low W averaged charged hadron multiplicity  | play with KNO parameters (by eyes)           | ????                   |
| Hadronization           | high W averaged charged hadron multiplicity | bubble chamber-PYTHIA comparison (bottom-up) | 1-2% by<br>GENIE study |



## 1. Bodek-Yang correction for low Q<sup>2</sup> DIS

GRV98 is a PDF designed for low Q2 region. Bodek-Yang correction makes GRV98 to work even lower Q2, or "duality" region by adding higher twist effect



Proton F2 function GRV98-BY correction vs. data

Bodek and Yang, AIP.Conf.Proc.670(2003)110, Nucl. Phys.B(Proc.Suppl.)139(2005)11

#### 1. Bodek-Yang correction for low Q<sup>2</sup> DIS

In GENIE, there are 11 parameters to control "Bodek-Yang correction" on GRV98 LO PDF

- A: high order twist correction
- B: quark transverse momentum
- Cvu1, Cvu2: valence u-guark PDF correction
- Cvd1, Cvd2: valence d-quark PDF correction
- Cs1u, Cs1d: sea u- and d-quark PDF correction
- x0, x1, x2: d(x)/u(x) correction

|            |                           | impact (%) |        |        |
|------------|---------------------------|------------|--------|--------|
|            | parameter                 | 1 year     | 3 year | 5 year |
|            | hierarchy                 | 100.0      | 100.0  | 100.0  |
|            | $\Delta m^2_{31}$         | 38.8       | 37.9   | 37.6   |
|            | Energy scale              | 21.2       | 21.4   | 21.7   |
|            | $A_{eff}$ scale           | 15.2       | 13.2   | 11.4   |
|            | $\theta_{23}$             | 3.4        | 4.8    | 5.7    |
|            | $\nu_{\rm e}/numu$ ratio  | 0.5        | 1.7    | 2.6    |
|            | $nu/\overline{\nu}$ ratio | 0.5        | 1.2    | 2.3    |
|            | $M_A^{RES}$               | 1.2        | 2.0    | 1.7    |
|            | $C_{V1u}^{BY}$            | 0.1        | 0.3    | 0.3    |
|            | $C_{V2u}^{BY}$            | 0.0        | 0.0    | 0.2    |
| DIS errors | $\theta_{12}$             | 0.0        | 0.1    | 0.2    |
|            | $A_{HT}^{BY}$             | 0.0        | 0.0    | 0.0    |
|            | $M_A^{CCQE}$              | 0.0        | 0.0    | 0.0    |
|            | $B_{HT}^{BY}$             | 0.0        | 0.0    | 0.0    |

Jeen Mary

University of London

**PINGU** Lol variations Name nominal value uncertainty (%)  $M_A^{CCQE}$ 0.99-15, +25 $M_A^{RES}$ 1.120 $\pm 20$  $\hat{A}_{HT}^{BY}$ 0.538 $\pm 25$  $B_{HT}^{BY}$ 0.305 $\pm 25$ 

0.291

0.189

 $\gamma_{V1u}^{BY}$ 

 $\gamma BY V 2u$ 

 $\pm 30$ 

 $\pm 30$ 

2xNachtmann  $\xi =$ variable

$$\xi \to \xi_{\omega} = \frac{2x\left(1 + \frac{M_{f}^{2} + B}{Q^{2}}\right)}{\left(1 + \sqrt{1 + \frac{4x^{2}M^{2}}{Q^{2}}}\right) + \frac{2Ax}{Q^{2}}}$$
$$K_{valence}(Q^{2}) = \left[1 - G_{D}^{2}(Q^{2})\right] \cdot \left(\frac{Q^{2} + C_{v2}}{Q^{2} + C_{v1}}\right)$$
$$K_{sea}(Q^{2}) = \frac{Q^{2}}{Q^{2} + C_{s1}}$$

Bodek and Yang, AIP.Conf.Proc.670(2003)110, Nucl.Phys.B(Proc.Suppl.)139(2005)11

## 1. Bodek-Yang correction errors

Parameter variations are defined

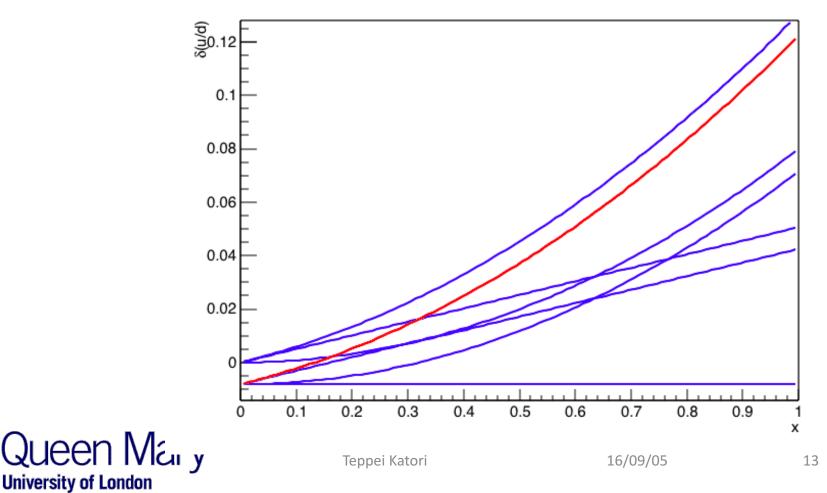
- errors A and B: I follow Joshua's choice
- errors on PDF correction: 30% for all
- errors on d(x)/u(x): next page

6

Since no correlations of parameters are available, 9 BY-systematic study samples are made to maximize of parameter variation effects

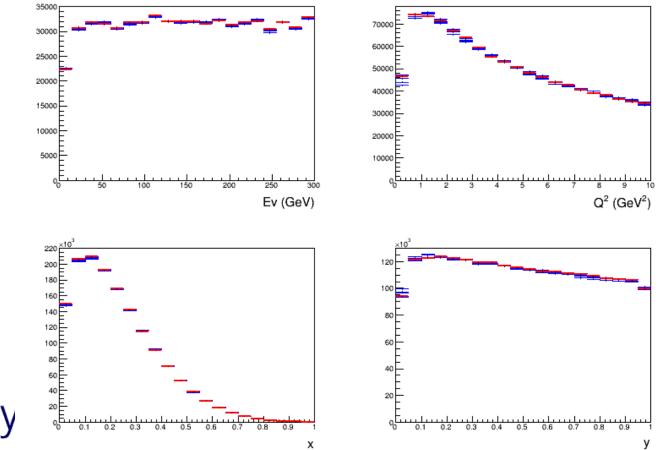
| BY-<br>parameters | CV       | error    |    |
|-------------------|----------|----------|----|
| А                 | 0.538    | ±25%     |    |
| В                 | 0.305    | ±25%     |    |
| CsU               | 0.363    | ±30%     |    |
| CsD               | 0.621    | ±30%     |    |
| Cv1U              | 0.291    | ±30%     |    |
| Cv2U              | 0.189    | ±30%     |    |
| Cv1D              | 0.202    | ±30%     |    |
| Cv2D              | 0.255    | ±30%     |    |
| X0                | -0.00817 | +0.00817 |    |
| X1                | 0.0506   | -0.0506  |    |
| X2                | 0.0798   | -0.0798  | at |
| University o      | f London |          |    |

| sample | sample                                  |
|--------|-----------------------------------------|
| 1      | default                                 |
| 2      | Α+δΑ, Β-δΒ                              |
| 3      | A-δA, B+δB                              |
| 4      | CsU+ $\delta$ CsU, CsD- $\delta$ CsD    |
| 5      | CsU- $\delta$ CsU, CsD+ $\delta$ CsD    |
| 6      | $Cv1U+\delta Cv1U$ , $Cv2U-\delta Cv2U$ |
| 7      | $Cv1U-\delta Cv1U$ , $Cv2U+\delta Cv2U$ |
| 8      | Cv1D+δCv1D, Cv2D-δCv2D                  |
| 9      | $Cv1D-\delta Cv1D$ , $Cv2D+\delta Cv2D$ |
| 10     | X0=0, X1=0, X2=0                        |


## 1. d(x)/u(x) variation study

#### $\delta(d(x)/u(x)) = X0 + X1^*x + X2^*x^2$

- 2<sup>nd</sup> order polynomial describe this error, ~10% effect at large x


- A reasonable choice of envelope is when the function is 0.

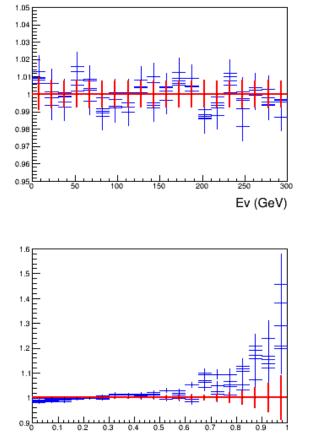
BY u/d ratio correction, 0.05<x<0.75

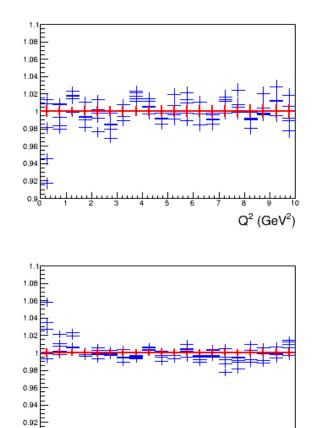


#### 1. Results

BY parameter variation make small variations in Ev, Q2, x, y.







## 1. Results

BY parameter variation make small variations in Ev. Q2, x, y.

- Ev: <2% variation in all region
- Q2: ~8% variation at Q2=0.5 GeV2
- x: ~50% variation at x~1
- y: ~6% variation at y~0

In general, variation can be large by assuming correlations on parameters





0.6

## 1. DIS Bodek-Yang correction error

- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

| DIS or<br>Hadronization | type of error                               | approach                                     | size                   |
|-------------------------|---------------------------------------------|----------------------------------------------|------------------------|
| DIS                     | Bodek-Yang correction                       | play with Bodek-Yang<br>parameters (by eyes) | maybe<br>large?        |
| DIS                     | differential xs                             | NuTeV-GENIE comparison (bottom-up)           | ????                   |
| DIS                     | A-scaling                                   | MINERvA-GENIE<br>(bottom-up)                 | ????                   |
| DIS                     | PDF                                         | From nuclear PDF, CT10?<br>nCTEQ? (top-down) | ????                   |
| Hadronization           | low W averaged charged hadron multiplicity  | play with KNO parameters (by eyes)           | ????                   |
| Hadronization           | high W averaged charged hadron multiplicity | bubble chamber-PYTHIA comparison (bottom-up) | 1-2% by<br>GENIE study |



Shivesh Mandalia (Queen Mary)



NuTeV v-Fe and antiv-Fe differential cross section (x, y, Ev)

Antineutrino

x=0.015

x=0.045

x = 0.125

x=0.175

x=0.275

x=0.350

x=0.550

x=0.650


17

Neutrino

#### GENIE v2.10.6

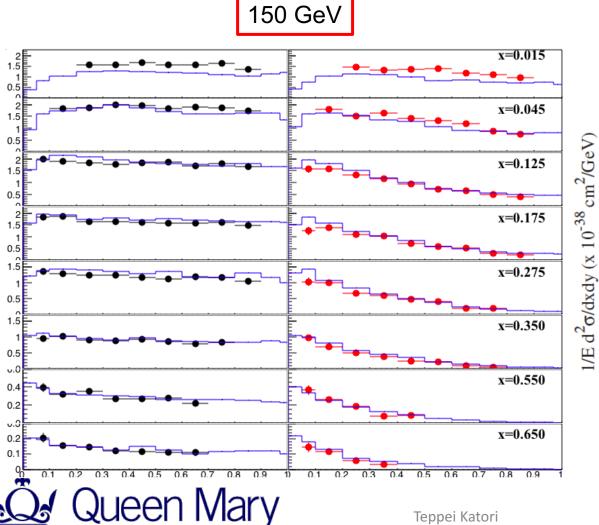
2. GENIE-NuTeV comparison

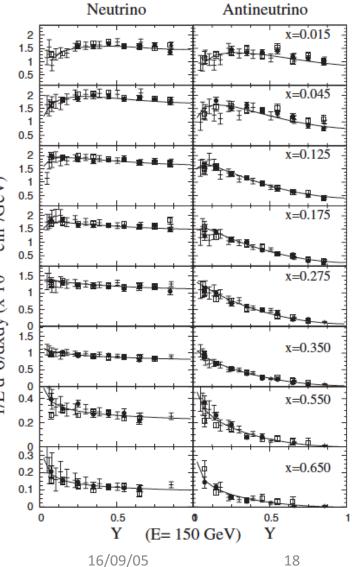
Seems GENIE reproduce NuTeV data except very low x



Shivesh Mandalia (Queen Mary)




NuTeV v-Fe and antiv-Fe differential cross section (x, y, Ev)


#### GENIE v2.10.6

University of London

2. GENIE-NuTeV comparison

Seems GENIE reproduce NuTeV data except very low x

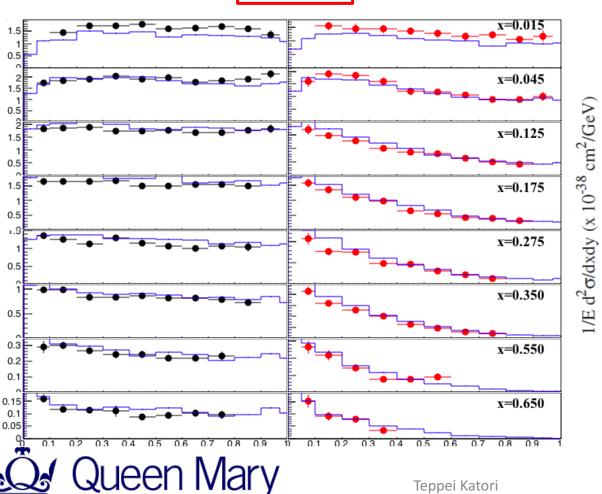




Shivesh Mandalia (Queen Mary)

Teppei Katori

NuTeV v-Fe and antiv-Fe differential cross section (x, y, Ev)


#### **GENIE v2.10.6**

University of London

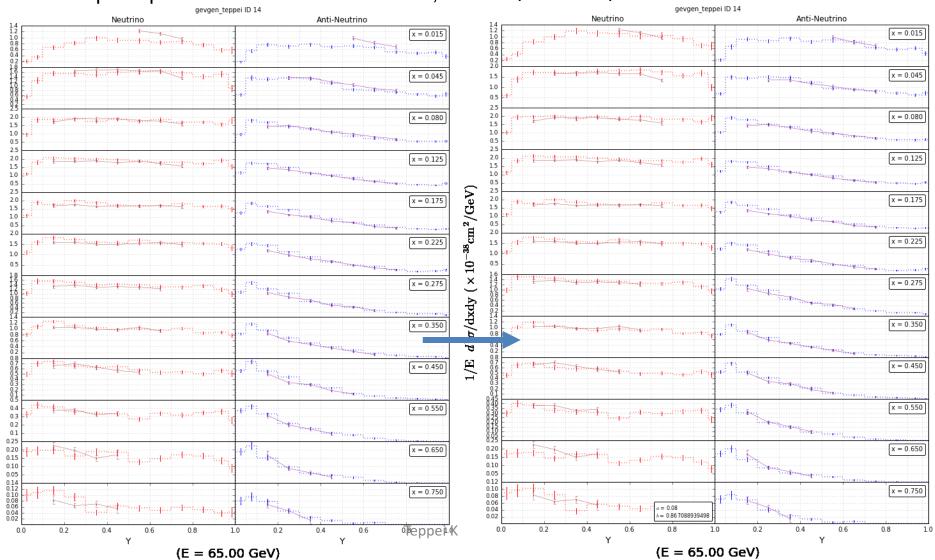
2. GENIE-NuTeV comparison

Seems GENIE reproduce NuTeV data except very low x

245 GeV





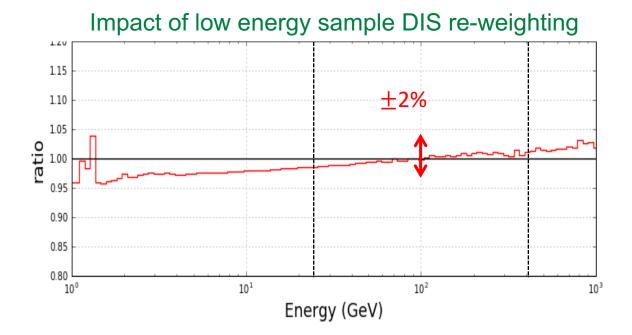

16/09/05

## 2. DIS differential cross section error

#### $F(x,y) = bx^{-a}$

#### GENIE-NuTeV comparison

- simple 2-parameter model with a= 0.08, b=0.87 (for a trial)




## 2. DIS differential cross section error

$$F(x,y) = bx^{-a}$$

#### GENIE-NuTeV comparison

- simple 2-parameter model with a= 0.08, b=0.87 (for a trial)
- it has 2-3% shift of energy spectrum in 30-200 GeV
- However, the shift (~error) is larger than ±2% at <10GeV and >300 GeV

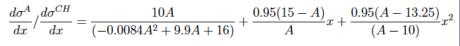




## 2. DIS differential cross section error

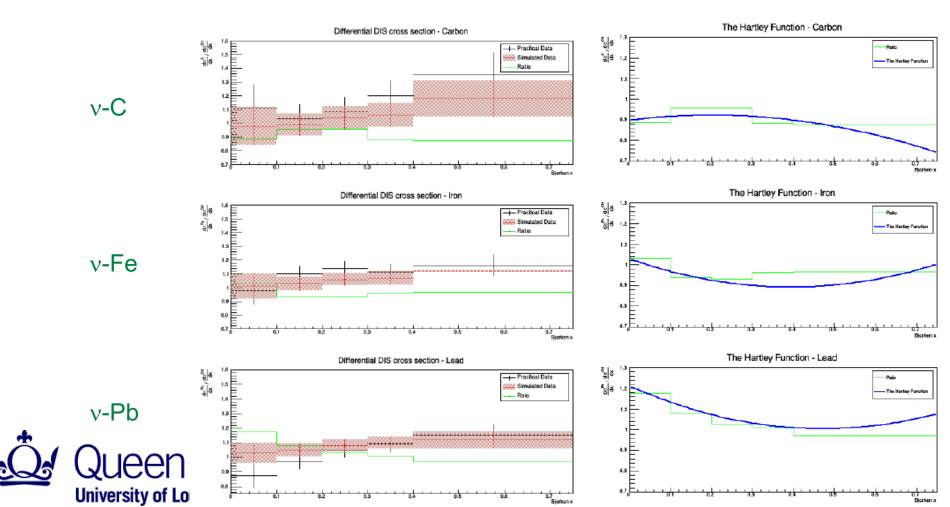
- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

| DIS or<br>Hadronization | type of error                               | approach                                     | size                   |
|-------------------------|---------------------------------------------|----------------------------------------------|------------------------|
| DIS                     | Bodek-Yang correction                       | play with Bodek-Yang<br>parameters (by eyes) | maybe<br>large?        |
| DIS                     | differential xs                             | NuTeV-GENIE comparison (bottom-up)           | 2-3% by<br>GENIE study |
| DIS                     | A-scaling                                   | MINERvA-GENIE<br>(bottom-up)                 | ????                   |
| DIS                     | PDF                                         | From nuclear PDF, CT10?<br>nCTEQ? (top-down) | ????                   |
| Hadronization           | low W averaged charged hadron multiplicity  | play with KNO parameters (by eyes)           | ????                   |
| Hadronization           | high W averaged charged hadron multiplicity | bubble chamber-PYTHIA comparison (bottom-up) | 1-2% by<br>GENIE study |




MINERvA, PRD93(2016)071101

## 3. DIS A-dependent error


#### **GENIE-MINERvA** comparison

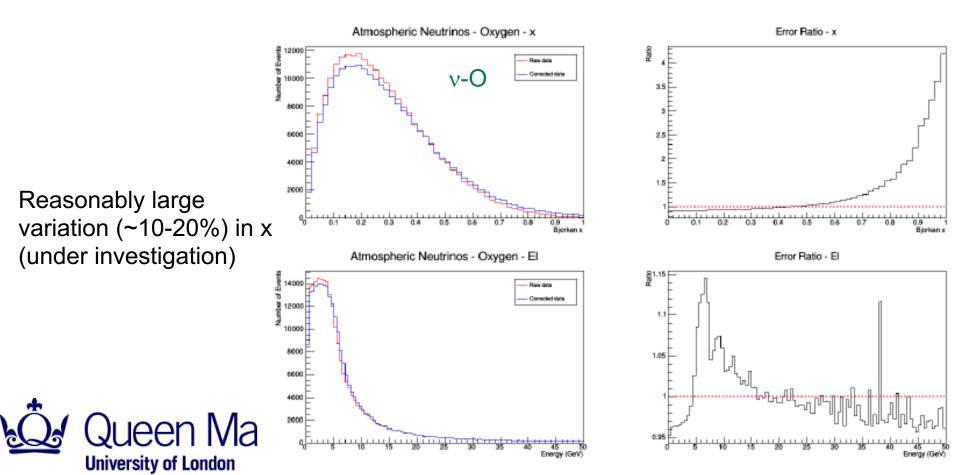
- Make a polynomial scaling function in A from data-MC ratio.
- Weight GENIE with function of x
- Bottom-up A-dependent DIS correction in x





Liam Hartley (Queen Mary)




MINERvA, PRD93(2016)071101

#### 3. DIS A-dependent error

$$\frac{d\sigma^A}{dx} / \frac{d\sigma^{CH}}{dx} = \frac{10A}{(-0.0084A^2 + 9.9A + 16)} + \frac{0.95(15 - A)}{A}x + \frac{0.95(A - 13.25)}{(A - 10)}x^2 + \frac{10A}{(A - 10)}x^2 + \frac{10A}{($$

#### **GENIE-MINERvA** comparison

- Make a polynomial scaling function in A from data-MC ratio.
- Weight GENIE with function of x
- Bottom-up A-dependent DIS correction in x
- Make prediction of correction in any targets, for example oxygen



## 3. DIS A-dependent error

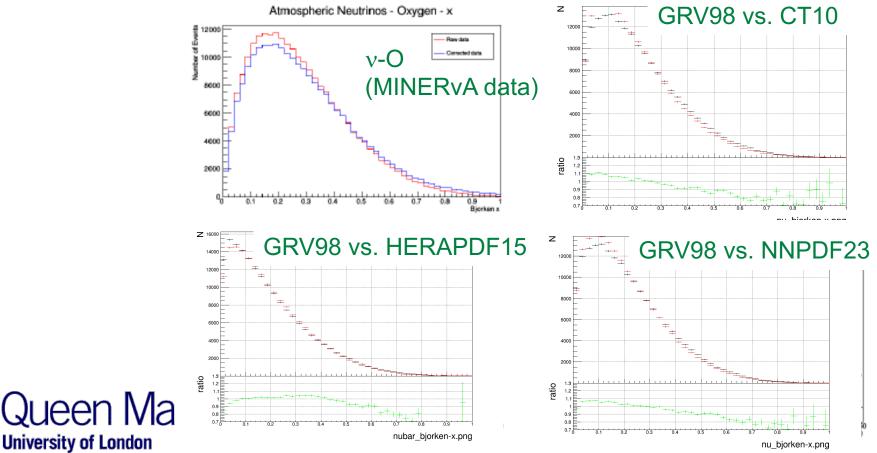
- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

| DIS or<br>Hadronization | type of error                               | approach                                     | size                   |
|-------------------------|---------------------------------------------|----------------------------------------------|------------------------|
| DIS                     | Bodek-Yang correction                       | play with Bodek-Yang<br>parameters (by eyes) | maybe<br>large?        |
| DIS                     | differential xs                             | NuTeV-GENIE comparison (bottom-up)           | 2-3% by<br>GENIE study |
| DIS                     | A-scaling                                   | MINERvA-GENIE<br>(bottom-up)                 | maybe<br>large?        |
| DIS                     | PDF                                         | From nuclear PDF, CT10?<br>nCTEQ? (top-down) | ????                   |
| Hadronization           | low W averaged charged hadron multiplicity  | play with KNO parameters (by eyes)           | ????                   |
| Hadronization           | high W averaged charged hadron multiplicity | bubble chamber-PYTHIA comparison (bottom-up) | 1-2% by<br>GENIE study |



Shivesh Mandalia (Queen Mary)

### 4. DIS PDF error


ry) DF

We tried to use couple of PDF from LHA PDF

- CT10 (NLO)
- HERAPDF15 (NLO)
- NNPDF23 (NLO)

As expected(?), PDF variation (top-down error) is smaller and well-controlled.

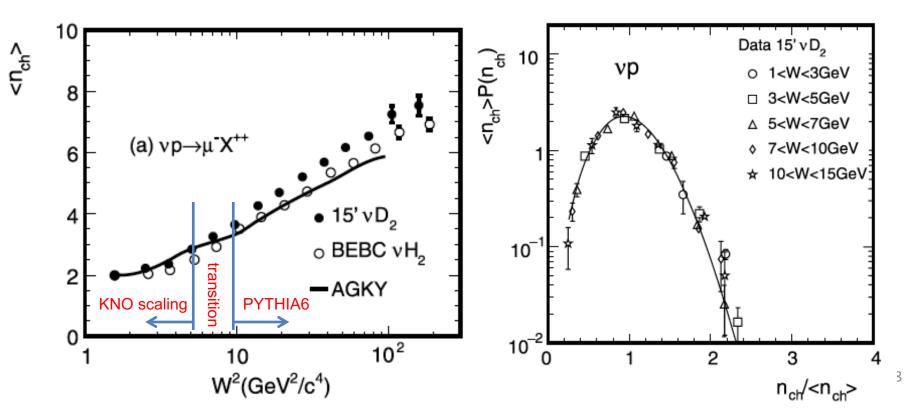
 $\rightarrow$  If we use a better PDF, variation would be few %



## 4. DIS PDF error

- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

| DIS or<br>Hadronization | type of error                               | approach                                     | size                   |
|-------------------------|---------------------------------------------|----------------------------------------------|------------------------|
| DIS                     | Bodek-Yang correction                       | play with Bodek-Yang parameters (by eyes)    | maybe<br>large?        |
| DIS                     | differential xs                             | NuTeV-GENIE comparison (bottom-up)           | 2-3% by<br>GENIE study |
| DIS                     | A-scaling                                   | MINERvA-GENIE<br>(bottom-up)                 | maybe<br>large?        |
| DIS                     | PDF                                         | From nuclear PDF, CT10?<br>nCTEQ? (top-down) | expected to be tiny    |
| Hadronization           | low W averaged charged hadron multiplicity  | play with KNO parameters (by eyes)           | ????                   |
| Hadronization           | high W averaged charged hadron multiplicity | bubble chamber-PYTHIA comparison (bottom-up) | 1-2% by<br>GENIE study |



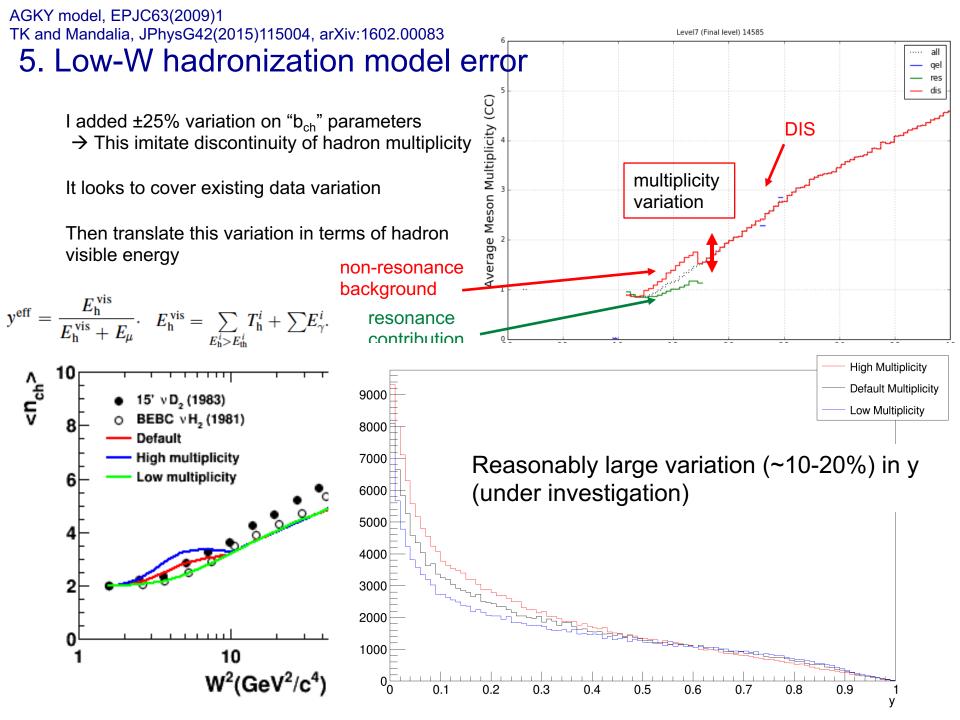

#### AGKY model, EPJC63(2009)1 TK and Mandalia, JPhysG42(2015)115004, arXiv:1602.00083 5. Low-W hadronization model

In AGKY model, hadronization model is a combination of 2 models.

KNO-scaling based model (low W hadronization)

- Averaged charged hadron multiplicity <n<sub>ch</sub>> is chosen from data, with empirical function
- Averaged neutral hadron multiplicity is chosen from isospin.
- Then variance of multiplicity is chosen from KNO-scaling law.






- Data-driven model (agree with bubble chamber data, by construction)  $\langle n_{ch} \rangle = a_{ch} + b_{ch} \cdot \ln(W^2)$ 

**Carl Stanley** 

$$\langle n \rangle \cdot P(n) = \frac{2e^{-c}c^{cn/\langle n \rangle + 1}}{\Gamma(cn/\langle n \rangle + 1)}$$

#### AGKY model, EPJC63(2009)1 TK and Mandalia, JPhysG42(2015)115004, arXiv:1602.00083 Level7 (Final level) 14585 5. Low-W hadronization model all qel res dis Average Meson Multiplicity (CC) I added ±25% variation on "b<sub>ch</sub>" parameters DIS $\rightarrow$ This imitate discontinuity of hadron multiplicity multiplicity It looks to cover existing data variation variation Then translate this variation in terms of hadron visible energy non-resonance background $y^{\mathrm{eff}} = rac{E_{\mathrm{h}}^{\mathrm{vis}}}{E_{\mathrm{h}}^{\mathrm{vis}} + E_{\mu}} \cdot \quad E_{\mathrm{h}}^{\mathrm{vis}} = \sum_{E_{\mathrm{h}}^{i} > E_{\mathrm{th}}^{i}} T_{\mathrm{h}}^{i} + \sum E_{\gamma}^{i}.$ resonance contribution 1.5 2.0 2.5 3.0 3.5 1.0 Ws 10 <n><n>< <n< 15' v D<sub>2</sub> (1983) 15' v D, (1983) BEBC vH<sub>2</sub> (1981) BEBC v D, (1984) Default Default High multiplicity High multiplicity .... Low multiplicity Low multiplicity 6 ۰. ν**p**→μ⁻**Χ**ᢪ ν**n**→μ<sup>-</sup>Χ' 10<sup>2</sup> 10<sup>2</sup> 10 10 W<sup>2</sup>(GeV<sup>2</sup>/c<sup>4</sup>) $W^2(GeV^2/c^4)$

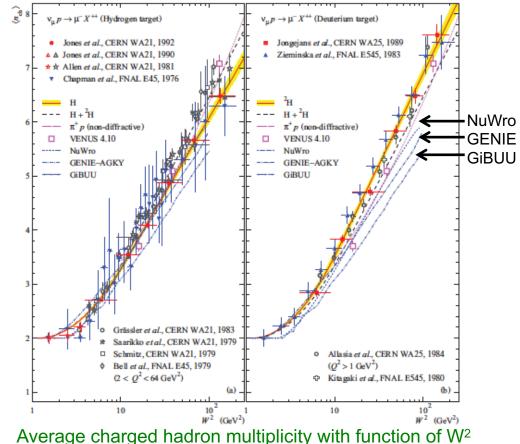


## 5. Low-W hadronization error

- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

| DIS or<br>Hadronization | type of error                               | approach                                     | size                   |
|-------------------------|---------------------------------------------|----------------------------------------------|------------------------|
| DIS                     | Bodek-Yang correction                       | play with Bodek-Yang<br>parameters (by eyes) | maybe<br>large?        |
| DIS                     | differential xs                             | NuTeV-GENIE comparison<br>(bottom-up)        | 2-3% by<br>GENIE study |
| DIS                     | A-scaling                                   | MINERvA-GENIE<br>(bottom-up)                 | maybe<br>large?        |
| DIS                     | PDF                                         | From nuclear PDF, CT10?<br>nCTEQ? (top-down) | expected to be tiny    |
| Hadronization           | low W averaged charged hadron multiplicity  | play with KNO parameters (by eyes)           | maybe<br>large?        |
| Hadronization           | high W averaged charged hadron multiplicity | bubble chamber-PYTHIA comparison (bottom-up) | 1-2% by<br>GENIE study |




Kuzmin and Naumov, PRC88(2013)065501

## 6. High-W hadronization model

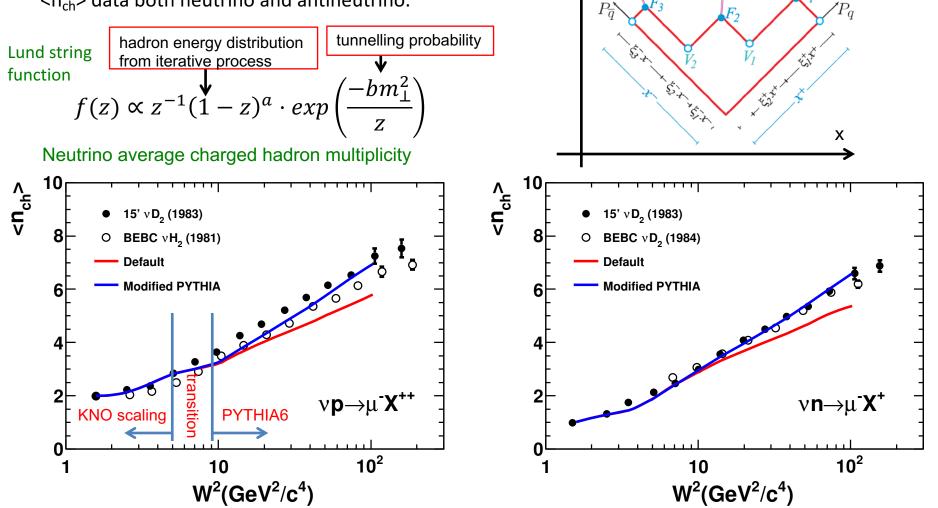
#### Kuzmin-Naumov fit

- They systematically analysed all bubble chamber data
  - Difference of hydrogen and deuterium data
  - Presence of kinematic cuts
  - Better parameterization

All PYTHIA-based models underestimate averaged charged hadron multiplicity data (GiBUU, GENIE, NuWro, NEUT)






Герреі Katori, Queen Mary University of London

2015/09/0 2 Sjostrand, Lonnblad, and Mrenna, hep-ph/0108264 Gallmeister and Falter, PLB630(2005)40, TK and Mandalia, JPhysG42(2015)115004

## 6. High-W hadronization model

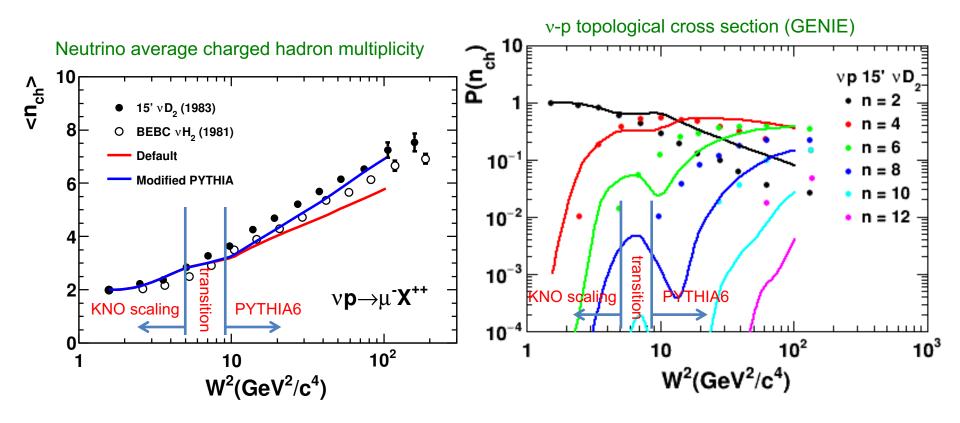
#### Averaged charged hadron multiplicity <n<sub>ch</sub>>

- PYTHIA6 with tuned Lund string function can reproduce <n<sub>ch</sub>> data both neutrino and antineutrino.





(Queen Mary)


Sketch of fragmentation from  $q - \bar{q}$  string breaking TK and Mandalia,JPhysG42(2015)115004 Zieminska et al (Fermilab 15'),PRD27(1993)47

## 6. High-W hadronization model

#### Bubble chamber topological cross section data

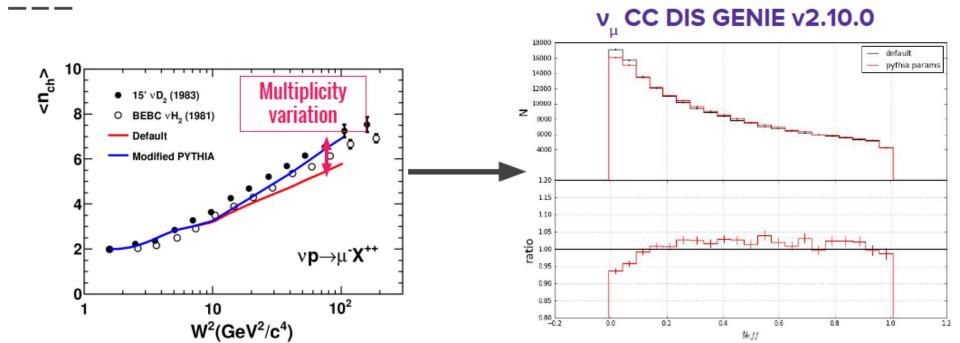
Although averaged charged hadron multiplicity makes continuous curve, topological cross sections are discontinuous, because multiplicity dispersion by PYTHIA6 is much narrower than bubble chamber data.

Impact of hadronization is small for experiments which only measure hadron shower (NOvA, PINGU, ORCA), but large for higher resolution detectors (MINERvA, T2K ND280, LArTPC)



Shivesh Mandalia (Queen Mary)




TK and Mandalia, JPhysG42(2015)115004

## 6. High-W hadronization model error

#### Bubble chamber topological cross section data

Although averaged charged hadron multiplicity makes continuous curve, topological cross sections are discontinuous, because multiplicity dispersion by PYTHIA6 is much narrower than bubble chamber data.

Impact of hadronization is small for experiments which only measure hadron shower (NOvA, PINGU, ORCA), but large for higher resolution detectors (MINERvA, T2K ND280, LArTPC)



Shivesh Mandalia

(Queen Mary)

## 7. DIS-hadronization errors, summary

- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

|                            | DIS or<br>Hadronization       | type of error                               | approach                                     | size                   |
|----------------------------|-------------------------------|---------------------------------------------|----------------------------------------------|------------------------|
| some study<br>(MSU study   | -                             | Bodek-Yang correction                       | play with Bodek-Yang parameters (by eyes)    | maybe<br>large?        |
| done                       | DIS                           | differential xs                             | NuTeV-GENIE comparison<br>(bottom-up)        | 1-2% by<br>GENIE study |
| under<br>investigatio      | DIS<br>n                      | A-scaling                                   | MINERvA-GENIE<br>(bottom-up)                 | maybe<br>large?        |
| some study<br>(MSU study   | -                             | PDF                                         | From nuclear PDF, CT10?<br>nCTEQ? (top-down) | expected to be tiny    |
| under<br>investigatio      | Hadronization<br><sup>n</sup> | low W averaged charged hadron multiplicity  | play with KNO parameters (by eyes)           | maybe<br>large?        |
| <b>done</b><br>JPhysG42(20 | Hadronization                 | high W averaged charged hadron multiplicity | bubble chamber-PYTHIA comparison (bottom-up) | 1-2% by<br>GENIE study |



# Back up



Teppei Katori

TK and Mandalia, JPhysG42(2015)115004, arXiv:1602.00083

#### 1. Neutrino cross section overview

GENIE uses "Frankenstein" model..., there are 2 transtions for both cross section and hadronization

**Cross section** W<sup>2</sup><2.9 GeV<sup>2</sup> : RES W<sup>2</sup>>2.9 GeV<sup>2</sup> : DIS

#### Hadronization (AGKY model)

W<sup>2</sup><5.3GeV<sup>2</sup> : KNO scaling based model 5.3GeV<sup>2</sup><W<sup>2</sup><9.0GeV<sup>2</sup> : transition 9.0GeV<sup>2</sup><W<sup>2</sup> : PYTHIA6

