NuSTEC and **DUNE Preparations**

R. Petti

University of South Carolina, Columbia SC, USA

NuSTEC board meeting Fermilab, November 16, 2017

Roberto Petti

INTERACTIONS IN DUNE

✤ In DUNE about 25% Quasi-elastic, 42% Resonances and 33% DIS

- Wide energy spectrum \implies NOT a simple counting experiment;
- Covers intermediate transition region, where QE, RES, and DIS have comparable weights;
- Need to understand all the QE, RES, DIS processes on ⁴⁰Ar and their interplay at the boundary of the corresponding kinematic regions.

 \implies Substantial uncertainties on $\nu(\bar{\nu})$ -nucleus interactions

USC

• Events of exclusive process X (signal & bkgnd) in both ND ($P_{osc} \sim 1$) and FD:

$$N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \ \Phi(E_{\nu}) \ P_{\rm osc}(E_{\nu}) \ \sigma_{\rm X}(E_{\nu}) \ R_{\rm phys}(E_{\rm rec}, E_{\nu}) \ R_{\rm det}(E_{\rm rec}, E_{\nu})$$

 $R_{\rm phys}$ describes the physics smearing (e.g. final state interactions) $R_{\rm det}$ describes the detector smearing (e.g. readout, pile-up)

The ND complex provides in-situ constraints on Φ, σ_X, R_{phys}, R_{det}, to be extrapolated at the FD location (FD/ND ratio)
 ⇒ Uncertainties at FD must be < than FD statistics: ~ 1,000 ν_e CC, 10,000 ν_μ CC

• Uncertainties on modeling (anti)neutrino interactions directly affect the measurement of Φ , σ_X , R_{phys} and only indirectly R_{det} (acceptances, efficiencies)

MEASUREMENTS IN DUNE ND

- In DUNE considering a highly capable ND complex with hybrid design including a nonmagnetized LAr detector followed by a multi-purpose low-density tracker (MPT).
- Number of events/ton for the inclusive CC interactions of the various flavors expected in ND with the nominal 1.07 MW beam (80 GeV, 1.47 ×10²¹ pot/year):

Interaction type	Evt/ton (5y FHC)	Evt/ton (5y RHC)
ν_{μ} CC	7,352,430	508,172
$\bar{\nu}_{\mu}$ CC	150,076	2,270,050
ν_e CC	90,137	25,273
$ar{ u}_e$ CC	9,270	25,124

- Fiducial masses under consideration ~ 25 tons for LAr and \sim a few tons for MPT imply large event statistics in ND for all interaction types
 - \implies Limiting factor in ND measurements from modeling of $\nu(\bar{\nu})$ -nucleus interactions

• $\Phi(E_{\nu})$ flux measurements of all flavors $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$

- Relative ν_μ flux vs. E_ν from the ν < 0.25 GeV CC sample. Need to understand low-ν region (QE and RES) to quantify model uncertainties on flux correction factor and event selection (ν cut)
- $\bar{\nu}_{\mu}/\nu_{\mu}$ vs. E_{ν} from coherent π^{\pm} production. Need to quantify theoretical uncertainties on cross-sections for different A targets

• $\sigma_{\rm X}(E_{\nu})$ for $\nu(\bar{\nu})$ exclusive processes on Ar target

- Most critical regions resonance production & transition region from SIS to DIS
- Quantify effects of non-perturbative power corrections from HT and TMC in $\nu(\bar{\nu})$ -nucleon scattering
- Understand interplay of LT and HT nuclear effects and differences with respect to e, μ scattering
- Study applicability of quark-hadron duality to $\nu(\bar{\nu})$ scattering vs. isospin of target

$\bullet | R_{\rm phys}(E_{\rm rec}, E_{\nu}) | \text{ requires multiple nuclear targets}$

- Need to understand the effect of the nuclear smearing from FSI in order to unfold the response function from measurements (e.g. neutron production, multi-nucleon production, low-threshold particles, etc.)
- Need to refine hadronization models to understand signal & backgrounds, especially in the SIS/DIS transition region.

RICH SHORT BASELINE PHYSICS

PRECISION MEASUREMENTS

- Measurement of $\sin^2 \theta_W$ and electroweak physics;
- Measurement of strange sea contribution to the nucleon spin Δs ;
- Precision tests of isospin symmetry;
- Precision tests of the structure of the weak current: PCAC, CVC;
- <u>Adler sum rule;</u>
- Studies of QCD and hadron structure of nucleons and nuclei;
- Strange sea and charm production;
- Measurement of Nuclear effects in neutrino interactions;
- Precision measurements of cross-sections and particle production; etc.

Deep synergy with the LBL oscillation program: same requirements and mutual feedback

SEARCHES FOR NEW PHYSICS

- Search for weakly interacting massive particles (e.g. vMSM sterile neutrinos);
- Search for high Δm^2 neutrino oscillations (e.g. LSND, MiniBooNE)
- Search for light (sub-GeV) Dark Matter; etc.
- ⇒ A generational advance in the study of fundamental interactions / structure of matter requiring a new level of theoretical accuracy