NuSTEC at the Short Baseline Neutrino programme

Andy Furmanski
NuSTEC board meeting
16th November 2017

SBN summary

- Three LArTPCs at 100, 450, and 600m (approx) along the BNB beamline
- BNB is a wide band beam with peak at 600MeV

Oscillation searches

• Using near, intermediate, and far detectors, search for ν_μ disappearance and ν_e appearance

 Try to avoid strong model dependence using calorimetric energy reconstruction

Of course, this does introduce different model

dependencies

– And new difficulties!

- Potential oscillation signal at ICARUS (far detector)
- Intrinsics and other backgrounds constrained at near detector

Key detector challenges

- Long drift time, and a high cosmic rate (no overburden)
- Photon conversion length is 14cm
 - Worries about merging cosmogenic activity in neutrino reconstruction
- Detector effects such as space charge, lifetime, recombination, diffusion
- Large fraction of muons escape detector need to use momentum estimation from multiple coulomb scattering
 - Angular dependence to momentum resolution

Low energy protons

- We are pushing our proton reconstruction threshold down from ~400MeV/c to ~200MeV/c
 - Not just yet, but work has started. MicroBooNE is already highly competitive with MINERvA
- Fairly strong angular-dependent efficiency
- Lost protons (and neutrons) means a modeldependent energy correction
- Theory models that retain the hadronic degrees of freedom would be very welcome!

Extrapolation from light nuclei

- Most recent data at these energies is on hydrocarbon targets
- Models built for carbon extrapolated to argon
 - Argon is bigger more FSI etc
 - Different p/n ratio np/pp correlations?
- Advice on this extrapolation, or models built for argon, would be awesome!

muon-electron differences

- Best sensitivity joint fit of all v_{μ} and v_{e} samples at 3 detectors
- Appearance signal expected at low energy (<500MeV)
 - Mass difference leads to different coverage of energy/ momentum transfer
 - Radiative corrections
 - mass terms in form factors
 (second class currents,
 pseudoscalar form factor
 changes)

What we bring to the table - data!!!

- SBND in particular will have huge statistics
- We can provide very precise topological fluxintegrated measurements

Inclusive	E 200 160
Inclusive	5,389,168
$0~\pi$	3,814,198
$0~\pi+0$ p	27,269
$0~\pi+1$ p ($>20~ ext{MeV})$	1,629,252
$0~\pi + 2$ p ($> 20~ ext{MeV})$	1,150,368
$0~\pi + 3$ p ($> 20~ ext{MeV})$	413,956
$0 \pi + > 3p (> 20 \text{ MeV})$	396,212
$1~\pi^+ + X$	942,555
$1~\pi^- + X$	38,012
$1~\pi^0 + X$	406,555
$2 \pi + X$	145,336
$\geqslant 3\pi + X$	42,510

- We are going to need help to understand all the data we have!
- What is the most useful thing to measure?
- What is the best way of presenting this?

Summary

SBN wants:

- Models that predict proton spectra
- Advice on extrapolating from lower mass nuclei
- Calculations of corrections that impact the v_{μ}/v_{e} cross section ratio
- In exchange for:
 - Large amounts of high-precision, high-statistics data!

