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Chapter 1

INntroduction



ADb-initio nuclear theory

« Atomic nuclei are strongly interacting many-body systems exhibiting fascinating properties
including: shell structure, pairing and superfluidity, deformation, and self-emerging clustering.
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* Understanding their structure, reactions, and electroweak properties within a unified framework
well-rooted in quantum chromodynamics has been a long-standing goal of nuclear physics.



Ab-initio nuclear theory

* Nuclei are self-bound system whose structure is dictated by strong and electromagnetic forces
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e It is truly astonishing that the nuclear chart is fully determined by only five parameters:
the up-, down- and strange-quark masses, the overall scale of the strong interactions and the
electromagnetic coupling constant
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From QCD to nuclear physics

 Owing to its non-abelian character, QCD is strongly non-perturbative in its coupling constant

at “large” distances.

 Lattice-QCD is the most reliable way of “solving”
QCD in the low-energy regime, and it promises to
provide a solid foundation for the structure of nuclei
directly from QCD

e The applicability of Lattice-QCD is limited to few
body systems, (A<4), and to a nuclear physics in
which the pion mass must be kept much higher
than the physical one.
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» Capitalizing on Lattice-QCD calculations at quark masses heavier than found in Nature, we try to
understand whether Standard Model parameters might have to be finely tuned for nuclei to be

stable: a problem as intriguing as that of the cosmological constant.

* Lattice-QCD inputs are essential when experimental data are scarce, as in the determination of the

nucleon axial form factor, nucleon-hyperon, and three-neutron interactions



From QCD to nuclear physics

» At the energy regime relevant for the description of nuclei, quark and gluons are confined inside
hadrons. Nucleons can treated as point-like particles interacting through the Hamiltonian
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 Effective field theories are the link between QCD and nuclear observables. They exploit the
separation between the “hard” (M~nucleon mass) and “soft” (Q ~ exchanged momentum) scales
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The nuclear Hamiltonian

(Much) more in Saori’s lectures!

* Ab initio approaches are based on the non relativistic hamiltonian

Realistic nucleon-nucleon potentials are controlled by ~4300 np and pp scattering data below 350
MeV of the Nijmegen database (Saori’s lectures)
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Three-nucleon interactions effectively include the lowest nucleon excitation, the A(1232)
resonance, end other nuclear effects
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(Much) more in Saori’s lectures!

Nuclear currents

The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

V - Jem +i[H, Jpy] =0

* The above equation implies that Jgy; involves e They are essential for low-momentum and
two-nucleon contributions. low-energy transfer transitions.
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(Much) more in Natalie’s lectures!

INntroduction

* The Liquid Drop Model assumes that nuclei can be treated as drops of an incompressible liquid

* This model encompasses the saturation of nuclear forces, a consequence of their short-range nature

* The nuclear binding energy is given by the Weizsacker formula
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(Much) more in Natalie’s lectures!

Mean field models

* Mean field theory: nucleons are independent  The interaction is usually fitted on nuclear

particles subject to an average nuclear potential binding energies and charge radii of stable nuclei
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» Despite being the tool of choice for describing large nuclei:

* Nucleon-nucleon scattering data and deuteron properties are ignored
* There is no clear way to derive effective currents

* The average procedure depends upon the (large) system of interest



L epton-nucleus scattering

The inclusive cross section of the process in which
a lepton scatters off a nucleus and the hadronic
final state is undetected can be written as
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« The leptonic tensor Lw/ is fully specified by the lepton kinematic variables. For instance, in the
electron-nucleus scattering case

Ly = 2lkuk;, + kuky, — gy (kK')]

- The Hadronic tensor contains all the information on target response

WH =% (Wl " ()| x ) (T x |T” ()| W0)d™ (po + ¢ — px)

Note that the initial state does not depend on the momentum transfer!




Two-body currents and nuclear correlations

Two-body meson exchange currents and nuclear correlations need to be fully accounted in the
calculation of response functions

 |nitial State Correlations * Final State Interactions

U —

- Meson Exchange Currents




Lepton-nucleus scattering

* At low momentum transfer the space resolution of the lepton becomes much larger than the
average NN separation distance (~ 1.5 fm).

* In this regime the interaction involves many nucleons === long-range correlations
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* The giant dipole resonance is a manifestation of long-range correlations
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Lepton-nucleus scattering

* At (very) large momentum transfer, scattering off a nuclear target reduces to the sum of scattering
processes involving bound nucleons =3 short-range correlations.

-

W) >~ |p1) @ [Wyp)aq

%

(W) >~ |p1,p2) @ |Ts)a_s

» Relativistic effects play a major role and need to be accounted for along with nuclear
correlations (Non trivial interplay between them)

 Resonance production and deep inelastic scattering also need to be accounted for



Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the energy loss.

inclusive cross section
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e Elastic scattering and
inelastic excitation of discrete
nuclear states.

* Broad peak due to quasi-
elastic electron-nucleon
scattering.

 Excitation of the nucleon to
distinct resonances (like the A)
and pion production.



Why quantum Monte Carlo?

In the non-relativistic regime, typically corresponding to |q| < 500 MeV, both the initial and the
final state of the hadronic tensor are eigenstates of the nonrelativistic nuclear hamiltonian
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(Much) more in Artur’s lectures!

Spectral function & Quantum Monte Carlo

In the relativistic regime, the final state includes at least one particle carrying large momentum,
whereas the initial nuclear state is still an eigenstate of the nuclear Hamiltonian.

The spectral function formalism allow one to circumvent the difficulties associated with the
relativistic treatment of the nuclear final state and current operator, while at the same time preserving
essential features (such as correlations) inherent to the realistic description of nuclear dynamics
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Chapter 2

The nuclear many-body problem



Many-body methods

Non relativistic many body theory is aimed at solving the Schrodinger equation




Many-body wave function

Within mean field approaches, the ground-state wave function is a Slater determinant of single
particle waves functions
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Infinite nuclear matter Finite nuclei

 Single-particle wave functions are plane + Hartree-Fock solution
waves &

« Box with periodic boundary conditions
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Many-body wave function

Excited states are constructed removing n occupied states from the Slater determinant and replacing
them with n virtual (unoccupied) states
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The eigenstate of the Hamiltonian is a linear combination of n-particles n-holes states
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Many-body wave function

One class of many-body methods includes those relying on single-particle basis expansions, such
as the no-core shell model (NCSM), the coupled-cluster (CC) method, the in-medium similarity
renormalization group, and self-consistent Green’s function methods

Medium-mass and heavy nuclei, up to 191Sn, the heaviest doubly magic nucleus with equal number of
neutrons and protons, can be described in terms of individual interactions between their constituents
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Despite their remarkable achievements, these many-body methods have difficulties in dealing with the
high-momentum components of the nuclear wave function



Correlated wave functions

Quantum Monte Carlo methods explicitly account for the correlations induced by the nuclear
iInteractions

Pp(r1...74) =3 Fd,(x1...24)
The correlation operator reflects the spin-isospin dependence of the nuclear interaction
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Chapter 3

Quantum Monte Carlo



Quantum Monte Carlo methods

Let us assume that

* The temperature of the system is much smaller than the Fermi energy

« We are interested in the ground-state properties of the system

Quantum Monte Carlo methods give us two options for solving the many-body Schrédinger
equation

Variational Monte Carlo (VMC)

In VMC, one assumes a form for the trial wave function and optimizes its variational
parameters, typically by minimizing the energy and/or the variance of the energy. The
expectation of the Hamiltonian is evaluated by means of Monte Carlo method.

Diffusion Monte Carlo (DMC)

“Exactly” solve the problem by projecting the ground state from an arbitrary initial guess
of the wave function by means of a propagation in imaginary time.



Quantum Monte Carlo methods
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Variational Monte Carlo

Variational Monte Carlo uses the stochastic integration method to evaluate the expectation value of
the Hamiltonian for a chosen trial wave function, which depends on a set of variational parameters.

10

The interaction between “He atoms
forming an homogeneous liquid can be g
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Variational Monte Carlo

The variational principle guarantees that the energy of the trial wave function is greater than or
equal to the ground-state energy with the same quantum numbers as
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The variational parameters are determined by minimizing the trial energy. In the atomic liquid 4He
atoms case this amounts to
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Note that, in order to compute the trial energy for a given set of variational parameters, the

following multi-dimensional integral in the degrees of freedom of the system (coordinates, spin
and isospin) has to be evaluated
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See also Tomasz’s lectures!

Multi dimensional integrals

Our goal consists in computing the following D-dimensional integral

by bp
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See also Tomasz’s lectures!

Multi dimensional integrals

A generalization of the As for the D-dimensional case, it is easy to find

(D) ~ hP Z F(z;)

A(D) = WPV F(z;)] + O(RPT?) => Nx 5

1
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Note that more clever methods can be used, but the error is always proportional to b .

Suppose we want to compute the expectation value of the Hamiltonian for a system containing 12
particles interacting with a central potential with a precision € = 0.1

Because the potential is central, we will be dealing with a 36-dimensional integral

D=3 = N x10°° =P

1017 hours on Miralll

Nobody is going to award us that many hours of computing time!



See also Tomasz’s lectures!

The central Imit theorem

Suppose that the N continuum random variables Z1, - .., N are drawn from the probability
distribution P(x) and consider the function f (). We may define a new random variable

|
SN =+ > flai)
i=1

If the samples are statistically independent, the central limit theorem states that the probability
distribution of S is gaussian
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where the average and the variance of S are given by
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These results hold true for any dimensionality of the space in which the variable x is defined




See also Tomasz’s lectures!

The central Imit theorem

Therefore, the central limit theorem provides a recipe to numerically evaluate multi-dimensional
integrals of the form

I = /dxf(x)

- Since the probability density has to be positive definite, rewrite the integral as:

I = /d:z:P(m) }f;(é))

- Sample N (with N “large”) points from the probability density P(x)

- Average the N values of f(x;) and f2 (4)
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Variational Monte Carlo

Remember that the numerator of the expectation value of the Hamiltonian for a system of A particles
interacting with a spin-independent potential reads

o :/dR\IJ?}(R)H\IJT(R) R=r1.. .. .r4

In order to use the central limit theorem, the former integral has to be rewritten as

Er - / IR |7 (R)|2EL(R)

where we have defined the local energy

HYr(R)
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U1 (R)|? can be regarded as a probability density.

Since it is positive and integrable,

In order to compute the trial energy one has to find a way to sample !\PT(R) \2




M(RT)2 algorithm

The algorithm was first described in a paper by Metropolis, Rosenbluth, Rosenbluth, Teller and
Teller M(RT)2. It shares common features to the rejection techniques because:

* It involves explicitly proposing a tentative value of the variable we want to sample,
which may be rejected.

- The normalization of the sampled function is irrelevant.

M(RT)2 algorithm has its own advantages and disadvantages:

Pros Cons

* It can be used to sample essentially - Sampling is correct only asymptotically
any density function regardless of
analytic complexity in any number of - Consecutive variables produced are
dimensions often very strongly correlated

. L « Not well suited to sample distributions
* Itis of very great simplicity. with parameters that change

frequently.




M(RT)2 algorithm

To begin with, consider a 1-D harmonic oscillator. We want to sample the probability distribution
described by the modulus squared of our trial wave function

P(z) = |Ur(z))? Wr(z) = exp <_a %2>

M(RT)2 algorithm is based on the idea of random walk in the space of the random variablex . The

game consists of generating a random variable applying a transformation to another. This “moving”
point is called walker.

Transition

4 probabilit
Pii1(wiaq) = /dZCiPi($i)T(33i — XTit1) g g

By recursively applying the same transformation we get
Pn(iljn) — /diEl e dCCn_lpl (CCl)T(ZCl — ZIJQ) e T(CCn_l — CCn)

Under some very general conditions it can be proven that

lim P,(x,) = P(x) = where P(x) only depends on T'
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M(RT)2 algorithm

Let us impose a further condition, i.e. that the asymptotic distribution is an “equilibrium” state:
P(z)T(x = y) = P(y)T(y — x)

The latter is called detailed balance condition, because it does not hold only on average, but it
tells that point by point there is no net flux of probability!

We can arbitrarily split the transition probability in two terms

Tz —y) =Gz —y)Az = y) It tells wether the
It describes the probability of < | I >  broposed move is
moving the walker from  — y. Sccgpted or rejected

The detailed balance then reads
Aly > z)  P(z)G(x —y)

Alx —y) Py)Gly— )

It can be easily checked that the following acceptance probability satisfies the above requirement

P(x)G(zx — y))
P(y)G(y — )

A(y — x) = min (1,




M(RT)2 algorithm

In QMC we use a very simple prescription for G(:I: — y) which in 1-D corresponds to shifting a
point by a value distributed according to a gaussian distribution

Tit1 =T +(

In the many-particle case, the one dimensional gaussian is replaced by a three-dimensional one
for each of the particles.

Since the probability of going from x to y is the same as the one for going from y to x, it turns out

that
Glr—y)=Gly—2) =@ |Aly — )= min (1, ig;)




M(RT)2 applied to VMC

At this point, we can describe the Metropolis algorithm for a VMC calculation in the 1-D case

Step 0 - Start from a “flat” distribution of walkers on the coordinate x

Step 1 - Move the walkers according to G(z; — ¥;11),i.e. Yi+1 = T; +C

(

: WU (y; 2
Step 2- Compute the acceptance probability A(z; — y;+1) = min (1 U (Yit1)] )

( O (z)[?

Step 3- Accept or reject the proposed move

U (yita)]?
U (z:)|?

U (yit1)]?
U (z;)|?

> & = Titl = Yitl

Sf = Uiyl — T



Nuclear VMC wave function

A good trial wave function to describe a nucleus has to reflect the complexity of the nuclear potential

It contains 3-body correlations arising from the three-body potential

~

Ur = |1+ Z ;1;;151 UVp <G=p> Uz’jk — GAV ik + GRV;,jk

1<g<k

The pair correlated wave function is written in terms of operator correlations arising from the 2-body
potential

Up = SH(1+Uz’j) v, <G> Uij — Z up(rij)Op

1<J p=2,6

The total antisymmetric Jastrow wave function depends on the quantum numbers of the given
nucleus

\IJJ — H z]k H (I)A(Ja MaTaTS)

1<g<k @<J




Spin-isospin degrees of freedom

e A walker associated with wave function of the nucleus, do not only describes the positions
of the protons and neutrons, but also their spin and isospin!

 The GFMC wave function is written as a complex vector, the coordinates of which represent
a spin-isospin state of the system

» The 3H case fits in the slide: the number of states grows exponentially with the number of nucleons
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