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Variational Monte Carlo

Remember that the numerator of the expectation value of the Hamiltonian for a system of A particles
interacting with a spin-independent potential reads

o :/dR\IJ?}(R)H\IJT(R) R=r1.. .. .r4

In order to use the central limit theorem, the former integral has to be rewritten as

Er - / IR |7 (R)|2EL(R)

where we have defined the local energy

HYr(R)
U7 (R)

EL(R) —

U1 (R)|? can be regarded as a probability density.

Since it is positive and integrable,

In order to compute the trial energy one has to find a way to sample !\PT(R) \2




M(RT)2 algorithm

To begin with, consider a 1-D harmonic oscillator. We want to sample the probability distribution
described by the modulus squared of our trial wave function

P(z) = |Ur(z))? Wr(z) = exp <_a %2>

M(RT)2 algorithm is based on the idea of random walk in the space of the random variablex . The

game consists of generating a random variable applying a transformation to another. This “moving”
point is called walker.

Transition

4 probabilit
Pii1(wiaq) = /dZCiPi($i)T(33i — XTit1) g g

By recursively applying the same transformation we get
Pn(iljn) — /diEl e dCCn_lpl (CCl)T(ZCl — ZIJQ) e T(CCn_l — CCn)

Under some very general conditions it can be proven that

lim P,(x,) = P(x) = where P(x) only depends on T'

n—oo




M(RT)2 algorithm

Let us impose a further condition, i.e. that the asymptotic distribution is an “equilibrium” state:
P(z)T(x = y) = P(y)T(y — x)

The latter is called detailed balance condition, because it does not hold only on average, but it
tells that point by point there is no net flux of probability!

We can arbitrarily split the transition probability in two terms

Tz —y) =Gz —y)Az = y) It tells wether the
It describes the probability of < | I >  broposed move is
moving the walker from  — y. Sccgpted or rejected

The detailed balance then reads
Aly > z)  P(z)G(x —y)

Alx —y) Py)Gly— )

It can be easily checked that the following acceptance probability satisfies the above requirement

P(x)G(zx — y))
P(y)G(y — )

A(y — x) = min (1,




M(RT)2 algorithm

In QMC we use a very simple prescription for G(:I: — y) which in 1-D corresponds to shifting a
point by a value distributed according to a gaussian distribution

Tit1 =T +(

In the many-particle case, the one dimensional gaussian is replaced by a three-dimensional one
for each of the particles.

Since the probability of going from x to y is the same as the one for going from y to x, it turns out

that
Glr—y)=Gly—2) =@ |Aly — )= min (1, ig;)




M(RT)2 applied to VMC

At this point, we can describe the Metropolis algorithm for a VMC calculation in the 1-D case

Step 0 - Start from a “flat” distribution of walkers on the coordinate x

Step 1 - Move the walkers according to G(z; — ¥;11),i.e. Yi+1 = T; +C

(

: WU (y; 2
Step 2- Compute the acceptance probability A(z; — y;+1) = min (1 U (Yit1)] )

( O (z)[?

Step 3- Accept or reject the proposed move

U (yita)]?
U (z:)|?

U (yit1)]?
U (z;)|?

> & = Titl = Yitl

Sf = Uiyl — T



Nuclear VMC wave function

A good trial wave function to describe a nucleus has to reflect the complexity of the nuclear potential

It contains 3-body correlations arising from the three-body potential

~

Ur = |1+ Z ;1;;151 UVp <G=p> Uz’jk — GAV ik + GRV;,jk

1<g<k

The pair correlated wave function is written in terms of operator correlations arising from the 2-body
potential

Up = SH(1+Uz’j) v, <G> Uij — Z up(rij)Op

1<J p=2,6

The total antisymmetric Jastrow wave function depends on the quantum numbers of the given
nucleus

\IJJ — H z]k H (I)A(Ja MaTaTS)

1<g<k @<J




Spin-isospin degrees of freedom

e A walker associated with wave function of the nucleus, do not only describes the positions
of the protons and neutrons, but also their spin and isospin!

 The GFMC wave function is written as a complex vector, the coordinates of which represent
a spin-isospin state of the system

» The 3H case fits in the slide: the number of states grows exponentially with the number of nucleons
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Quantum Monte Carlo

 Joint efforts between physicists and computing scientists have proven to be essential for most of
the recent advances nuclear theory

« GFMC has steadily undergone development to take advantage of each new generation of
parallel machine and was one of the first to deliver new scientific results each time.
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Diffusion Monte Carlo

« The accuracy of a VMC calculation is limited by the knowledge of the trial wave function.

- The diffusion Monte Carlo (DMC) method, overcomes this limitation by using a projection
technique to enhance the true ground-state component of a starting trial wave function.

- The method relies on the observation that the trial wave function can be expanded in the
complete set of eigenstates of the the hamiltonian according to

) = ch|\ljn> H|W,) = E,[¥n)
which implies
lim e~ H=FO)T|¢) = lim cp e EnmEIT I Y = 0| W)
T—> 00 T—00

where T is the imaginary time. Hence, DMC projects out the exact lowest-energy state, provided
the trial wave function it is not orthogonal to the ground state.




Diffusion Monte Carlo

. The direct calculation of e~ (H—Eo)7

difficulties

for strongly-interacting systems involves prohibitive

 To circumvent this problem, the imaginary-time evolution is broken into N small imaginary-time
steps, and complete sets of states are inserted

e H=E)T 1\ 1) = / dR; ...dRN|RN)(Ry|e”H=EIAT IRy 1) L

ce <R2‘€_(H_EO)AT‘R1>\I/T(R1)

Note the analogy with the Feynman’s path
integrals in quantum and statistical mechanics !!!

- At imaginary-time 7,41 = (z + 1)A7‘ the walkers are distributed according to

U(Tit1, Rit1) = /dRi<R?:+1|€(H_E°)AT\R¢>‘I’(%Rz')



Diffusion Monte Carlo

The problem is then reduced to computing the short-time Green’s function of the system

G(R; = Ri1, A7) = (Rj|e”T=FOIATIR, )

The analytic solution of Green’s function of the full hamiltonian is in general not known. An
approximation to the Green’s function can be obtained using the Trotter-Suzuki formula

<Ri‘€_(T+V_EO)AT‘R7;_|_]_> _ eEoAT <R7;|€_TA76_VAT‘R@'_|_1> 4+ O(ATZ)

In the limit of small time-step, the Green’s function factorizes

G(RZ — RfH_l, AT) ~ Gd(RZ — Ri—l—la AT)Gb(RZ — Ri—|—17 AT)

More accurate ways of factorizing the propagator have been derived

<Ri|€—(T+V—EQ) ‘Rz’—|—1> _ eEOAT <Ri’€—V/2ATe—TAT6—V/2AT‘Ri+1> + O(ATS)



Diffusion Monte Carlo

The free Green’s function satisfies the master equation of a diffusion stochastic process

0 h?
—EGC{(R — Rz—l—la AT) 2 VzGd(R — Rz—l—la AT)

It is given by a 3A-dimensional Gaussian describing the Brownian diffusion of A particles with a
dynamic governed by random collisions

3A

Gd(Rz — Ry, AT) — (27T;ZAT) 2 o — (Ri—Riy1)?

The branching Green’s function, on the other hand, is simply given by

Gb(Ri — ng_H, AT) — e_[V(R’i—i—l)_EO]AT

Hence, at the imaginary time 7,41 = (z -+ 1)A7‘ the walkers are distributed according to

3A

U(Tip1, Riy1) = (QW;LAT)T/UZRW artay (BimRis1)” o= [V(Riv1) = Bol ATy (2. R




Diffusion Monte Carlo

* A set of walkers is sampled from the trial wave
function

e Gaussian drift for the kinetic energy

1
5 2
( m ) ? e QHSRAT (Ti=Tit1)

2mh2 AT

e Branching and killing of the walkers induced
by the potential weight

w(wiyr) = eV Fir) = FolAT

Ground-state expectation values are estimated
during the diffusion

> AT H|Vr)w(z;)

) =5 (e




DMC for the 1d harmonic oscillator
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Importance sampling

The algorithm as it was shown so far is not suitable for potentials presenting a divergent behavior

A strongly repulsive potential (e.g. repulsive Coulomb, Lennard-Jones, Argonne v1g) will
result in a very fast absorption of walkers, eventually killing the whole population.

- An attractive potential (e.g. Coulomb attraction between the nucleus and electrons in an
atom) will generate an exponentially growing population

The idea of the importance sampling technique consists in using the knowledge of the trial wave
function to guide the imaginary-time projection. Consider

f(TZ', Rz) — \IJT(RZ)\IJ(TZ, Rz)

Its imaginary-time evolution is given by

Ur(Riy1)
Ur(R;)

f(Tz'—|—17 R7;_|_1) = /dRZGd(RZ — Ri_|_1, AT)G()(RZ — R7;_|_1, AT) f(Tz', RZ)




Importance sampling diffusion Monte Carlo

( ) » A set of walkers is sampled from the trial wave
CARE function

e Gaussian drift for the kinetic energy

1
2 2
( m ) ’ e 2hZAr (2i—@it1)

2mh2 AT

e Branching and killing of the walkers induced
by the potential weight

V(. 14 (m )
) — [V(zii1)—Eo]AT T \*i41
wlr;) =€

- Ground-state expectation values are estimated
during the diffusion

xT; H \I/T
2z, <<:U|i|\I|JT>>w(:U7:>

D, W(T:)

(H) =



Imaginary-time evolution
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Imaginary-time evolution
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One slide on the sign problem

So far we have implicitly assumed that the wave function can be given a probabilistic interpretation,
but a fermionic wave function is NOT positive definite. In the nuclear case it is not even real!

Since the ground-state of a given Hamiltonian is always bosonic, searching for the ground-state
energy of a fermionic system is very similar to projecting onto an excited state.

since the trial wave function is
fermionic, the energy converges to
exact eigenvalue with an exponentially

growing statistical error. In other
words, the signal to noise ratio decays
exponentially.

This issue, known as sign problem,
is common to all Monte Carlo
approaches when applied to
fermionic system

Many workarounds: fixed node,
constrained path... but no definitive
solution so far.
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Single-nucleon densities
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Two-nucleon densities
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Momentum distributions

<€ Single-nucleon momentum distribution
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Quantum Monte Carlo

* Green’s function Monte Carlo (GFMC) explicitly sums over the spin-isospin degrees of freedom

* Very accurate but limited to 12C
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Quantum Monte Carlo

* Green’s function Monte Carlo (GFMC) explicitly sums over the spin-isospin degrees of freedom

* Very accurate but limited to 12C

* Auxiliary field diffusion Monte Carlo (AFDMC) samples the spin-isospin degrees of freedom

* Medium-mass nuclei, infinite (isospin-symmetric and asymmetric) nuclear matter
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Quantum Monte Carlo

« Quantum Monte Carlo has been successfully applied to study infinite matter
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Diffusion Monte Carlo: hyperons
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By fitting the hyperon-nucleon-
nucleon force on the s-wave lambda-
separation energy of 4 O and3 He
we can reproduce the experimental
results over a wide-mass range.
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e The hyperon-nucleon-nucleon force plays
a fundamental role in the softening of the
Equation of State and the consequent
reduction of the neutron star maximum
mass.

 More data are needed to assess the onset
of hyperons in neutron stars

D. Lonardoni, et al. PRL 114, 092301 (2015)




Chapter 5

How do we compute the electroweak
response functions”



Integral transform techniques

* We want to compute the following response functions (non-relativistic limit of the hadronic tensor)

Rag(w,q) = Y (WolJL(@)|W ) (W s]Js(q)|Wo)d(w — Ef + Ep)
f
* The integral transform of the response function are generally defined as

E.p(0,q) = /dwK(a,w)Rag(w,q)

« Using the completeness of the final states, they can be expressed in terms of ground-state
expectation values

Eus(0.q) = (Wol J4(a)K (o, H — Eg)Js(a)| W)




L orentz integral transform (LIT)

* The Lorentz integral transform

K(o,w) = 1 5 * More recently, in combination with the
(w—0oRr)*+o07 coupled-cluster method, Lorentz
_ _ integral transform has been applied to
has been successfully exploited in compute the giant dipole resonances
the calculation of eleCtromagnetiC of nuclei as |arge as 160 ,220 and 4OCa_
and neutral-weak responses of light
nuclei.
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Euclidean response function
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The system is first heated up by the transition operator.
Its cooling determines the Euclidean response of the system

Eop(1,q) = (Uo|J] (q)e ™ HEIT J5(q)| W)

Same technique used in Lattice QCD, condensed

matter physics...




Inversion of the Euclidean response

The Euclidean response formalism allows one to extract dynamical properties of the system
from ground-state calculations

Inverting the Euclidean response is an ill posed problem: any set of observations is limited and
noisy and the situation is even worse since the kernel is a smoothing operator.
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We have found maximum entropy technique to be best suited for our purposes.



Image reconstruction from incomplete

and noisy data
S. F. Gull & G. J. Daniell*

Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge, UK

Results are presented of a powerful technigue for image
reconstruction by a maximum entropy method, which is
sufficiently fast to be useful for large and complicated

images. Although our examples are taken from the fields of

radio and X-ray astronomy, the technique is immediately

applicable in spectroscopy, electron microscopy, X-ray crys-
tallography, geophysics and virtually any type of optical
image processing. Applied to radioastronomical data, the
algorithm reveals details not seen by conventional analysis,
but which are known to exist.

To avoid abstraction, we shall refer to our radioastronomical
example. Starting with incomplete and noisy data, one can obtain
by the Backus-Gilbert method a series of maps of the distribution
of radio brightness across the sky, all of which are consistent with
the data, but have different resolutions and noise levels. From the
data alone, there is no reason to prefer any one¢ of these maps, and
the observer may select the most appropriate one to answer any
specific question. Hence, the method cannot produce a unique
‘best’ map of the sky. There is no single map that is equally
suitable for discussing both accurate flux measurements and
source positions.

Nevertheless, it is useful to have a single general-purpose map
of the sky, and the maximum-entropy map described here fulfils

Nature, 272, 688 (1978)



‘He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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‘He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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‘He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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‘He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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‘He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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‘He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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‘He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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‘He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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‘He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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‘He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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12C electromagnetic response

* \Very good agreement with the experimental data

e Small contribution from two-body currents to the transverse response functions.

* No quenching of the proton electric form factor!
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12C electromagnetic response

 \Very good agreement with the experimental data.
e Sizable contribution from two-body currents to the transverse response functions.

e Hints for the axial mass puzzle
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Nuclear dynamics surprises

* Beyond impulse approximation effects are important. Particularly enlightening is the comparison
between the nucleon and proton responses

Ryp =Y (0lph (@) f){flonp(@)|0)d(Ey +w — Ey)
f

1 + Ti, 2

(@ = T IS vl =30 = gt

1

0.014

* In the impulse approximation
the nucleon and the proton
responses coincide

0.012
0.010

0.008
e GFMC results demonstrate
the importance of the charge-
exchange character of the
nucleon-nucleon force
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12C neutral-current response

e Recently, we were able to invert the neutral-current Euclidean responses of 12C

12 ¢

12C neutral-current response at ¢ = 570 MeV
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12C neutral-current response

e Recently, we were able to invert the neutral-current Euclidean responses of 12C

12C neutral-current response at ¢ = 570 MeV
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12C neutral-current response

* We were recently able to invert the neutral-current Euclidean responses of 12C

12C neutral-current response at ¢ = 570 MeV
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12CC neutral-current cross-section

* The anti-neutrino cross section decreases rapidly relative to the neutrino cross section as the
scattering angle changes from the forward to the backward hemisphere
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12CC neutral-current cross-section

* Two-body current contributions are smaller for the antineutrino than for the neutrino cross
section, in fact becoming negligible for the antineutrino backward-angle
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Relativistic effects In a correlated system

* Non relativistic approaches are limited to moderate momentum transfers

* In a generic reference frame the longitudinal non-relativistic response reads

R,{T—szm )| (B — BIT - )

S(EY — Bl - wfr) ~ dlel” + (P{7)?/(2My) —el" — (P/")?/(2M7) — w'7]

e The response in the LAB frame is given by the Lorentz transform

2 fr
q Ez T r T
RL(qaw) — (qff,a)g M, R£ (qf 7wf )

where



Relativistic effects in a correlated system

* The 4He longitudinal response at g=700 MeV strongly depends upon the original reference frame
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Relativistic effects In a correlated system

» To determine the relativistic corrections, we consider a two-body breakup model

; pN PY
pll = (— — —) mnMx
H N M x — U =

Jro_ Jr Jr
P:" =py +px
* The relative momentum is derived in a relativistic fashion
Wit =B — Bl

B = \Jm3, + [ + pu/Mx P} |2 + /M3 + [pfr — p/my P2

 And it is used as input in the non relativistic kinetic energy
fro_ 2
€y = (pfr) /(21)

* The energy-conserving delta function reads

r r r r r aFfT -l r re r
5(EJJ§ —E/ —wf):(S(F(ejz)—wf):( ) 5[6}0 —efl(qf w’



Relativistic effects in a correlated system

* The 4He longitudinal response at g=700 MeV mildly depends upon the original reference frame
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