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Variational Monte Carlo 
Remember that the numerator of the expectation value of the Hamiltonian for a system of A particles 
interacting with a spin-independent potential reads 

In order to use the central limit theorem, the former integral has to be rewritten as

Since it is positive and integrable,                   can be regarded as a probability density. 

where we have defined the local energy

EL(R) ⌘ H T (R)

 T (R)

| T (R)|2In order to compute the trial energy one has to find a way to sample

| T (R)|2

ET =

Z
dR ⇤

T (R)H T (R)

ET =

Z
dR | T (R)|2EL(R)

R ⌘ r1, . . . , rA



M(RT)2 algorithm 

M(RT)2 algorithm is based on the idea of random walk in the space of the random variable    . The 
game consists of generating a random variable applying a transformation to another. This “moving” 
point is called walker.


To begin with, consider a 1-D harmonic oscillator. We want to sample the probability distribution 
described by the modulus squared of our trial wave function 


P (x) ⌘ | T (x)|2

x

By recursively applying the same transformation we get


Transition 
probability 

Under some very general conditions it can be proven that

lim
n!1

Pn(xn) = P (x) where           only depends on P (x) T

Pi+1(xi+1) =

Z
dxiPi(xi)T (xi ! xi+1)

 T (x) = exp
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Pn(xn) =

Z
dx1 . . . dxn�1P1(x1)T (x1 ! x2) . . . T (xn�1 ! xn)



It tells wether the 
proposed move is 
accepted or rejected.

It describes the probability of 
moving the walker from             .

M(RT)2 algorithm 
Let us impose a further condition, i.e. that the asymptotic distribution is an “equilibrium” state:


P (x)T (x ! y) = P (y)T (y ! x)

The latter is called detailed balance condition, because it does not hold only on average, but it 
tells that point by point there is no net flux of probability!


We can arbitrarily split the transition probability in two terms


T (x ! y) = G(x ! y)A(x ! y)

x ! y

The detailed balance then reads

A(y ! x)

A(x ! y)
=

P (x)G(x ! y)

P (y)G(y ! x)

It can be easily checked that the following acceptance probability satisfies the above requirement


A(y ! x) = min
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1,

P (x)G(x ! y)

P (y)G(y ! x)

◆



M(RT)2 algorithm 
In QMC we use a very simple prescription for                   , which in 1-D corresponds to shifting a 
point by a value distributed according to a gaussian distribution

G(x ! y) = G(y ! x)

G(x ! y)

In the many-particle case, the one dimensional gaussian is replaced by a three-dimensional one 
for each of the particles. 

Since the probability of going from x to y is the same as the one for going from y to x, it turns out 
that 

xi

A(y ! x) = min
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1,

P (x)

P (y)

◆

xi+1 = xi + ⇣

xi + ⇣



M(RT)2 applied to VMC 
At this point, we can describe the Metropolis algorithm for a VMC calculation in the 1-D case

Step 0 - Start from a “flat” distribution of walkers on the coordinate x

Step 1 - Move the walkers according to                           , i.e. 

Step 2- Compute the acceptance probability                  A(xi ! yi+1) = min

✓
1,

| T (yi+1)|2

| T (xi)|2

◆

Step 3- Accept or reject the proposed move                 

xi+1 = yi+1
| T (yi+1)|2

| T (xi)|2
> ⇠

| T (yi+1)|2

| T (xi)|2
 ⇠

xi+1 = xi

G(xi ! yi+1) yi+1 = xi + ⇣



It contains 3-body correlations arising from the three-body potential 

The pair correlated wave function is written in terms of operator correlations arising from the 2-body 
potential

The total antisymmetric Jastrow wave function depends on the quantum numbers of the given 
nucleus

Nuclear VMC wave function
A good trial wave function to describe a nucleus has to reflect the complexity of the nuclear potential 
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Spin-isospin degrees of freedom 

• The 3H case fits in the slide: the number of states grows exponentially with the number of nucleons 

• The GFMC wave function is written as a complex vector, the coordinates of which represent 
a spin-isospin state of the system

• A walker associated with wave function of the nucleus, do not only describes the positions 
of the protons and neutrons, but also their spin and isospin! 
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Each coefficient aα, which is a function of the coordinates r1, r2 and r3, represents the

amplitude of a given many-particle spin configuration; for instance

a ↑↑↓ = ⟨↑↑↓ |Ψ3H⟩ . (10)

The application of the spin matrix σ12 ≡
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i
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i
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The “new” wave function can be expressed in terms of the coefficients of the old one.

Therefore, in order to reduce the computational complexity of the spin and isospin matrix

multiplication, a specialized table-drive code is implemented.

III. BEFORE MIRA AND ON MIRA

The GFMC code needed to be deeply revised to better capitalize the resources of a

leadership class computer like Intrepid (BQP) and Mira (BGQ).

The branching process of the GFMC algorithm involves replication and killing of the sam-

ples, the number of which can undergo large fluctuations. Therefore, to achieve an high
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• Joint efforts between physicists and computing scientists have proven to be essential for most of 
the recent advances nuclear theory

• GFMC has steadily undergone development to take advantage of each new generation of 
parallel machine and was one of the first to deliver new scientific results each time.

Quantum Monte Carlo



Diffusion Monte Carlo

• The accuracy of a VMC calculation is limited by the knowledge of the trial wave function. 

• The diffusion Monte Carlo (DMC) method, overcomes this limitation by using a projection 
technique to enhance the true ground-state component of a starting trial wave function.

• The method relies on the observation that the trial wave function can be expanded in the 
complete set of eigenstates of the the hamiltonian according to

| T i =
X

n

cn| ni H| ni = En| ni

which implies 

where    is the imaginary time. Hence, DMC projects out the exact lowest-energy state, provided 
the trial wave function it is not orthogonal to the ground state.

⌧

lim
⌧!1

e�(H�E0)⌧ | T i = lim
⌧!1

X

n

cn e
�(En�E0)⌧ | ni = c0| 0i



Diffusion Monte Carlo 
• The direct calculation of                      for strongly-interacting systems involves prohibitive 

difficulties
e�(H�E0)⌧

• To circumvent this problem, the imaginary-time evolution is broken into N small imaginary-time 
steps, and complete sets of states are inserted

e�(H�E0)⌧ | T i =
Z

dR1 . . . dRN |RN ihRN |e�(H�E0)�⌧ |RN�1i . . .

. . . hR2|e�(H�E0)�⌧ |R1i T (R1)

Note the analogy with the Feynman’s path 
integrals in quantum and statistical mechanics !!!

• At imaginary-time                                  the walkers are distributed according to ⌧i+1 = (i+ 1)�⌧

 (⌧i+1, Ri+1) =

Z
dRihRi+1|e(H�E0)�⌧ |Rii (⌧i, Ri)



Diffusion Monte Carlo 

The analytic solution of Green’s function of the full hamiltonian is in general not known. An 
approximation to the Green’s function can be obtained using the Trotter-Suzuki formula

In the limit of small time-step, the Green’s function factorizes

hRi|e�(T+V�E0)�⌧ |Ri+1i = eE0�⌧ hRi|e�T�⌧e�V�⌧ |Ri+1i+O(�⌧2)

G(Ri ! Ri+1,�⌧) ' Gd(Ri ! Ri+1,�⌧)Gb(Ri ! Ri+1,�⌧)

The problem is then reduced to computing the short-time Green’s function of the system

G(Ri ! Ri+1,�⌧) = hRi|e�(H�E0)�⌧ |Ri+1i

More accurate ways of factorizing the propagator have been derived

hRi|e�(T+V�E0)|Ri+1i = eE0�⌧ hRi|e�V/2�⌧e�T�⌧e�V/2�⌧ |Ri+1i+O(�⌧3)



Diffusion Monte Carlo 

The branching Green’s function, on the other hand, is simply given by

Gb(Ri ! Ri+1,�⌧) = e�[V (Ri+1)�E0]�⌧

Hence, at the imaginary time                                  the walkers are distributed according to 

It is given by a 3A-dimensional Gaussian describing the Brownian diffusion of A particles with a  
dynamic governed by random collisions

The free Green’s function satisfies the master equation of a diffusion stochastic process

� @

@⌧
Gd(Ri ! Ri+1,�⌧) = � ~2

2m
r2Gd(Ri ! Ri+1,�⌧)

⌧i+1 = (i+ 1)�⌧
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⇣ m

2⇡~2�⌧

⌘ 3A
2
e�

m
2~2�⌧
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2
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⇣ m
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v(x)

 0(x)

• A set of walkers is sampled from the trial wave 
function 

• Gaussian drift for the kinetic energy

• Branching and killing of the walkers induced 
by the potential weight

• Ground-state expectation values are estimated 
during the diffusion

Diffusion Monte Carlo
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DMC for the 1d harmonic oscillator
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Importance sampling 
The algorithm as it was shown so far is not suitable for potentials presenting a divergent behavior

• A strongly repulsive potential (e.g. repulsive Coulomb, Lennard-Jones, Argonne v18) will 
result in a very fast absorption of walkers, eventually killing the whole population.

• An attractive potential (e.g. Coulomb attraction between the nucleus and electrons in an 
atom) will generate an exponentially growing population


The idea of the importance sampling technique consists in using the knowledge of the trial wave 
function to guide the imaginary-time projection. Consider


f(⌧i, Ri) ⌘  T (Ri) (⌧i, Ri)

Its imaginary-time evolution is given by


f(⌧i+1, Ri+1) =

Z
dRiGd(Ri ! Ri+1,�⌧)Gb(Ri ! Ri+1,�⌧)

 T (Ri+1)

 T (Ri)
f(⌧i, Ri)



v(x)

 0(x)

• A set of walkers is sampled from the trial wave 
function 

• Gaussian drift for the kinetic energy

• Branching and killing of the walkers induced 
by the potential weight

• Ground-state expectation values are estimated 
during the diffusion

Importance sampling diffusion Monte Carlo
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Imaginary-time evolution

0.000 46. The lowest 01 excitation of 4He is at 20.2 MeV
and this energy was not varied in the fit. The x

2 of the fit is
19 for 31 E(t) ~25 degrees of freedom!, so the E(t) are not
statistically independent. We have not attempted to estimate
the correlations between the energies at different times. The
x

2 increases by 1 when E0 is changed by 10.02 or 20.03.
The dashed curve shows a fit without the 20.2 MeV excita-
tion; it gives x

25 23 and E05228.28 MeV. For most of the
other GFMC calculations reported in this paper, we did not
compute E(t) at the many t,0.1 MeV21 used in these fits.
Therefore we made several fits to the E(t) for t>0.1. A fit
using E1

!520.2 MeV and one adjustable Ei
! gives

E05228.33(3) with x

2514.6 ~11 degrees of freedom!,
while a fit with just one Ei

! results in E05228.3320.12
10.04 ,

E1
!530, and x

2516.0. Finally, the heavy solid line with
short dashed error bars shows the average of the E(t) for
0.04<t<0.1:228.300(15). It appears that in this most fa-
vorable case, with high statistics, high first excited state, and
large maximum t , we can see that including the first excited
state improves the extrapolation marginally. However, the
extrapolated E0 is not significantly lower than a simple av-
erage of the E(t) for 0.04<t<0.1.
Figure 5 shows the E(t) and fits made for the ground

state of 6Li. The values for t.0.06 MeV21 were computed

with 200 000 initial configurations, those for
t50,0.01, . . . ,0.06 MeV21 have 280 000 configurations,
while those for the other small t have only 50 000 configu-
rations. The energy at very small t is influenced by admix-
tures of very high-energy states in CT . These have little
effect on the E(t.0.1 MeV21), therefore we make fits to
E(t) only for t.0.01. The dashed curve is a fit to the E(t)
for 0.01<t<0.06, which is the range that is available for the
other p-shell nuclear states in this paper. The extrapolated
energy is E05231.5620.50

10.24 MeV, where the indicated errors
correspond to x

2 increasing by 1. This fit was made using a
single excitation energy, E1

!536 MeV. The first 11 excited
state of 6Li is at 5.65 MeV. A single-energy fit constrained
to this energy gives large x

2. Two-energy fits with one en-
ergy constrained to 5.65 MeV have a very flat x

2(E0) from
which useful values of E0 cannot be extracted. The solid
curve shows a single-energy fit made to the E(t) up to 0.1
MeV21 available for this state; it gives E05231.3820.18

10.12 .
We see that including data up to 0.1 MeV21 reduces the
error in E0 by about a factor of 2. Finally the solid line with
short dashed error bars is the average of the t5 0.04, 0.05,
and 0.06 values, denoted by Eav . Its value, 231.25~11!
MeV, is formally an upper bound for E0 and is above the
extrapolated E0 by only one standard deviation.
Because of the difficulties in making useful extrapolations

in t , it is important to understand contaminations in CT ,
particularly from low-excitation-energy states which will not
be fully filtered out by t50.06 MeV21. We have made sev-
eral calculations of the ground state of 6Li to study the ef-
fects of changes in CT on the GFMC E(t). Figure 6 shows
the effects of removing some of the noncentral correlations
in CT ; the solid circles are from a calculation with the full
CT and are the same as in Fig. 5. The open diamonds were
computed by using the simpler CP of Eq. ~3.3!. This makes
the energy at t50 worse by ;1.7 MeV. However by
t50.01, the GFMC has fully corrected for this defect and
thereafter the differences are just statistical fluctuations.
Hence removing Ũi jk

TNI from CT enhances the admixtures of
excitations .250 MeV. Calculations without the Ũi jk

TNI would
be about 20% faster than full calculations, but the poorer

FIG. 4. 4He GFMC energy as a function of imaginary time. The
fits are described in the text.

FIG. 5. 6Li GFMC energy as a function of imaginary time. The
fits are described in the text.
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Imaginary-time evolution
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Fig. 6 (Pudliner, et al.)

6Li

B. S. Pudliner et al. PRC 56 1720 (1995) 

Solid circles: the full trial wave 
functions

Open diamonds: no three-
body correlations

Open squares: no three-body 
correlations no tensor 
correlations



One slide on the sign problem
So far we have implicitly assumed that the wave function can be given a probabilistic interpretation, 
but a fermionic wave function is NOT positive definite. In the nuclear case it is not even real! 

This issue, known as sign problem, 
is common to all Monte Carlo 
approaches when applied to 
fermionic system

Since the ground-state of a given Hamiltonian is always bosonic, searching for the ground-state 
energy of a fermionic system is very similar to projecting onto an excited state.

since the trial wave function is 
fermionic, the energy converges to 
exact eigenvalue with an exponentially 
growing statistical error. In other 
words, the signal to noise ratio decays 
exponentially.


Many workarounds: fixed node, 
constrained path… but no definitive 
solution so far.

⇡

Unconstrained-path

After some equilibration within constrained-path, release the constraint:
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The di↵erence between CP and UP results is mainly due to the presence
of LS terms in the Hamiltonian. Same for heavier systems.

Work in progress to improve  and to ”fully” include three-body forces.

Stefano Gandolfi (LANL) The EOS of Neutron Matter and Low-density Nuclear Matter 17 / 19
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in 9Li.

D. Momentum distributions

Momentum distributions of individual nucleons, nu-
cleon pairs, and nucleon clusters reflect features of the
short-range structure of nuclei. They can provide use-
ful insight into various reactions on nuclei, such as
(e, e0p) and (e, e0pp/pn) electrodisintegration processes or
neutrino-nucleus interactions.

The probability of finding a nucleon with momentum
k and spin-isospin projection �,⌧ in a given nuclear state
is proportional to the density

⇢�⌧ (k)=

Z
dr01 dr1 dr2 · · · drA  †

JM
J

(r01, r2, . . . , rA)

⇥ e�ik·(r
1

�r

0
1

) P�⌧ (1) JM
J

(r1, r2, . . . , rA) . (67)

P�⌧ (i) is the spin-isospin projection operator for nucleon
i, and  JM

J

is the nuclear wave function with total spin
J and spin projection MJ . The normalization is

N�⌧ =

Z
dk

(2⇡)3
⇢�⌧ (k) , (68)

where N�⌧ is the number of spin-up or spin-down protons
or neutrons.

Early variational calculations of few-nucleon momen-
tum distributions (Schiavilla et al., 1986) evaluated
Eq. (67) by following a Metropolis Monte Carlo walk in
the dr1 dr2 · · · drA space and one extra Gaussian integra-
tion over dr01 at each Monte Carlo configuration. This
was subject to large statistical errors originating from
the rapidly oscillating nature of the integrand for large
values of k.
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to-back (Q = 0) pair momentum distributions for T = 0
nuclei (Wiringa et al., 2014).

A more e�cient method is to rewrite Eq. (67) as

⇢�⌧ (k) =
1

A

X

i

Z
dr1 · · · dri · · · drA

Z
d⌦x

Z x
max

0

x2dx

⇥  †
JM

J

(r1, . . . , ri + x/2, . . . , rA) e
�ik·x

⇥ P�⌧ (i) JM
J

(r1, . . . , ri � x/2, . . . , rA) . (69)

and perform the Gaussian integration over x. How-
ever, this requires re-evaluating both initial and final
wave functions at multiple configurations, which limits
the present calculations to VMC. A comprehensive set
of single-nucleon momentum distributions for A  12
nuclei, evaluated with the AV18+UX Hamiltonian, has
been published (Wiringa et al., 2014) with figures and
tables available on-line (Wiringa, 2014a).
The overall evolution of the proton momentum distri-

bution in light T = 0 nuclei is shown in Fig. 7. The shape
of the distributions shows a smooth progression as nucle-
ons are added. As A increases, the nuclei become more
tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.
Two-nucleon momentum distributions, i.e., the proba-

bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can

22

0 1 2 3 4 510-3

10-1

101

103

12C

0 1 2 3 4 510-3

10-1

101

103

10B

0 1 2 3 4 510-3

10-1

101

103

8Be

0 1 2 3 4 510-3

10-1

101

103

6Li

0 1 2 3 4 510-3

10-1

101

103

4He

0 1 2 3 4 510-3

10-1

101

103

k (fm-1)

ρ p
(k

) (
fm

3 )

2H

FIG. 7 VMC proton momentum distributions in T = 0 light
nuclei (Wiringa et al., 2014).

in 9Li.

D. Momentum distributions

Momentum distributions of individual nucleons, nu-
cleon pairs, and nucleon clusters reflect features of the
short-range structure of nuclei. They can provide use-
ful insight into various reactions on nuclei, such as
(e, e0p) and (e, e0pp/pn) electrodisintegration processes or
neutrino-nucleus interactions.

The probability of finding a nucleon with momentum
k and spin-isospin projection �,⌧ in a given nuclear state
is proportional to the density

⇢�⌧ (k)=

Z
dr01 dr1 dr2 · · · drA  †

JM
J

(r01, r2, . . . , rA)

⇥ e�ik·(r
1

�r

0
1

) P�⌧ (1) JM
J

(r1, r2, . . . , rA) . (67)

P�⌧ (i) is the spin-isospin projection operator for nucleon
i, and  JM

J

is the nuclear wave function with total spin
J and spin projection MJ . The normalization is

N�⌧ =

Z
dk

(2⇡)3
⇢�⌧ (k) , (68)

where N�⌧ is the number of spin-up or spin-down protons
or neutrons.

Early variational calculations of few-nucleon momen-
tum distributions (Schiavilla et al., 1986) evaluated
Eq. (67) by following a Metropolis Monte Carlo walk in
the dr1 dr2 · · · drA space and one extra Gaussian integra-
tion over dr01 at each Monte Carlo configuration. This
was subject to large statistical errors originating from
the rapidly oscillating nature of the integrand for large
values of k.

0 1 2 3 4 510-1

101

103

105

12C

0 1 2 3 4 510-1

101

103

105

10B

0 1 2 3 4 510-1

101

103

105

8Be

0 1 2 3 4 510-1

101

103

105

6Li

0 1 2 3 4 510-1

101

103

105

q (fm-1)

ρ p
N

(q
,Q

=0
) (

fm
3 )

4He

FIG. 8 VMC pn (blue diamonds) and pp (red circles) back-
to-back (Q = 0) pair momentum distributions for T = 0
nuclei (Wiringa et al., 2014).

A more e�cient method is to rewrite Eq. (67) as

⇢�⌧ (k) =
1

A

X

i

Z
dr1 · · · dri · · · drA

Z
d⌦x

Z x
max

0

x2dx

⇥  †
JM

J

(r1, . . . , ri + x/2, . . . , rA) e
�ik·x

⇥ P�⌧ (i) JM
J

(r1, . . . , ri � x/2, . . . , rA) . (69)

and perform the Gaussian integration over x. How-
ever, this requires re-evaluating both initial and final
wave functions at multiple configurations, which limits
the present calculations to VMC. A comprehensive set
of single-nucleon momentum distributions for A  12
nuclei, evaluated with the AV18+UX Hamiltonian, has
been published (Wiringa et al., 2014) with figures and
tables available on-line (Wiringa, 2014a).
The overall evolution of the proton momentum distri-

bution in light T = 0 nuclei is shown in Fig. 7. The shape
of the distributions shows a smooth progression as nucle-
ons are added. As A increases, the nuclei become more
tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.
Two-nucleon momentum distributions, i.e., the proba-

bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can

Single-nucleon momentum distribution

Two-nucleon momentum distribution

R. B. Wiringa et al. PRC 89 024305 (2014) 



Quantum Monte Carlo
• Green’s function Monte Carlo (GFMC) explicitly sums over the spin-isospin degrees of freedom

✴ Very accurate but limited to 12C 



Quantum Monte Carlo
• Green’s function Monte Carlo (GFMC) explicitly sums over the spin-isospin degrees of freedom

• Auxiliary field diffusion Monte Carlo (AFDMC) samples the spin-isospin degrees of freedom

✴ Very accurate but limited to 12C 

✴ Medium-mass nuclei, infinite (isospin-symmetric and asymmetric) nuclear matter

16O

40Ca



• Quantum Monte Carlo has been successfully applied to study infinite matter 
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FIG. 31 The EoS of neutron matter as a function of the den-
sity, obtained using the AV80 NN interaction alone (lower red
symbols/line), and combined with the UIX 3N force (Gan-
dolfi et al., 2014).

3N force E
sym

L a ↵ b �
(MeV) (MeV) (MeV) (MeV)

none 30.5 31.3 12.7 0.49 1.78 2.26
V PW

2⇡

+ V R

µ=150

32.1 40.8 12.7 0.48 3.45 2.12
V PW

2⇡

+ V R

µ=300

32.0 40.6 12.8 0.488 3.19 2.20
V
3⇡

+ V
R

32.0 44.0 13.0 0.49 3.21 2.47
V PW

2⇡

+ V R

µ=150

33.7 51.5 12.6 0.475 5.16 2.12
V
3⇡

+ V
R

33.8 56.2 13.0 0.50 4.71 2.49
UIX 35.1 63.6 13.4 0.514 5.62 2.436

TABLE VI The parameters of Eq. (148) fitting the equation
of state computed with the full AV80+UIX Hamiltonian and
with the NN interaction only (AV80). The parametrization
of selected EoSs shown in Fig. 33 are also included. For each
EoS, the corresponding E

sym

and slope L are indicated.

to the interaction as in the GFMC calculation (Carlson,
2003; Carlson et al., 2003b). The comparison shows that
the two methods are in good agreement (Gandolfi et al.,
2009b). Particular care was taken in studying the e↵ect
of finite-size e↵ects by repeating each simulation using
a di↵erent number of neutrons and using Twisted Aver-
aged Boundary Conditions. The repulsive nature of the
three-neutron interaction is clear from the figure, where
the EoS obtained with and without UIX is shown.

The AFDMC results are conveniently fitted using the
functional form

E(⇢n) = a

✓
⇢n
⇢0

◆↵

+ b

✓
⇢n
⇢0

◆�

, (148)

where E is the energy per neutron (in MeV) as a function
of the density ⇢n (in fm�3). The parameters of the fit
for both AV80 and the full AV80+UIX Hamiltonian are
reported in Table VI.

The EoS of neutron matter up to ⇢0 has been recently
calculated by Gezerlis et al. (2014, 2013) with nuclear
two-body local interactions derived within the chiral ef-
fective field theory. The AFDMC calculations for the
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FIG. 32 The EoS of neutron matter as a function of the
density, calculated by Gezerlis et al. (2014) using AFDMC
with chiral NN interactions at LO, NLO and N2LO for the
two di↵erent cuto↵ indicated in the figure (three-body forces
have not been included at N2LO). Also shown are the re-
sults obtained by Wlaz lowski et al. (2014) using lattice QMC
at N2LO, by including the 3N interaction (upper red dot-
dashed line) and without (lower red dot-dashed line), and the
results of Roggero et al. (2014) using the N2LO

opt

without
3N (orange dashed line).

�EFT interaction at LO, NLO, and N2LO orders are
shown in Fig. 32. (Note that three-body forces have not
been included at N2LO). At each order in the chiral ex-
pansion, it is important to address the systematic un-
certainties entering through the regulators used to renor-
malize short-range correlations; see Gezerlis et al. (2014)
for more comprehensive details. In the figure, the EoS
obtained using cuto↵s of R0=1.0 fm and 1.2 fm are indi-
cated. The figure shows that the results are converging in
the chiral expansion, i.e. the energy per neutron at N2LO
is quite similar to NLO. The three-neutron interaction
entering at N2LO has not been included in the calculation
but its contribution is expected to be small (Tews et al.,
2015). Other approaches based on lattice-based QMC
methods have been explored recently by Wlaz lowski et al.
(2014) and Roggero et al. (2014), with very similar re-
sults also included in Fig. 32.

1. Three-neutron force and Symmetry energy

As described in Sec. II.A the NN force is obtained by
accurately fitting scattering data, but a 3N force is es-
sential to have a good description of the ground states
of light nuclei. The e↵ect of the 3N force on the nuclear
matter EoS is particularly important, as it is needed to
correctly reproduce the saturation density ⇢0 and the en-
ergy. The neutron matter EoS is also sensitive to the
particular choice of the 3N force, and consequently the
corresponding neutron star structure.

By assuming that the NN Hamiltonian is well con-
strained by scattering data, the e↵ect of using di↵erent

Quantum Monte Carlo



Diffusion Monte Carlo: hyperons
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• By fitting the hyperon-nucleon-
nucleon force on the s-wave lambda-
separation energy of              and           
we can reproduce the experimental 
results over a wide-mass range.

• The hyperon-nucleon-nucleon force plays 
a fundamental role in the softening of the 
Equation of State and the consequent 
reduction of the neutron star maximum 
mass.

3
⇤He17

⇤ O

• More data are needed to assess the onset 
of hyperons in neutron stars 

D. Lonardoni, et al. PRL 114, 092301 (2015)



Chapter 5 
How do we compute the electroweak 

response functions? 



Integral transform techniques  

• The integral transform of the response function are generally defined as

• Using the completeness of the final states, they can be expressed in terms of ground-state 
expectation values

K

E↵�(�,q) ⌘
Z

d!K(�,!)R↵�(!,q)

E↵�(�,q) = h 0|J†
↵(q)K(�, H � E0)J�(q)| 0i

• We want to compute the following response functions (non-relativistic limit of the hadronic tensor)

R↵�(!,q) =
X

f

h 0|J†
↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)



Lorentz integral transform (LIT) 
• The Lorentz integral transform
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FIG. 9. (Color online) Comparison of the 16O dipole cross
section calculated in the LIT-CCSD scheme against experi-
mental data by Ahrens et al. [63] (triangles with error bars),
and Ishkhanov et al. [65] (red circles). The grey curve starts
from the theoretical threshold, while the dark/blue curve is
shifted to the experimental threshold.
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observe that the convergence rate is comparable to that
found in 16O.

In Fig. 11 we compare the LIT for 22O versus 16O
for the width � = 10 MeV. One notices that the 22O
total strength is larger than that of 16O. The total dipole
strength is the bremsstrahlung sum rule (BSR)

BSR ⌘
Z 1

!th

d!S(!) = h0|D̂
0

†
D̂

0

|0i . (49)

Using the definition of the LIT, Eq. (3), and the proper-
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FIG. 11. (Color online) Comparison of L(!
0

,�) at � = 10
MeV for 22O and 16O. Di↵erent harmonic oscillator frequen-
cies have been used: ~⌦ = 20 and 24 MeV for 16O (dashed
and full blue lines) and ~⌦ = 24 and 26 MeV for 22O (dashed
and full black lines).
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FIG. 12. (Color online) Comparison of the LIT-CCSD dipole
cross section of 22O with the photoneutron data of Ref. [2].
The grey curve starts from the theoretical threshold, while
the dark/blue curve is shifted to the experimental threshold.

ties of the Lorentzian kernel the BSR can also be written
as

BSR =

Z 1

�1
d!

0

L(!
0

,�) . (50)

In both ways we obtain a value of 4.6 and 6.7 fm2 for 16O
and 22O, respectively.

• More recently, in combination with the 
coupled-cluster method, Lorentz 
integral transform has been applied to 
compute the giant dipole resonances 
of nuclei as large as 16O ,22O and 40Ca.

SONIA BACCA et al. PHYSICAL REVIEW C 76, 014003 (2007)
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As in the previous calculation of RL using the Trento (TN)
potential [12], one notes that a semirealistic interaction, in
this case the MTI-III, leads to quite a good overall description
of the response in comparison to the experimental data from
Bates [29] and Saclay [30].

The only difference to the previous calculation with the TN
potential is the pronounced peak close to threshold in case of
q = 300 MeV/c that originates from the monopole excitation
of 4He. However, such a peak is not seen in the data. But it is not
clear whether the experimental energy resolution was sufficient
to resolve such a structure. It is worthwhile to mention that a
0+ resonance at 20.10±0.05 MeV with a width of 270±50
keV was determined in an electron-scattering experiment at
momentum transfers q < 100 MeV/c [32]. Here we do not
calculate these low-q kinematics, the resonance is very close to
the “quasi-elastic peak" and quite small in size in comparison.
A much more detailed study than the present calculation would
be necessary to resolve such a rather complicated low-energy
structure.

B. The transverse response function

As done for the charge operator, we have expanded
the transverse current operator into electric and magnetic
multipoles according to Eqs. (12) and (13), separating them
further into isoscalar and isovector parts, because the response
function is an incoherent sum of these various multipole
contributions. As discussed above, the transverse current
includes one- and two-body operators. We first consider the
one-body current alone, i.e., the spin and the convection current
of Eq. (21). Later we add the consistent two-body current.

1. One-body current

It is known from standard PWIA calculations, that the spin
current dominates the transverse response function at medium
momentum transfers in the region of the quasi-elastic peak.
Therefore, we start the discussion of the transverse response
function of the spin current alone. In Fig. 4, we present the
isoscalar and isovector response functions of the magnetic and
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has been successfully exploited in 
the calculation of electromagnetic 
and neutral-weak responses of light 
nuclei.
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At finite imaginary time the contributions from 
large energy transfer are quickly suppressed

Euclidean response function 
Valuable information on the energy 
dependence of the response functions can 
be inferred from their Laplace transforms

The system is first heated up by the transition operator.

Its cooling determines the Euclidean response of the system

Quantum Monte Carlo

Zero Temperature

 0 = exp [�H⌧ ]  T
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Diffusion Branching
In nuclear physics, we have a!
set of amplitudes for each spin !
and isospin

Brownian motion
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Same technique used in Lattice QCD, condensed 
matter physics…



The Euclidean response formalism allows one to extract dynamical properties of the system 
from ground-state calculations

Inverting the Euclidean response is an ill posed problem: any set of observations is limited and 
noisy and the situation is even worse since the kernel is a smoothing operator.

E↵�(⌧,q) R↵�(!,q)

Inversion of the Euclidean response 

We have found maximum entropy technique to be best suited for our purposes. 
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4He electromagnetic response 
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q=300 MeV

Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  



4He electromagnetic response 
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q=400 MeV

Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  



4He electromagnetic response 
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q=500 MeV

Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  



4He electromagnetic response 
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q=600 MeV

Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  



4He electromagnetic response 
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q=700 MeV

Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  



Two-body currents significantly enhance the transverse response function, not only in the dip 
region, but also in the quasielastic peak and threshold regions.
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Two-body currents significantly enhance the transverse response function, not only in the dip 
region, but also in the quasielastic peak and threshold regions.
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12C electromagnetic response 

q=570 MeV

• Very good agreement with the experimental data 

• Small contribution from two-body currents to the transverse response functions. 

• No quenching of the proton electric form factor! 

AL, et al. PRL 117, 082501 (2016)



12C electromagnetic response 

q=570 MeV

• Very good agreement with the experimental data. 

• Sizable contribution from two-body currents to the transverse response functions. 

• Hints for the axial mass puzzle  

AL, et al. PRL 117, 082501 (2016)



Nuclear dynamics surprises 
• Beyond impulse approximation effects are important. Particularly enlightening is the comparison 
between the nucleon and proton responses

RN,p ⌘
X

f

h0|⇢†N,p(q)|fihf |⇢N,p(q)|0i�(E0 + ! � Ef )

⇢p(q) =
X

i

eiqri
1 + ⌧i,z

2
⇢N (q) =

X

i

eiqri = ⇢n + ⇢p

Figure 3: Nucleon and proton response functions of 4He at |q| = 600 MeV computed in the GFMC
approach.

coincide in the impulse approximation. However, this does not necessarily hold true when
nuclear dynamics beyond the impulse approximation is taken into account. Particularly en-
lightening in this regard is the comparison between the nucleon and proton responses, defined
as

RN,p ⌘
X

f

h0|⇢†N,p(q)|fihf |⇢N,p(q)|0i�(E0 + ! � Ef ) , (2)

where the nucleon and proton transition operators read

⇢N (q) =
X

i

eiqri

⇢p(q) =
X

i

eiqri
1 + ⌧i,z

2
(3)

In the impulse approximation, as correctly pointed out by the referee, RN/2 and Rp coin-
cide. However, the corresponding GFMC results shown in Fig. 3 for 4He at q = 300 MeV
demonstrate the importance of the charge-exchange character of the nucleon-nucleon force,
as first pointed out in Ref. [Carlson, Schiavilla, PRC 49 (1994) R2880]. Motivated by the
comment raised by the referee, we added the above reference and a clarifying discussion to
the paper.

3. Referee: Another misbehaving example is evident in figure 11. In this case the L scaling
function of He4 presents a prominent tail at low energy transfer for q=500 MeV which is not
seen for the other q-values. Is this a failing of the calculation for this momentum transfer or
a vestige of the interpolation procedure to plot the results?

We thank the referee for pointing out this problem of the longitudinal scaling function of
4He at q = 500 MeV. We have indeed made a mistake in the inversion procedure, specifically
in the subtraction of the elastic contribution from the Euclidean responses. This problem
has now been fixed and all the 4He scaling functions have been recomputed. We also found
a small mistake in the longitudinal scaling function of 12C at q = 570 MeV, which has now
been fixed.

4. Referee: It is not true that “the asymmetric shape has never been obtained in the non-
relativistic calculations”, see for instance the paper [M. Martini et al., Phys.Rev. C75 (2007)
034604] for the scaling functions of C12 for the same values of q considered in this work. By
surfing the literature other non-relativistic approaches reproducing the data can be found as
well.

We thank the referee for this remark and for calling our attention to M. Martini et al.,
Phys.Rev. C75 (2007) 034604. In this paper, which we now quote in the Introduction, final
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Rp ' Rn
• In the impulse approximation 
the nucleon and the proton 
responses coincide 

• GFMC results demonstrate 
the importance of the charge-
exchange character of the 
nucleon-nucleon force 

q=500 MeV



• Recently, we were able to invert the neutral-current Euclidean responses of 12C

12C neutral-current response 

q=570 MeV
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• We were recently able to invert the neutral-current Euclidean responses of 12C

12C neutral-current response 

q=570 MeV



• The anti-neutrino cross section decreases rapidly relative to the neutrino cross section as the 
scattering angle changes from the forward to the backward hemisphere

4

one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC

↵ = jV NC
↵ + jANC

↵ ,
do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
By contrast, the xy response function arises solely on ac-
count of this interference. The ANC contribution to R↵�

is typically much larger than the V NC one (for example,
RANC

xx ' 3⇥RV NC
xx ). Furthermore, one expects in 12C the

00 and xx V NC response functions to be proportional to
the longitudinal and transverse electromagnetic response
functions RL and RT via RV NC

00/xx ' RL/T /4, since the

isoscalar and isovector pieces in jV NC are related to the
corresponding ones in the electromagnetic current jEM

by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
(sin2✓W ' 0.23), and the matrix elements of these pieces
add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].

In Fig. 3 we show the ⌫ and ⌫ di↵erential cross sec-
tions for a fixed value of the three-momentum transfer as
function of the energy transfer for a number of scattering
angles. In terms of these variables, the initial energy E
of the neutrino, shown in the insets of Fig. 3, is given by

E =
!

2

"
1 +

s

1 +
Q2

!2 sin2(✓/2)

#
, (4)

and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
ward to the backward hemisphere. For this same rea-
son, two-body current contributions are smaller for the
⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
most relevant for the analysis of accelerator neutrino

FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.

This research is supported by the U.S. Depart-
ment of Energy, O�ce of Science, O�ce of Nu-
clear Physics, under contracts DE-AC02-06CH11357

12C neutral-current cross-section 
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course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
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most relevant for the analysis of accelerator neutrino
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course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
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do not interfere; in these cases, R↵� =RV NC

↵� +RANC
↵� and

the separated RV NC
xx and RANC

xx are illustrated in Fig. 2.
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changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
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one- and two-body current matrix elements, and is con-
sistent with that expected on the basis of sum-rule analy-
ses [18]. Counter to the electromagnetic case [17], we find
that two-body terms in the weak neutral charge produce
substantial excess strength in R00 and R0z beyond the
quasi-elastic peak. In the 00, 0z, zz, and xx response
functions the vector (V NC) and axial (ANC) compo-
nents of the weak neutral current, jNC
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by the factors, respectively, �2 sin2✓W and (1�2 sin2✓W )
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add up incoherently in the response of an isoscalar target
such as 12C. Lastly, we note that two-body terms in the
ANC increase the one-body RANC

xx response by about
20% in the quasi-elastic region. This increase is much
larger than the ' 2–4% that is obtained in the case of
Gamow-Teller rates between low-lying states near thresh-
old, induced by the axial component of the weak charged
current [24].
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and its final energy E0 =E � !. Because of the can-
cellation in Eq. (1) between the dominant contributions
proportional to the Rxx and Rxy response functions, the
⌫ cross section decreases rapidly relative to the ⌫ cross
section as the scattering angle changes from the for-
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son, two-body current contributions are smaller for the
⌫ than for the ⌫ cross section, in fact becoming negligi-
ble for the ⌫ backward-angle cross section. As the angle
changes from the forward to the backward hemisphere,
the ⌫ cross section drops by almost an order of mag-
nitude, and in the limit ✓= 180� is just proportional
to Rxx(q,!) � Rxy(q,!). In terms of initial and final
neutrino energies E and E0—the kinematical variables
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FIG. 3. (Color online) Weak neutral ⌫ (black curves) and
⌫ (red curves) di↵erential cross sections in 12C at q=570
MeV/c, obtained with with one- and one- and two-body terms
in the NC. The final neutrino angle is indicated in each panel
and the initial neutrino energy is shown in the inset.

experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.

This research is supported by the U.S. Depart-
ment of Energy, O�ce of Science, O�ce of Nu-
clear Physics, under contracts DE-AC02-06CH11357



• Two-body current contributions are smaller for the antineutrino than for the neutrino cross 
section, in fact becoming negligible for the antineutrino backward-angle
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one- and two-body current matrix elements, and is con-
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course, these considerations remain valid for the elastic
contributions alluded to earlier in Eq. (3).

Figure 1 shows that contributions from two-body terms
in the NC significantly increase (in magnitude) the re-
sponse functions obtained in impulse approximation (i.e.,
with one-body currents) over the whole quasi-elastic re-
gion, but for R00 on the low ! side. This enhancement
is mostly due to constructive interference between the
one- and two-body current matrix elements, and is con-
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experiments—we note that E ranges from 1–2 GeV at
✓=15� to 0.3–0.5 GeV at ✓=120�, and so the present
results computed at fixed q=570 MeV/c as function of
! span a broad kinematical range in terms of the vari-
ables E and E0.
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Relativistic effects in a correlated system 
• Non relativistic approaches are limited to moderate momentum transfers

• In a generic reference frame the longitudinal non-relativistic response reads
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• The response in the LAB frame is given by the Lorentz transform
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Relativistic effects in a correlated system 
• The 4He  longitudinal response at q=700 MeV strongly depends upon the original reference frame 



Relativistic effects in a correlated system 
• To determine the relativistic corrections, we consider a two-body breakup model

pfr = µ
⇣ pfrN
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• The relative momentum is derived in a relativistic fashion
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• And it is used as input in the non relativistic kinetic energy

efrf = (pfr)2/(2µ)

• The energy-conserving delta function reads 
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Relativistic effects in a correlated system 
• The 4He  longitudinal response at q=700 MeV mildly depends upon the original reference frame 


