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Lecture II - Beyond the Parton Model

• Higher order corrections

• Factorization schemes

• PDF scale dependence and DGLAP evolution equations

• QCD-improved parton model

• Global Fits for PDFs



Higher Order QCD Corrections
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• Lowest Order QCD gives the parton model result of scaling for the
structure functions

• Radiative corrections due to gluon emission and quark-antiquark
pair production will give rise to logarithmic dependences on Q2

• We need to extend the previous results to include these effects



• Consider the QCD Compton subprocess V (q)q(p) → q′(p′)g(k)

• The structure function at the parton level is given by

W µν =
1

8πη

∫

d(PS)
∑

spins

hµ†hν

where

hµ = gT a
ij ū(p′)

[

γµ(1 − γ5)(/p − /k)γα

(p − k)2
+

γα(/p + /q)(1 − γ5)

(p + q)2

]

ǫ∗α(k)u(p)

and

d(PS) =
d3k

(2π)32Ek

d3p′

(2π)32E′
(2π)4δ4(q + p − k − p′)



• The tensor structure is now more complex than for the lowest order term

• A simplification can be made for the case of massless quarks since then
the tensor given above satisfies the same current conservation relations
that hold in the electromagnetic case:

qµW µν = qνW µν = 0

Exercise: Show this

Then, the hadronic tensor can be written as

W µν = F1

„

−gµν +
qµqν

q2

«

+
F2

Mν

„

P µ − P · qqµ

q2

«„

P ν − P · qqν

q2

«

−i
F3

2Mν
ǫµναβPαqβ

Exercise: Show that this expression satisfies the two relations given above.



• The simplification of the calculation follows from considering two
contractions:

C1 = gµνW µν and C2 = PµPνW µν

• The capital P refers to the hadronic 4-vector with pµ = ηP µ

Exercise: Show the following:

F2

x
=

12x2

Q2
C2 − C1

F1 =
2x2

Q2
C2 −

1

2
C1



Filling in the Details

• Squaring the amplitude and taking the appropriate trace yields

C1 =
αs

2η
CF

∫

d(PS)16

(

ŝ

t̂
+

t̂

ŝ
− 2

ûQ2

ŝt̂

)

C2 =
αs

2η
CF

∫

d(PS)
−8û

η2

where

αs = g2

4π
, the color factor CF = 4/3, and the parton Mandelstam

variables are ŝ = (p + q)2, t̂ = (p − k)2, û = (q − p′)2

Exercise: Derive the results for C1 and C2



The phase space factor can be easily evaluated in the parton center of
mass frame and then expressed in terms of Lorentz scalars:

d(PS) =
d cos θ

16π
=

−t̂

8π(ŝ + Q2)

Using the previous results for C1 and C2 and convoluting with a quark
PDF yields

F1 =
αs

2π
CF

∫ 1

x

dη

η
q(η)

[

−
ŝ

t̂
−

t̂

ŝ
+ 2

ûQ2

ŝt̂
− 2

x2û

η2Q2

]

d(−t̂)

(ŝ + Q2)

F2 =
αs

2π
CF 2x

∫ 1

x

dη

η
q(η)

[

−
ŝ

t̂
−

t̂

ŝ
+ 2

ûQ2

ŝt̂
− 6

x2û

η2Q2

]

d(−t̂)

(ŝ + Q2)

Note that the Callan-Gross relation is slightly broken by the last term
in the square bracket for each structure function



• The results for xF3 are easily obtained from the information provided
since the tensor structure follows from taking a trace of four γ matrices
with a γ5

• In what follows, I wish to focus attention on F2 in order to see how the
QCD radiative corrections give rise to a dependence on Q2

• Let z = x
η

= Q2

η2P ·q
= Q2

2p·q
= Q2

ŝ+Q2

• With these relations one gets also ŝ = Q2 1−z
z

and û = −Q2

z
− t̂

• Inserting into the expression for F2 yields

F2 =
αs

2π
CF 2x

Z

dη

η
q(η)

»

−1

t̂

„

1 + z2

1 − z
+ · · ·

«–

d(−t̂)

• This shows a logarithmic divergence from the t̂ integration since 0 ≤
−t̂ ≤ Q2/z

• The · · · indicate non-singular terms



• Temporarily, cut the lower limit off at −t̂ = µ2

• Also, change the integration variable to z = x/η to get

F2 = 2
αs

2π

∫ 1

x

dz
x

z
q(

x

z
)

[

P̃qq(z) ln
Q2

µ2
+ · · ·

]

• The function P̃qq(z) = CF
1+z2

1−z
is one of four splitting functions

that will be discussed shortly

• In order to interpret this correction, we need to put back the lowest
order contribution which is just 2xq(x)

• This can be brought under the integral sign by a judicious use of
a delta function

F2(x) = 2x

Z 1

x

dη

η
q(η)

»

δ(1 − x

η
) +

αs

2π
P̃qq(

x

η
) ln

Q2

µ2
+ · · ·

–



• There are two problems with the expression on the preceding page

1. P̃qq(
x
η
) diverges logarithmically as η → x

2. There is a logarithmic divergence as the cut-off µ2 goes to
zero

• The first is an example of a soft singularity while the second is
from a collinear singularity.

• Fortunately, the calculation is not yet complete - we have yet to
include the 1-loop corrections to the lowest order diagram.

• These loop corrections have the same kinematics as the lowest order
term - they contribute with a weight proportional to q(x) or at
η = x under the integral

• Soft singularities associated with the loop corrections cancel those
coming from the tree-level Compton process we have been calcu-
lating



• For our purposes, the main effect is to modify P̃qq and replace it with a
modified splitting function given by

Pqq(z) = CF

»

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

–

• The so-called “plus” distribution is defined under the integral sign as

Z 1

0

dz f(z)
1

(1 − z)+
=

Z 1

0

dz
f(z) − f(1)

(1 − z)

• With this form for the splitting function, the singularity at z = 1 has
been removed.

• This is an example of the idea of infrared safety whereby the soft sin-
gularities cancel between the loop and tree contributions for properly
defined observables



• Next, consider the collinear singularity that has temporarily been regu-
lated by the cut-off µ2

• This divergence came from the 1
t̂

factor that originated in the propagator
factor for the incoming quark line

• t̂ → 0 corresponds to the the gluon being emitted collinear with the
quark and the quark goes on-shell

• This is a long distance, i.e., low momentum transfer, effect associated
with the incoming quark and is not part of the hard scattering process

• We can associate this with the bare quark distribution q(x)

• Suppose we split the log factor as ln(Q2

µ2 ) = ln( Q2

M2

f

) + ln(
M2

f

µ2 )

• Then we can define a new quark PDF by

q(x, M2
f ) = q(x) +

αs

2π

Z 1

x

dy

y
q(y)Pqq(

x

y
) ln(

M2
f

µ2
)



• Here we have absorbed the µ dependence into the bare quark PDF and
replaced it with one that depends on the new scale Mf - this is called
the factorization scale

• Physically, the factorization scale separates the long distance from the
short distance physics.

• The expression for F2 now takes the form

F2(x, Q2) = 2x

Z 1

x

dη

η
q(η,M2

f )

"

δ(1 − x

η
) +

αs

2π

 

Pqq(
x

η
) ln(

Q2

M2
f

) + f(
x

η
)

!#

• Here the function f contains all the finite non-logarithmic terms previ-
ously demoted by · · ·

• Finally, if we choose M2
f = Q2 we get a very simple expression

F2(x, Q2) = 2x

»

q(x, Q2) +
αs

2π

Z 1

x

dη

η
q(η,Q2)f(

x

η
)

–



Comments

• The factorization scale Mf has a simple interpretation. Its origin
is the integration over the transverse momentum of the emitted
gluon. Hence, it governs how much of the struck quark’s transverse
momentum distribution is integrated over.

• One often hears comments about the incoming quarks having no
transverse momentum. That is false. We integrate out the trans-
verse momentum thereby generating scale-dependent parton PDFs

• The initial partons are treated as if they have no transverse mo-
mentum when describing the initial state kinematics

• This is an approximation - what is really meant is that the domi-
nant region of parton transverse momentum is much less than the
characteristic hard scale for the process

• This approximation can be improved by going to higher order in
perturbation theory



DGLAP Equations

• It is all well and good to have a simple expression for F2 in terms of
scale-dependent PDFs, but where do the PDFs come from and how do
you calculate their dependence on the scale?

• Refer back to the definition I introduced for the scale-dependent PDFs

• The scale entered through a logarithmic term as shown below

q(x,M2
f ) = q(x) +

αs

2π

Z 1

x

dyq(y)Pqq(
x

y
) ln(

M2
f

µ2
)

• The partial derivative of q(x, M2
f ) with respect to ln M2

f projects out the
coefficient of the log term which is just the convolution of the splitting
function and the appropriate PDF

• Note: The running coupling αs also depends on a large scale which can
be taken as M2

f . The derivative of αs(M
2
f ) then gives rise to a term one

order higher in αs and is therefore dropped.



• Generalized to include gluons and all four possible parton splittings
the result is known as the set of DGLAP (Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi) Equations

• They take the form

∂q(x, t)

∂t
=

αs(t)

2π

Z 1

x

dy

y

»

Pqq(y)q(
x

y
, t) + Pqg(y)g(

x

y
, t)

–

∂g(x, t)

∂t
=

αs(t)

2π

Z 1

x

dy

y

»

Pgq(y)q(
x

y
, t) + Pgg(y)g(

x

y
, t)

–

• Here t = ln M2
f /Λ2

• These coupled integro-differential equations may be solved iteratively by
computer, given a set of initial boundary conditions at some scale

• The boundary conditions on the initial PDFs may be parametrized and
then varied to fit a wide variety of data. This is the heart of the global
fitting program for determining PDFs, about which more will be said
later



Splitting Functions

• The splitting functions, Pij , can be expanded in a perturbative series

• The lowest order expressions are referred to as the one-loop splitting
functions

P (0)
qq (z) = CF

»

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

–

P (0)
qg (z) = TR

ˆ

z2 + (1 − z)2
˜

P (0)
gq (z) = CF

»

1 + (1 − z)2

z

–

= P (0)
qq (1 − z), z < 1

p(0)
gg (z) = 2CA

»

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

–

+ δ(1 − z)
11CA − 4nfTR

6

• For SU(3) CF = 4/3, CA = 3, TR = 1/2 and nf denotes the number of
active flavors.



DGLAP Equations and Scaling Violations

Consider the average of F2 with neutrino and antineutrino beams on an
isoscalar target. Multiply the quark equation by 2x and sum over all
flavors. Using the lowest order expressions for F2 one has

∂F2(x, Q2)

∂t
=

αs(Q
2)

2π

∫ 1

x

dy

[

Pqq(y)F2(
x

y
, Q2) + 2nfPqg(y)

x

y
g(

x

y
, Q2)

]

where nf is the number of active flavors. If x ≪ 1 then the gluon PDF
term dominates. Since

Pqg(y) =
1

2

(

y2 + (1 − y)2
)

is positive definite, we see that the slope in lnQ2 is positive



For large x the first term dominates. Since

Pqq(y) = CF

[

1 + y2

(1 − y)+
+

3

2
δ(1 − y)

]

we see the presence of (1 + y2)F2(
x
y
, Q2) − 2F2(x, Q2) < 1, so the slope

turns negative as x → 1.
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Simple Interpretation

• In a hard collision quarks at high values of x radiate gluons

• This depletes the high x quark PDFs and builds them up at lower
x

• The gluons can create qq̄ pairs, thereby building up the quark PDFs
at lower values of x

This explains the pattern of scaling violations seen in the data



QCD Improved Parton Model

• The predictions of the parton model are justified by lowest order QCD
predictions.

• For processes with one large scale - call it Q2 - these can be improved
upon by using the techniques discussed so far to sum corrections from
large leading logarithms

• Three steps

– Replace αs with the running coupling αs(Q
2)

– Replace PDFs with scale-dependent PDFs which are solutions of
the DGLAP equations

– If fragmentation functions (FFs) contribute, replace the FFs with
scale-dependent FFs which are solutions of their DGLAP equations

• These three steps constitute the leading logarithm approximation (today
usually labeled as LO for lowest order, but note the scale-dependent
functions involved.)



Next Steps

For improved accuracy one can go to NLO calculations (Here’s another
three-step plan)

• Include the next-to-leading-order hard scattering parton cross sec-
tions

• Use the two-loop running coupling

• Use the two-loop splitting functions in the DGLAP equations for
the PDFs and FFs

• We have seen how to include the next order hard scattering in
one example. Extending the expressions for αs and the splitting
functions is straight forward



Change of Pace

• So, suppose you had a set of PDFs - what could you do with them?

1. Needed for perturbative calculations of any hard scattering
process with hadrons in the initial state

2. Precision PDFs needed for background estimates

3. Needed for understanding potential new signals as predicted
in various models

• But, where do PDFs come from anyway?

• Various groups present evolved PDFs as functions of (x, Q2)

• These PDFs are determined from Global Fits



Global Fits – What are they?

Problem: We need a set of evolved PDFs in order to be able to calculate a
particular hard-scattering process

Solution: Generate a set of PDF solutions using a parametrized functional
form for the input PDFs. Repeatedly vary the parameters and evolve the
PDFs again in order to obtain an optimal fit to a set of data for various hard-
scattering processes

Key points:

• Parametrized functional form for input PDFs at the scale Q0

• Choice of data sets to use and the kinematic cuts to place on them

• Truncation of the perturbation series for the hard-scattering calculations
and the PDF evolution (LO, NLO, NNLO)

• Definition of “optimal fit”

• Treatment of errors



Useful PDF properties

For the specific case of the proton we know that

• The gluon distribution dominates at low values of x and falls steeply as
x increases

• The antiquarks and quarks are comparable at low values of x and the
antiquarks fall off in x even faster than the gluons

• the u and d PDFs dominate at large values of x with u > d





The pattern is easily understood by studying the evolution equations.

• The u and d distributions dominate at large x and radiate gluons
as they interact in the hard-scattering process

• This causes the quark distributions to get steeper (they give up
some of their momentum fraction) and the gluon distribution to
get larger

• Gluons can also radiate gluons so the gluon distribution tends to
also get steeper and builds up at low values of x

• Gluons can also create quark-antiquark pairs so the antiquarks
increase at low values of x and have a steeper distribution than the
gluons

• Keep these ideas in mind as we look for ways to separate these
distributions.



Observables

Each observable involves a characteristic linear combination (or product) of
PDFs. Thus, different observables can be used to constrain specific PDFs.

• Representative global fits today use data of the following types

– Deep inelastic scattering (l±p, l−d, νN, νN)

– Neutrino DIS dimuon production

– Vector boson production (W±, Z0, γ, lepton pair production)

– hadronic jet production

• Will look at representative data types in order to design a strategy for
constraining individual PDFs using the parton model as a guide

• For purposes of illustration, consider just the LO expressions for the
different observables.

• Basic pattern is not altered by NLO corrections



Deep Inelastic Scattering

Lowest order l±p -

F2(x, Q2) = x
∑

i

e2
i

[

qi(x, Q2) + qi(x, Q2)
]

• Each flavor weighted by its squared charge

• Gluon doesn’t enter in lowest order

• Quarks and antiquarks enter together

• The use of deuterium targets allows one to get information on
neutron structure functions - isospin invariance results in the role
of the u and d PDFs being interchanged

• Requires use of nuclear corrections (see Lecture III)



Move on to neutrino interactions - measure both F2 and xF3. As shown in
Lecture I, the signs of the antiquark PDFs change for xF3. Schematically,

F2(x, Q2) = 2x
X

i

ˆ

qi(x, Q2) + qi(x, Q2)
˜

xF3(x, Q2) = 2x
X

i

ˆ

qi(x, Q2) − qi(x, Q2)
˜

• Here the sum over i is determined by the beam and target

• Additional structure function allows the separation quarks and anti-
quarks, but not a complete flavor separation

• Can use charm production to constrain the s, s̄ PDFs

• νs → µ−c followed by c → µ+s̄ and the charge conjugate process for
antineutrinos

• Both processes result in opposite sign pairs of muons.

• A consideration for all the neutrino reactions is the need for nuclear
corrections



• After correcting the neutrino and charged lepton cross sections to
effective isoscalar targets (N=(p + n)/2) and ignoring strange and
charm contributions, one has

F l±N
2 ≈

5

18

[

u + d + u + d
]

F νN
2 ≈

[

u + d + u + d
]

• Hence F l±N
2 ≈ 5

18
F νN

2 so that similar information can, in principle,
be obtained from either one.

But what about the gluon?



Constraining the gluon in DIS

• The gluon does not contribute in lowest order to the DIS structure
functions

• It does enter in next-to-leading order to all the structure functions

• Significant contribution to the longitudinal structure function FL

starting at order αs, but the existing data have large errors

• Also enters through mixing in the evolution equations so the gluon
contributes to the change of the structure functions as Q2 increases



Gluon PDF and Scaling Violations

• Consider the average of F2 for neutrinos and antineutrinos on an
isoscalar target

F2(x, Q2) =

nf
∑

i=1

x
[

qi(x, Q2) + q̄i(x, Q2)
]

• Keep just the dominant gluon term in the quark DGLAP equation
for low values of x

• Form the combination of quarks which contribute to F2

Q2 dF2

dQ2
≈

αs(Q
2)

2π

∫ 1

x

xdy

y
2nfPqg(y)G(

x

y
, Q2)

• The Q2 dependence at small-x is driven directly by the gluon PDF



Lepton Pair Production

• For pp or pd reactions lepton pair production involves the product of
quark and antiquark PDFs

dσ

dQ2dxf
∝
X

i

e2
i

ˆ

qi(xa, Q2)qi(xb, Q
2) + a ↔ b

˜

• xa and xb are given by xa,b =
±xF +

√
x2

F
+4Q2/s

2

• For large xF one has xa >> xb and

σpp ∝ 4u(xa)u(xb) + d(xa)d(xb)

σpd ∝ [4u(xa) + d(xa)][u(xb) + d(xb)]

• Data sets for these processes can help determine the ratio d/u.



W± Lepton Asymmetry

• The dominant contributions to W production at the TeVatron come
from ud and ud collisions.

• But Gu/p(x) = Gu/p and similarly for the d quark.

• Hence, at the TeVatron one is sensitive to the product ud

• Define the W asymmetry in rapidity y as

AW (y) =
dσ+/dy − dσ−/dy

dσ+/dy + dσ−/dy

• For pp collisions one has

AW (y) ≈ u(xa)d(xb) − d(xa)u(xb)

u(xa)d(xb) + d(xa)u(xb)

• Here xa,b = x0e
±y with x0 = MW /

√
s.



• Let Rdu = d/u so that

AW (y) =
Rdu(xb) − Rdu(xa)

Rdu(xb) + Rdu(xa)

• For small y one has Rdu(xa) ≈ Rdu(xb) ≈ Rdu(x0).

• Using a Taylor Series expansion one gets

AW (y) ≈ −x0y
1

Rdu(x0)

dRdu

dx
(x0)

• The W asymmetry thus yields information on the slope of the d/u
ratio.

• The same conclusion holds for the lepton asymmetry from the W
decay, but the effect is washed out somewhat by the decay.



Hadronic Production of Jets

So far we have not obtained much information about the gluon distribution.
Need a process where the gluon contributes in lowest order.

• Direct photon production is one candidate

• Hadronic jet production includes, in lowest order, qq → qq, qg → qg,
and gg → gg

• At high xT = 2pT /
√

s one might expect the quark distributions to dom-
inate since the relevant values of x are of order xT .



• The qq subprocesses do dominate the high-ET region.

• But, there is enough contribution from the gluon that high-ET jet
data can be used to constrain the large-x gluon behavior.

• Combined with the low-x data and the momentum sum rule (to be
discussed later) one has strong constraints on the gluon distribu-
tion.



Global Fits

Ok - so you think you are ready to do some global fits...

√
Collected data for a representative set of processes

√
Obtained an evolution program for the PDFs

√
Written or obtained a set of programs to evaluate the various ob-
servables

√
Interfaced a fitting package with the observable and evolution rou-
tines

√
Ready to go - right?

Oh, but wait. Not so fast . . .



There are just a few details left to address

• Parametrization and choice of parameters to vary

• Order of perturbation theory (LO, NLO, NNLO, . . . )

• Scheme dependence (DIS, MS, . . . )

• Choices for scales in the hard scattering processes

• Target mass and higher twist effects

• Treatment of heavy quarks

• Effects due to choosing or deleting a given data set

• Choice of kinematic cuts

• Treatment of errors

• Error estimates on the PDFs



• The purpose of this brief description of Global Fits is so that you
can see the role that neutrino DIS can play in studying nucleon
structure and how it is related to the study of other processes

• Issues that must be addressed when using neutrino data

1. Nuclear corrections!

2. Target Mass Corrections

3. Higher Twist contributions

• These topics are being studied in the context of Global Fits by the
CTEQ-Jefferson Lab (CJ) Collaboration

• These issues are the subject of the next lecture


