Strong and electroweak interactions in nuclei

Saori Pastore NuSTEC FNAL - Batavia IL - November 2017

Thanks to Jorge and Luis

Motivations (Why Nuclear Physics?)

* Nuclei active material in experiments that test the SM and search for BSM physics (neutrino experiments, DM, neutrinoless double beta decay ...)

* Nuclear Physics required to *

- 1. Have meaningful interpretations of the data
- 2. Disentangle new physics from nuclear effects

Topics (3 hours)

- * Two- and Three-nucleon Pion Exchange Interactions \checkmark
- * Realistic Models of Two- and Three-Nucleon Interactions \checkmark
- * Realistic Models of Many-Body Nuclear Electroweak Currents $\sim \checkmark$
- * Short-range Structure of Nuclei, Nuclear Correlations, and Quasi-Elastic Scattering

The Basic Model Requirement 1: Nuclear Interactions DAY 1

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} \mathbf{v}_{ij} + \sum_{i < j < k} \mathbf{V}_{ijk} + \dots$$

Step 1. Construct two- and three-body interactions

- * Chiral Effective Field Theory Interactions
- * "Conventional" or "Phenomenological" Interactions

* One-pion-exchange: range~ $\frac{1}{m_{\pi}}$ ~ 1.4 fm * Two-pion-exchange: range~ $\frac{1}{2m_{\pi}}$ ~ 0.7 fm

The Basic Model Requirement 2: Nuclear Electromagnetic Many-Body Currents DAY 2

Step 2. Understand how external probes (electrons, neutrinos, DM ...) interact with nucleons, nucleon pairs, nucleon triplets...

- * Chiral Effective Field Theory Electroweak Many-Body Currents
- * "Conventional" or "Phenomenological" Electroweak Many-Body Currents Step 2.a Validate and then Use the model
- * Validation of the theory against Electromagnetic observables in a wide range of energies \checkmark
- * Neutrino-Nucleus Observables from low to high energies and momenta

Two-body Electromagnetic currents key points

* In general *

- * Two-body components (in the vector electromagnetic current) are essential to explain the data
- * They provide up to $\sim 40\%$ contributions to magnetic moments of nuclei (static observables)
- * They enhance the transverse response up $\sim 50\%$ (dynamical observables)
- * One-pion-exchange currents \mathbf{j}_{π} , present in both formulations, provide $\sim 0.8 \mathbf{j}_{ij}$

Conclusion and Outlook II

- * The Microscopic picture of the nucleus based on many-body interactions and electroweak currents successfully explains the data both qualitatively and quantitatively
 - * It explains the spectra and shapes of nuclei

* It has been validated against electromagnetic observables in a wide range of energies from *keV* (relevant to astrophysics) to *GeV* (relevant to accelerator neutrino experiments)

* Two-body physics, correlations and two-body currents, is essential to understand the data both for static nuclear properties (spectra, electromagnetic moments, nuclear form factors) and dynamical properties (transitions in low-lying nuclear states, nuclear responses)

* We want the same coherent picture for interactions with neutrinos!!! *

Nuclei and Neutrinos

* v-A scattering "Anomalies" the QE region
* "g_A-problem" low-values (zero) of momentum transfer
* Scarce data at moderate values of momentum transfer

"Anomalies" $\sim \text{GeV}$

Alvarez-Ruso arXiv:1012.3871

β -decay

"Anomalies" $q \sim 0$: The " g_A problem"

in $3 \le A \le 18 \longrightarrow g_A^{\text{eff}} \simeq 0.80 g_A$ Chou *et al.* PRC47(1993)163 Missing Physics: 1. Correlations and/or 2. Two-body currents

Two-body Axial Currents from χEFT

A. Baroni et al. PRC93(2016)015501

H. Krebs et al. Ann.Phy.378(2017)

- * c₃ and c₄ are taken them from Entem and Machleidt PRC68(2003)041001 & Phys.Rep.503(2011)1
- * c_D fitted to GT m.e. of tritium beta-decay Baroni et al. PRC94(2016)024003

 $* \sim 2\%$ additive contribution from two-body currents *

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

"Conventional" Two-body Axial Currents

- 1) One body has GT, relativistic corrections, PS from pion-pole diagrams
- 2) Two-body currents
 - 2.a) Major contribution from Δ -excitation current
 - 2.b) Negligible contributions from $A\pi$, $A\rho$, $A\pi\rho$
- 3) $AN\Delta$ coupling fixed to tritium beta-decay
- 4) $\sim 3\%$ additive correction from Δ -current

Chemtob, Rho, Towner, Riska, Schiavilla, Marcucci ...

see, e.g., Marcucci et al. PRC63(2001)015801 and references therein

"Anomalies" $q \sim 0$: The " g_A problem"

in $3 \le A \le 18 \longrightarrow g_A^{\text{eff}} \simeq 0.80 g_A$ Chou *et al.* PRC47(1993)163 Missing Physics: 1. Correlations and/or 2. Two-body currents

Single β -decay Matrix Elements in A = 6-10

Pastore et al. arXiv:1709.03592

Based on $g_A \sim 1.27$ no quenching factor

* Correlations in the wave functions seem to, at least partially, solve the g_A -problem

* Two-body currents are small $\sim 2\%$ * data from TUNL, Suzuki et al. PRC67(2003)044302, Chou

et al. PRC47(1993)163

* Preliminary results based on the Chiral Effective Field Theory Potential with Δ's by Piarulli *et al.* PRC91(2015)024003-PRC94(2016)054007-arXiv:1707.02883 Over predict by only 4% *

Neutrinoless double β -decay

Engel and Menendez Reports on Progress in Physics 80, 046301 (2017)

"The average momentum is about 100 MeV, a scale set by the average distance between the two decaying neutrons"

* Matrix Elements
$$\propto g_A^2$$
 and Decay Rates $\propto g_A^4$ *

Fundamental Physics Quests: Double Beta Decay

observation of $0\nu\beta\beta$ -decay \rightarrow lepton # $L = l - \overline{l}$ not conserved \rightarrow implications in matter-antimatter imbalance

Majorana Demonstrator

* detectors' active material ⁷⁶Ge * $0\nu\beta\beta$ -decay $\tau_{1/2} \gtrsim 10^{25}$ years (age of the universe 1.4×10^{10} years) 1 ton of material to see (if any) ~ 5 decays per year * also, if nuclear m.e.'s are known, absolute v-masses can be extracted *

2015 Long Range Plane for Nuclear Physics

Neutrinoless double beta decay: STATUS

Javier Menendez arXiv:1703.08921

Matrix Elements Estimates differ by a factor of ~ 2

Momentum Dependence

- Peaks at ~ 200 MeV
- * no 'pion-exchange-like' correlations
- * yes 'pion-exchange-like' correlations
- * ~ 10% increase in the matrix elements corresponds to a 'g_A-quenching' of ~ 0.95
- * as opposed to ~ 0.83 found in A = 10 single beta decay

* data at moderate momenta is valuable *

Pastore, Mereghetti, Dekens, Carlson, Cirigliano, Wiringa arXiv:1710.05026

Momentum Dependence and Sensitivity to Nucleonic Form Factors

- Peaks at ~ 200 MeV
- * Form factors on/off $\rightarrow \sim 10\%$ variation
- * A = 10 highly suppressed w.r.t. A = 12
- * A = 12 'most similar' to experimental cases

Pastore, Mereghetti, Dekens, Carlson, Cirigliano, Wiringa arXiv:1710.05026

Neutrino-Deuteron Scattering

$$v_e + d \rightarrow p + p + e$$

 $\bar{v_e} + d \rightarrow n + n + e^+$

Baroni and Schiavilla Phys. Rev. C 96, 014002 (2017) Nakamura *et al.* Nucl.Phys. A707 (2002) Shen *et al.* Phys.Rev. C86 (2012) 035503

Recent Developments on ${}^{12}C$: Weak Responses

q = [300 - 750] MeV

Lovato, Gandolfi et al. - PRL112(2014)182502

More by Alessandro Lovato

•• How do nuclei interact with neutrinos in the GeV energy regime and how can calculations of these interaction cross sections be improved?

i.e.

Towards a microscopic description of the *v*-A inclusive cross section: The Short-Time-Approximation

Inclusive (e, e') scattering: Intro to Short-Time-Approximation

- * v/e inclusive xsecs are completely specified by the response functions
- * Two response functions for (e, e') inclusive xsec

$$R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) \left| \langle f | O_{\alpha}(\mathbf{q}) | 0 \rangle \right|^2 \qquad \alpha = L, T$$

Longitudinal response induced by $O_L = \rho$ Transverse response induced by $O_T = \mathbf{j}$

* Sum Rules *

Exploit integral properties of the response functions + closure to avoid explicit calculation of the final states

$$S(q,\tau) = \int_0^\infty d\omega K(\tau,\omega) R_\alpha(q,\omega)$$

* Coulomb Sum Rules * $S_{\alpha}(q) = \int_{0}^{\infty} d\omega R_{\alpha}(q, \omega) \propto \langle 0 | O_{\alpha}^{\dagger}(\mathbf{q}) O_{\alpha}(\mathbf{q}) | 0 \rangle$

Sum Rules and Two-body Currents: Excess Transverse Strength

Carlson et al. PRC65(2002)024002

Important:

To see enhancement you need BOTH two-body currents and two-body correlations (another effect of the continuity equation)

Carlson at latest INT neutrino workshop Dec.

2016

$$\begin{split} S_T(q) & \propto & \langle 0 | \mathbf{j}^{\dagger} | \mathbf{j} | 0 \rangle \\ & \propto & \langle 0 | \mathbf{j}_{1b}^{\dagger} | \mathbf{j}_{1b} | 0 \rangle + \langle 0 | \mathbf{j}_{1b}^{\dagger} | \mathbf{j}_{2b} | 0 \rangle + \dots \end{split}$$

•
$$\mathbf{j} = \mathbf{j}_{1b} + \mathbf{j}_{2b}$$

 enhancement of the transverse response is due to interference between 1b and 2b currents AND presence of two-nucleon correlations

$$\langle \mathbf{j}_{1b}^{\dagger} \ \mathbf{j}_{1b} \rangle > 0$$

$$\langle \mathbf{j}_{1b}^{\dagger} \ \mathbf{j}_{2b} \rangle \langle \mathbf{v}_{\pi} \rangle \propto \langle v_{\pi}^{2} \rangle >$$

0

Recent Developments on ${}^{12}C$ Quantum Monte Carlo Calculations of Nuclear Responses and Sum Rules

 ~ 100 million core hours

CHALLENGE:

How do we describe electroweak-scattering off A > 12 nuclei

without loosing two-body physics?

Scaling properties of the Response Functions

Inclusive xsec depends on a single (scaling) function of ω and q

Donnelly and Sick - PRC60(1999)065502

1. Rely on observed scaling properties of inclusive xsecs, universal behavior of nucleon/A momentum distributions, and exhibited locality of nuclear properties to

build approximate response functions for A > 12 nuclei

- 2. From exact *ab initio* calculations we know that two-body correlations and two-body currents are crucial
 - 3. Build a model that retains two-body physics

The Plane Wave Impulse Approximation - PWIA

In PWIA:

Response functions given by incoherent scattering off single nucleons that propagate freely in the final state (plane waves)

$$R_{lpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f
ight) \langle 0|O^{\dagger}_{lpha}(\mathbf{q})|f
angle \langle f|O_{lpha}(\mathbf{q})|0
angle$$

$$O_{\alpha}(\mathbf{q}) = O_{\alpha}^{(1)}(\mathbf{q}) = \mathbf{lb}$$

|f \rangle \sim e^{i(\mathbf{k}+\mathbf{q})\cdot\mathbf{r}} = free single nucleon w.f.

* PWIA Longitudinal Response in terms of the *p*-momentum distribution $n_p(\mathbf{k})$ *

$$R_{L}^{PWIA}(q,\omega) = \int d\mathbf{k} \, n_{p}(\mathbf{k}) \delta\left(\omega - \frac{(\mathbf{k}+\mathbf{q})^{2}}{2m_{N}} + \frac{\mathbf{k}^{2}}{2m_{N}}\right)$$
$$O_{L}^{(1)}(\mathbf{q}) = e \sum_{i=1}^{A} \frac{1 + \tau_{i,z}}{2} e^{i\mathbf{q}\cdot\mathbf{r}_{i}}$$

Proton Momentum Distributions

Wiringa et al. - PRC89(2014)024305

1-body momentum distributions http://www.phy.anl.gov/theory/research/momenta/ 2-body momentum distributions http://www.phy.anl.gov/theory/research/momenta2/

The Short-Time Approximation - STA

In STA:

Response functions are given by the scattering off pairs of fully interacting nucleons that propagate into a correlated pair of nucleons

$$R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) \langle 0|O_{\alpha}^{\dagger}(\mathbf{q})|f\rangle \langle f|O_{\alpha}(\mathbf{q})|0\rangle$$

$$O_{\alpha}(\mathbf{q}) = O_{\alpha}^{(1)}(\mathbf{q}) + O_{\alpha}^{(2)}(\mathbf{q}) = \mathbf{lb} + \mathbf{2b}$$

$$|f\rangle \sim |\psi_{p,P,J,M,L,S,T,M_T}(r,R)\rangle = \text{correlated two-nucleon w.f.}$$

* We retain two-body physics consistently in the nuclear interactions and electroweak currents

* $R_{\alpha}(q, \omega)$ requires only direct calculation of g.s. $|0\rangle$ w.f.'s * * STA can be implemented to accommodate for more two-body physics, *e.g.*, pion-production induced by *e* and *v*

The Short-Time Approximation

In STA:

Response functions are given by the scattering off pairs of fully interacting nucleons that propagate into a correlated pair of nucleons

$$R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_{0} - E_{f}\right) \langle 0|O_{\alpha}^{\dagger}(\mathbf{q})|f\rangle \langle f|O_{\alpha}(\mathbf{q})|0\rangle$$
$$O_{\alpha}(\mathbf{q}) = O_{\alpha}^{(1)}(\mathbf{q}) + O_{\alpha}^{(2)}(\mathbf{q}) = \mathbf{1b} + \mathbf{2b}$$

 $\begin{array}{l} |f\rangle & \text{is a function of } \mathbf{p} \text{ and } \mathbf{P} \text{ e.g. for free propagator } \sim e^{i\mathbf{p}\cdot\mathbf{r}}e^{i\mathbf{P}\cdot\mathbf{R}} \\ |f\rangle & \sim & |\psi_{p,P,J,M,L,S,T,M_T}(r,R)\rangle = \text{correlated two-nucleon w.f.} \end{array}$

$$R_{\alpha}(q,\omega) \sim \int \delta\left(\omega + E_0 - E_f\right) d\Omega_P \, d\Omega_P \, dP \, dP \, dP \, dP \left[p^2 P^2 \langle 0|O_{\alpha}^{\dagger}(\mathbf{q})|\mathbf{p},\mathbf{P}\rangle\langle \mathbf{p},\mathbf{P}|O_{\alpha}(\mathbf{q})|0\rangle\right]$$

The Short-Time Approximation

300 core hours with 1b + 2b for ${}^{4}He$

Preliminary results

1b vs 1b+2b

The Short-Time Approximation

Longitudinal Response function at q = 500 MeV

Preliminary results

The Short-Time Approximation

Longitudinal vs Transverse Response Function at q = 500 MeV

Preliminary results

Conclusion and Outlook III

- * We are constructing a coherent picture of neutrino-nucleus interactions spanning a wide rage of energy and momenta
- * Many-body correlations contribute to explain the " g_A -problem" at low-momenta (zero)
- * Studies on neutrinoless double beta decay indicate a less severe " g_A -problem" at moderate values of momentum transfer
 - * Important to validate the theory at moderate values of momentum transfer
- * Two-body physics, correlations and two-body currents, play a crucial role in the explanation of electromagnetic responses of nuclei
 - * Microscopic Calculations of weak response indicate that two-body physics important in electroweak responses More by Alessandro Lovato
- * We are addressing how to retain two-body physics in approximated Microscopic calculations of responses in A > 12 nuclei This is the STA
- * Benchmark between STA and GFMC exact calculations by Lovato et al. is excellent

* All this work impacts on Fundamental Physics Quests! *

Outlook

$$\begin{array}{c} \mathbf{\hat{i}}_{\mathbf{j}} & \mathbf{j}_{\mathbf{j}\mathbf{k}} \rangle > 0 \\ \mathbf{\hat{j}}_{\mathbf{j}} & \mathbf{j}_{\mathbf{j}\mathbf{k}} \rangle > 0 \\ \mathbf{\hat{j}}_{\mathbf{j}} & \mathbf{j}_{\mathbf{j}\mathbf{k}} v_{\pi} \rangle \propto \langle v_{\pi}^2 \rangle > 0 \\ \mathbf{\hat{j}}_{\mathbf{j}\mathbf{k}} & \mathbf{j}_{\mathbf{j}\mathbf{k}} v_{\pi} \rangle \propto \langle v_{\pi}^2 \rangle > 0 \end{array}$$

It always seems impossible until it's done

- * Thank you all for the questions and interesting discussions
 - * Thank you organizers

Institute for Nuclear Theory (INT) Program - Seattle - Summer 2018

Fundamental Physics with Electroweak Probes of Light Nuclei June 12 - July 13, 2018 S. Bacca, R. J. Hill, S. Pastore, D. Phillips

> Contacts http://www.int.washington.edu/ saori.pastore@gmail.com saori@lanl.gov

EXTRA SLIDES