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QCD jets

Building block probability for parton cascades in vacuum
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df dw
0 w

dP ~ a,Cg = collimation of |ets

Large phase-space for multiple branching: many particles
produced (implemented in Event Generators such as
PYTHIA, HERWIG, SHERPA, etc.)



QCD jets

e Soft & Collinear divergences (resummation)
 Color coherence: angular ordered shower, interjet activity
* Not uniquely defined: cone size R, reconst. algo, ...

< T k” < b
form kﬁ_ AQCD

E

Large separation of time scales



Jet observables of two types

* [nfrared-Collinear (IRC) safe observables:
sum over final state hadrons — cancellations
of divergences. Ex:

Resummation of large
logs, e.g. log R, log Q/M, can be necessary

* Collinear sensitive observables: pQCD still
oredictive (factorization theorems). Ex:



Jets in Heavy lon
Collisions

(.'V'.S/ - CNE Exsadeenl al -0, SERN

— e Laya reuoeynd Son Mo 10 131003 L0 CLS)

-2t d RuriDenl: 15107€ 0 1220520
&4

=T Lumiaaclian Zed

T g e

SR A TN



1CONS | CNS Sapeime s 2t NS CERN
[ oo | L seco ol S0 Mse 13 7U351 0 00 CES
U man st 159008 1 15340

) | 9
PET7 | Luvi echon 249

Laacing jel
By 2ls 1 Gelie

guark-gluon plasma

Strong jet suppression (up to 1 TeV!) observed in ultra-
relativistic heavy ion collisions at LHC
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How much energy is lost?

- A rough estimate: consider a constant energy loss €

- using a power spectrum

we have

Hence, for Raa ~ 0.5 and , one finds that jets with
pt ~ 300 GeV lose typically about € ~ 25 GeV



Parton radiative energy
energy loss



The Jet-quenching parameter

correlation length « mean-free-path « L
Momentum broadening

(diffusion in transverse
momentum space):
1

(k1) = qL o

|—}\—|

L

e the jet-quenching ¢ parameter encodes medium
properties (LO: 2 to 2 elastic scattering):

A do 2
CIETL/ qzdelfvagC’Rnln—Q
q.1 q.1 mD

estimate: Q° ~ GL ~ 10GeV?



Medium-induced splittings

- Multiple scattering can trigger gluon radiation

= during the splitting time
many scattering centers act coherently as a single one and thus,
suppressing the radiation rate (k3 ~ gt )

/ - Y= teon vy
h — =5 "~ — coh ™ A~
- kﬁ_ qtcoh q

W
Radiative spectrum
d/ ~ [qL?
W——"~ A\ —
dw W
<—tcoh—>
-

[Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000) Zakharov (1996) Wiedemann (2000) Arnold,
Moore, Yaffe (2002)]

[Dilute medium limit. N=1 opacity expansion: Gyulassy, Levai, Vitev (2000) Guo, Wang (2000)] 10



Single quark energy loss

« Standard energy loss picture: medium-induced

radiation off a single parton [Baier, Dokshitzer, Mueller, Schiff, JHEP (2001)]

{ pT

Jet spectrum: convolution of the energy loss probability
with the spectrum in vacuum

dO’(pT) /OO deP(e) do.vac(pT + 6)

d?prdy - d?prdy
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Single quark energy loss

Because the jet spectrum is steeply falling (n >> 1), one
can make the following approximation

7L E

deaC(pT—I—E) 1 e PT

~J aY,

d?prdy (pr + €)™ pp"

This allows to relate the jet spectrum to the
of the quenching probability

~

Raa ~ Q(pr) = P(v=n/pr)

where
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Single quark energy loss

Pr

In the short formation time approximation soft radiations
can be treaded as independent and exponentiate in Laplace

space

75(V) — exp _— /dw£ (1 — e_”w)

dw

NB: resummation of length enhanced contributions:

dl ~a L
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Single quark energy loss

* Neglecting

one obtains a simple analytic  Q(pr) =~ exp (a L )
formula for the quenching

factor
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Jet quenching and fluctuations

 Energy is lost mainly via radiation

 Does one need to account for fluctuations of energy loss
due to fluctuations of the jet substructure”
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Phase-space analysis

 How large are next-to-leading order contributions?

* Probability for a virtual quark to split inside the medium:

pTd —~
S—oz/ w/ — O(tr< L) = %logz(pTRQL)
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Phase-space analysis

* |Large double-logarithmic phase-space at high pT:

1
pr R?

< tr < L

« When alog”(prR*L) 2 1 higher-orders are not negligible

« Estimate: for R=0.3, L=2fm and plT=500 GeV,
one finds Log?2~ 40

17



Two-prong energy loss



Two-prong energy loss

* Consider a high energy parton that splits rapidly into two

hard subjects within the jet cone
* At high ptthe branching time is shorter than the length of

the medium = factorization
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» Two prong inclusive spectrum:

N e AN vac
0 d —/ de:Ps(€): e P(2) Pz +€)
0

dodzdp, dp.,
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Two-prong energy loss

* |nthe large-Nc approximation

, M\im%oc; . \<

* The two-prong energy loss probability factorizes into the total
charge probability convoluted with the color singlet antenna
probabillity distribution

Ple) = / Pro(€1) Paine(€2) 3(c — €1 — €3)
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Two-prong energy loss

No energy loss iIndependent energy loss

* Propagation of two color charges at fixed angle

* Up to the decoherence time t,; ~ (§6%,)~ /3 radiation off
the total charge

* Atlarge angle: suppression of neighboring jets

21



Two-prong energy loss

Two limiting cases:

| - the medium resolves the antenna:  tq3 <L (0> 0. =1/\/qL>)
Oc

Poing(€) / Py(e1)Pyle — 1) 0

| - the medium does not resolve the antenna: tq > L (0 < 6.)

0.
Psing(e) — 5(6) 4/9

—

MT, Salgado, Tywoniuk PRL (2011), PLB (2012), JHEP (2011-2012)
Casalderrey-Solana, lancu JHEP (2012)
Casalderrey-Solana, MT, Salgado, Tywoniuk PLB (2013) 20



Jet spectrum



First correction to the jet spectrum

* TJo LO the quenching factor is that of the total charge
(primary quark)

QY (pr) = Qiot(p1) = Qq(pT)
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First correction to the jet spectrum

e To leading logarithmic (LL) accuracy there are exact
cancellations between real an virtual corrections as Iin
vacuum except when: < tqg < L

dé
QW (pr) = a/ //6 s w — Qi (pr) — 1] Quot(pr)
q 4\1/3

JLL [

gluon+quark energy loss quark energy loss
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First correction to the jet spectrum

e To leading logarithmic (LL) accuracy there are exact
cancellations between real an virtual corrections as Iin
vacuum except when: < tqg < L

formation time decoherence time
t ! t !
! z2p6? ‘ (g02)1/3
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—xponentiation of the Double-Logs

Instructive limit: strong quenching Qtot(pr) < 1

It can be shown that the leading logarithms exponentiate into
a Sudakov Form Factor

Q(pr) = Qtot(pT) X C(p1)
where

- i _ R pPr 2 R ]
C(pT) — eXp _—204 In H_C <1I1 w—c -+ g In 9—C>

— Fluctuations of the jet substructure yield additional

suppression to the jet spectrum

note that when R « ¢. the medium “sees”
only the total charge, in this case

Clpr)—1 and  Q(pr) = Qsot(pr)
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Non-linear evolution equation

* The function C(p) obeys a non-linear evolution equation
that resums the leading logarithms: arXiv:1707.07361 [hep-ph]

df a(
C,(pr, R —1+/ dz/ - P g(2) Oty < tg < L)

x | Cq(zpr,0) Cy(zpr,0 QQ(]?T) Cq(zpr,0) |
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Nuclear modification factor

jet

R

1.2

0.8

Rjet — Qtot (pT) X C(pT)
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summary

* Due to the large logarithmic phase-space for jets to
branch inside a large medium higher-order corrections
are found to be important = relevant for probing medium

properties

* These corrections can be resumed to all orders to
leading logarithmic accuracy by a non-linear evolution
eqguation

* The effect of color coherence mitigates the importance of
higher order corrections to the jet spectrum for narrow
jets

30



Backup



In-medium gluon cascade

- Probabilistic picture: large probabillity for soft, rapid and

independent multiple gluon branching
branching time:

dP o 1 1w
= % = Le(w) = \[
Y dwdt teoh t, Qs V4

//’ \[
N\
\

1%

|
teol < to <L ) P \
/ \ I |

| i
I \ /\
/\_/ - '_tcoh '
N
I

) [Baier, Dokshitzer, Schiff, Mueller (2001)
— t*_. Jeon, Moore (2003)
Blaizot, Dominguez, lancu, MT (2013-2014)]
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—nergy flow at large angle

[Blaizot, lancu, Fister, Torres, MT (2013-2014) Kurkela, Wiedemann (2014)]

* Multiple branchings at parametrically large angle
1
Ope > —0. > R
aS
« Constant energy flow from jet energy scale p.. energy
down to the medium temperature scale w ~ 1" [ancu, wu (2015),

Energy lost to the medium: Energy distribution as function of time

B N — T T

1 P D(w)~1/y/w| :?5 ffffffffffffff

AE ~ Oé? qALQ / 10' """"""""""""""""" rrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrr S
i /

a2l N

Pr noo Energy Flow = NU VT

T/E w/E 33



Two-prong energy loss

amplitude

amplitude

C.C.

PQ(E, L)

Caveats:

* Jarge Nc

* resum medium-induced
soft emissions

e short formation times

* color singlet:
straightforward
generalization to triplet and
octet configurations

34



Two-prong energy loss

e Direct emission term (diagonal contribution)

NG @ C
; M ~ Pen | )}
RO C 1

0 t t4+7 L

L 00
APQ(G, L) = / dt / dw Fll(w,t) PQ(E — w,t)
0 0

* Correction identical to single particle case:

I t) = — 90 d
nlw.f) = qoq ~ oW | AT
real virtual

1t

t+T1
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Two-prong energy loss

* |nterferences and color flip (recall that all propagators
are evaluated in the medium background field)

1 4 & ) Ok )
t ya N { t ‘ N\
2 ™~ —Z N e — b o N
21 1 = |[Set) X s )
2 27 ( B e
* .
T | S - - — ? b g

L o0
APQ(E,L) — / dt / dw Flg(w,t) SQ(E — w,t)
0 0

e |nvolves new color structure

Sy ~ (tr(V V1) (Vi Va))



Two-prong energy 10ss arXiv:1706.06047 [hep-ph]

e The probability distribution reads:

Psing(éaL) — / Pq(el,L) Pq(GQ,L) 5(6 — €1 — 62)

L
—|—2/ dt / Pq(él,L—t)Pq(EQ,L—t) F(w) S(t)5(6—61 —Eg—w)
0 €1,€2,W

| Codr © - dI
e with F(w) — m 5(&))/0 dw dw’dt

e Decoherence time scale

ta =(§6%)"/°

* Two terms: independent energy loss + interferences
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Two-prong energy loss

* [nthe Large N¢ approximation

f// \} { ' S1(t;) ‘\}

N ./ e S 1
Sg((i,t.i) — + O ( AT )

Y N / ] X ™ e

(| W | S (i) | )

* Amplitude and c.c. are disconnected = only virtual
emissions contribute

e |nthe absence of radiation we recover the decoherence

parameter: Aneq =1 — S% [antenna transverse size)

|
S1(t) = (V) Vi) med ~ exp {—Z q / dt’ m%Q(t’)}
0

[ MT, Salgado, Tywoniuk, arXiv:1105.1346, MT, Salgado, Tywoniuk arXiv:1205.5739,

Casalderrey-Solana, lancu arXiv:1105:1760] 13



