Suppression of high- p_T quarkonia in the QGP

Rishi Sharma

January 31, 2018

- ▶ NRQCD is a concrete framework to calculate the production of high-p_T quarkonia [Bodwin, Braaten, LePage (1995)]
- ▶ It relies on the hierarchy between the large energy scale, m_Q the mass of the heavy quark and the inverse of the separation between $Q\bar{Q}$: $1/a \sim q$. $q \ll m_Q$
- ▶ A further simplification occurs if there is a second hierarchy between the binding energy and q: $E_b \ll q$
- ► Then the quarkonium states can be described by a non-relativistic potential in their rest frame: pNRQCD [Brambilla et. al. 2004]

- Can obtain rough estimates by assuming that the states are so small in size that the Coulombic part of the Cornell potential dominates
- lacksquare $v\sim lpha(m_Q v)$ is the relative velocity of Q and ar Q
- ▶ Inverse size $q \sim m_Q v$
- $ightharpoonup E_b \sim m_Q v^2$
- ▶ Finally, the non-perturbative scale Λ_{QCD}
- If v is small, $m_Q \gg q \gg E_b \gg \Lambda_{QCD}$

- ► For the lowest bound states one obtains by solving the Schrödinger equation
- Bottomonia:
 - ▶ $m_b \sim 4.5 \text{GeV}$
 - $q \sim 1 \text{GeV}$
 - $E_b \sim 0.5 \text{GeV}$
- Charmonia:
 - $m_c \sim 1.34 \text{GeV}$
 - $m_c v \sim 0.6 \text{GeV}$
 - ► $m_c v^2 \sim 0.5 \text{GeV}$
- ▶ Both the intermediate distance and the short range part of the potential are relevant

▶ In NRQCD, the cross-section for production in pp collisions can be written in a factorized form. For example, in the intermediate p_T range

$$d\sigma(\Upsilon) = \sum_{[bar{b}]} d\sigma([bar{b}]) |\mathcal{M}[bar{b}] o \Upsilon|^2$$

- ▶ The short distance part $[b\bar{b}]$ can have color-octet and singlet quantum numbers and appropriate spin quantum numbers
- ▶ The long distance matrix elements (LDMEs) ${\cal M}$ are fitted to match $d\sigma/dp_T$
- ▶ If $\alpha_S(m_Q)$ is perturbative, the short distance cross-sections can be computed perturbatively [Cho, Leibovich (1995)]
- ▶ This picture also suggests a time scale separation of formation: $\tau_f(\Upsilon) \sim 1/E_b$ and $\tau_f([b\bar{b}]) \sim 1/(2m_b)$ in pp collisions

Modified picture in the QGP

- $au_f([bar{b}])$ is smaller than the medium time scale $\sim 1/T$ and hence $d\sigma[Qar{Q}]$ is not modified ($T\sim 400 {\rm MeV}$ for 5.5TeV at 0.6fm)
- ▶ The formation of quarkonia from the $Q\bar{Q}$ is modified due to the screening of the interaction between $Q\bar{Q}$ and due to dissociation processes
- Assume that a suitably modified thermal pNRQCD describes the $Q\bar{Q}$ interaction [See Ralf Rapp's talk]

Modified picture in the QGP

- ► The $Q\bar{Q}$ potential has a real part and an imaginary part (associated with dissociation)
- ▶ The real potential as a function of *r* can be captured well by lattice QCD by measuring correlators separated by a distance eg. [A. Bazavov and P. Petreczky (2013)]
- ▶ The imaginary part is not yet well constrained by lattice data
- It has been evaluated assuming that the interaction between $Q\bar{Q}$ is Coulombic [Laine et. al. (2007), Brambilla, Ghiglieri, Vairo, Petreczky (2008)] but this is not a good assumption
- ▶ Other approaches use the in-medium T-matrix to calculate both the real and imaginary parts [Rapp et. al]
- ▶ Furthermore, most calculations valid for $Q\bar{Q}$ at rest in the medium

Model description

- ▶ We use the real part of the potential at finite *T* obtained by the lattice calculations
- ► The instantaneous *T* dependent eigenstates can be found by solving the Schrödinger equation
- Use the light cone formalism to boost the wavefunctions to finite p_T

Model description

$$|\vec{P}^{+}\rangle = \int \frac{d^{2}\mathbf{k}}{(2\pi)^{3}} \frac{dx}{2\sqrt{x(1-x)}} \frac{\delta_{c_{1}c_{2}}}{\sqrt{3}} \psi(x,\mathbf{k})$$

$$\times a_{Q}^{\dagger c_{1}}(x\vec{P}^{+} + \mathbf{k}) b_{\bar{Q}}^{\dagger c_{2}}((1-x)\vec{P}^{+} - \mathbf{k})|0\rangle ,$$

where **k** corresponds to the momentum transverse to p_T and P^+ is the light cone momentum of the state parallel to p_T

$$\psi(x, \mathbf{k}) = \operatorname{Norm} \times \exp\left(-\frac{\mathbf{k}^2 + m_Q^2}{2\Lambda^2(T)x(1-x)}\right)$$

Λ is related to the width of the wavefunctions in momentum space [Adil, Vitev (2007)]

Dissociation

- ▶ To calculate the dissociation rate, we use a formalism used to describe the transverse momentum broadening of high p_T particles [BDMPS, GLV, ...]
- ▶ The Q and \bar{Q} get kicks to the relative transverse momentum ${\bf k}$ thus modifying the light cone wavefunction as the $Q\bar{Q}$ propagates in the medium: ${\bf k}^2 \to {\bf k}^2 + \Delta {\bf k}^2$
- ▶ The distribution of the transverse kicks is

$$\frac{dP(\Delta k^2)}{d\Delta k^2} \propto e^{-\Delta k^2/(\chi \mu_D^2 \xi)}$$

where $\chi \mu_D^2 \xi$ is the analog of $\hat{q}L$

Dissociation

- $P_{\text{surv}}(t) = |\langle \Psi_T(t) | \Psi_T(0) \rangle|^2$
- Overlap with the ground state reduces due to momentum broadening

$$au_{
m diss} = -rac{1}{P_{
m surv}(t)} rac{dP_{
m surv}(t)}{dt}$$

Formation

- ► We start with the initial state with the vacuum form assuming the initial formation is not strongly modified
- ▶ The formation dynamics can not be handled rigorously: We assume that formation happens on a time scale $\tau_{\rm form}$ which we vary from $1-1.5 {\rm fm}$
- ► This is the biggest systematic uncertainty in our calculation

Rate equations

- ▶ We have all the ingredients to find the p_T differential yields
- ► Rate equations

$$egin{split} rac{d}{dt} \left(rac{d\sigma^{
m meson}(t;
ho_T)}{d
ho_T}
ight) = & rac{1}{t_{
m form.}} rac{d\sigma^{Qar{Q}}(t;
ho_T)}{d
ho_T} \ & -rac{1}{t_{
m diss.}} rac{d\sigma^{
m meson}(t;
ho_T)}{d
ho_T} \end{split}$$

$$\frac{d}{dt}\left(\frac{d\sigma^{Q\bar{Q}}(t;p_T)}{dp_T}\right) = -\frac{1}{t_{\text{form.}}}\frac{d\sigma^{Q\bar{Q}}(p_T)}{dp_T}$$

$$\frac{d}{dt}\left(\frac{d\sigma^{\text{diss.}}(t; p_T)}{dp_T}\right) = \frac{1}{t_{\text{diss.}}} \frac{d\sigma^{\text{meson}}(t; p_T)}{dp_T}$$

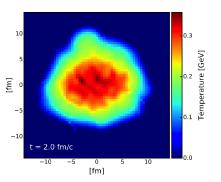
Rate equations

- Start with $\sigma^{\mathrm{meson}}(t=0; p_T)=0$
- $\qquad \qquad \sigma^{Q\bar{Q}}(t=0;p_T) = \sigma^{\rm meson}(p_T)_{pp}$
- \blacktriangleright $\tau_{\rm diss}$ can not be small than the mean free path so we put a lower limit on it

Similar to approaches treating quarkonium as an open system

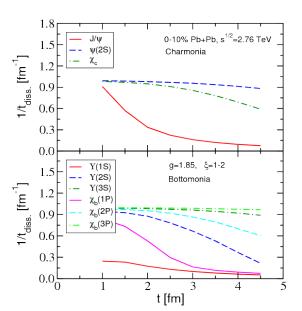
- While treating quarkonium as an open system
- ▶ $Q\bar{Q}$ is propagates in a stochastic potential [Kajimoto, Akamatsu, Asakawa, Rothkopf (2017)]

Medium



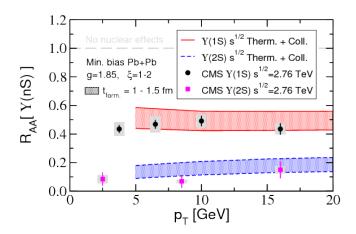
- ▶ Use the public 2 + 1 hydro code iEBE-VISHNU [Shen et. al. (2016)]
- ► An example shown above for the *T* distribution a central event at 2.76TeV

Results

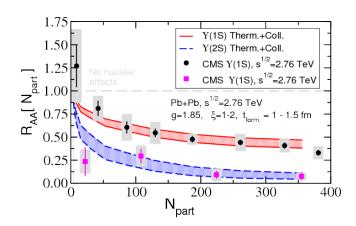


[Aaronson, Borras, Odegard, Sharma, Vitev (2017)]

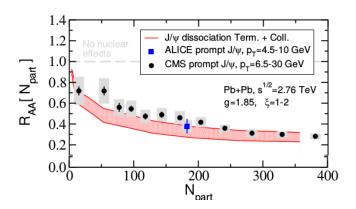
$R_{AA}(\Upsilon)$



$R_{AA}(\Upsilon)$

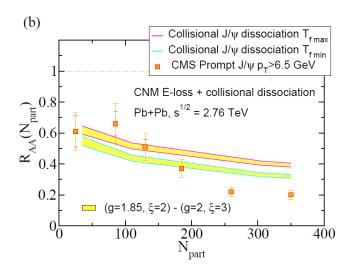


$R_{AA}(J/\psi)$



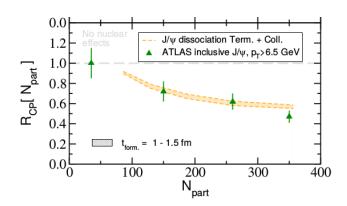
[Aaronson, Borras, Odegard, Sharma, Vitev (2017)] Both screening and dissociation

J/ψ without screening

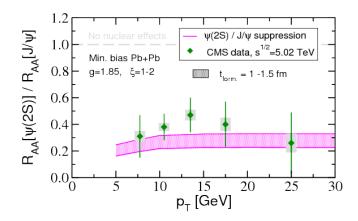


[Sharma, Vitev (2013)] Suppression not enough without screening

$R_{CP}(J/\psi)$



$R_{AA}(\psi(2S))/R_{AA}(J/\psi)$



Conclusions

- \triangleright Screening is an important effect even for high p_T quarkonia
- Main uncertainty in our calculation due to \(\tau_f \)
- ▶ In future look at high p_T data at finite y
- ▶ Predictions for 5.02TeV run also given in [Aaronson, Borras, Odegard, Sharma, Vitev (2017): arXiv:1709.02372].

Centrality v/s N_{part}

centrality	N_{part}
0 - 20%	307
20 - 40%	130
40 - 80%	35
0-100% (Min. Bias)	110

Medium parameters

```
\begin{array}{lll} \mbox{for LHC 0-20\%} & \mbox{PbPb} & \mbox{dNdy(g)} = 2260 \ (b{=}4.5) \\ \mbox{for RHIC 0-20\%} & \mbox{AuAu} & \mbox{dNdy(g)} = 925 \ (b{=}4.3) \\ \mbox{for RHIC 0-20\%} & \mbox{CuCu} & \mbox{dNdy(g)} = 235 \ (b{=}3.5) \\ \end{array}
```

Additional scales at finite T

- ▶ In the medium, additional energy scales, T, m_D
- ightharpoonup Central $T\sim 250 {
 m MeV}$ at RHIC at 0.6fm
- $ightharpoonup T \sim 310 {
 m MeV}$ at LHC 2.76 TeV
- $ightharpoonup T\sim 370 {
 m MeV}$ at LHC 5.5 TeV
- ▶ Additional time scales: dissociation and screening time scales