Dynamical medium effects on jet quenching in holography

Jasmine Brewer

Work done in collaboration with Andrey Sadofyev and Wilke van der Schee

Want to use jets as a short-distance probe of the QGP

complicated by the presence of many effects

Many approaches for understanding the modification of jets in medium

- Perturbative methods (weak coupling; quasi-particle picture of the QGP)
- Jets in holography (infinitely strong coupling, not QCD)

This talk: effects of a dynamical medium on jet energy loss in holography

- Usual assumptions: evolving temperature and zero velocity
- Goal: qualitative lessons to inform other calculations

Holographic models of jet quenching

Hybrid model

local parton energy loss from holography

This work

entire jet described in holography

Roadmap

- Introduction to jets in holography
- A simple model of cooling plasma
 - Small fluid gradients can have large effects on dynamics of holographic jets
- Jet energy loss in Gubser flow
 - Effects of velocity can change stopping distance by a factor > 2
 - $E \sim x_{stop}^3$ -- can be a large effect

Black hole

Trajectories of bit of string's energy

6

(figures: Chesler & Rajagopal 1511.07567)

Jets in Holography

For a finite-sized plasma, some energy lost, some escapes

QGP is not a static slab of plasma at all

- Usual assumptions: evolving temperature and zero velocity
- What are the effects of a dynamical medium on jet energy loss in holography?

Simplest non-trivial hydrodynamic profile

Hydrodynamic equations:

$$T^{\mu\nu}=-pg^{\mu\nu}+(\epsilon+p)u^{\mu}u^{\nu}+\Pi^{\mu\nu} \qquad \text{``ideal''} \\ \partial_{\mu}T^{\mu\nu}=0 \qquad \qquad \partial_{\nu}T^{\mu\nu}=0$$

To study jets: couple null geodesics to hydrodynamic evolution

The trajectory of null geodesics are very sensitive to gradients in the hydrodynamic evolution

$$\frac{\partial^2 u}{\partial t^2} \bigg|_{t=0} = \boxed{ -\frac{\partial v_x}{\partial x}} + 2 \left(\pi T \right)^4 u_{in}^3 + \mathcal{O}(\partial^3) \quad (\mathbf{E}_{jet} \sim u_{in}^{-3}) \quad \text{"ideal"}$$

$$\frac{\partial^2 u}{\partial t^2} \bigg|_{t=0} = \boxed{ 2 \left(\pi T \right)^4 u_{in}^3 \left(1 + \mathcal{O}\left(\frac{1}{\pi T} \frac{\partial v_x}{\partial x} \right) \right) + \mathcal{O}(\partial^3) }$$
"viscous"

Even for fairly small gradients, geodesics in ideal hydro are sick, since $\pi T u_{in} \sim 0.01$

QGP is not a static slab of plasma or a simple system

• What are the effects of a dynamical QGP-like medium on jet energy loss in holography?

Example: Gubser flow

Jets starting at different points in the transverse plane experience different velocity field

Velocity gradients in a holographic picture have a large effect on energy loss

Wrap-up

- Velocity gradients in the fluid can have a large effect on the quenching of holographic jets
- For Gubser flow, including the effects of velocity gradients significantly decreases energy loss
- Outlook: can this kind of effect be seen in other models?