OVERVIEW OF HEAVY-FLAVOUR MEASUREMENTS WITH THE ALICE DETECTOR AT THE LHC

Jets and Heavy Flavour Workshop – Santa Fe – 29/01/2018

PHYSICS MOTIVATIONS

Open heavy flavour in Pb-Pb collisions

- Heavy quarks experience the full evolution of the hot and dense medium produced in ultra-relativistic heavy-ion collisions
- The modifications induced by the medium are translated to their final-state particles
 - → Excellent probes of the QGP medium

In particular, heavy quarks are expected to:

- Participate to some extent to the collective motion inside the medium
 - Provide information on medium transport properties
- Lose less energy w.r.t light quarks and gluons due to different Casimir factor and dead-cone effect
 - Microscopic study of medium and characterisation of energy loss mechanisms

PHYSICS MOTIVATIONS

Quarkonium in Pb-Pb collisions

- J/Ψ suppression in heavy-ion central collisions was one of the first signatures of QGP production (T.Matsui, H.Satz, PLB178 (1986) 416)
- With increasing energy density, two competing mechanisms:
 - > **Statistical regeneration**: enhanced quarkonium production via (re)combination at hadronisation or during QGP ($c\bar{c}$ multiplicity increases with energy density)
 - Sequential melting: differences in the quarkonium binding energies induce a sequential melting of the various states for increasing medium temperature
- Interesting to probe suppression of higher charmonium states, as $\Psi(2S)$ and beyond
- What about bottomonium states? Different radii, no expected regeneration, ...

Energy Density

3

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

PHYSICS MOTIVATIONS

The study of heavy flavours in small systems is also of great interest

p-Pb collisions

- Heavy-flavour production and kinematic properties can be modified by:
 - Cold-nuclear-matter effects, like shadowing, gluon saturation/color glass condensate, Cronin effect, possible energy loss mechanisms
 - "Collective-like" effects (e.g. elliptic flow), resembling what observed in heavy-ion collisions, which is ascribed to the hydrodynamic expansion of the system

pp collisions

- Test and set constraints on production mechanisms
 - pQCD-based calculation describe reasonably well open charm and beauty production at the LHC (see backup slides)
 - NRQCD+FONLL, color octet, color singlet, color evaporation model for quarkonium
- Reference for studies in p-Pb and Pb-Pb collisions

4

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

HEAVY-FLAVOUR RECONSTRUCTION WITH ALICE

Quarkonium

- Central rapidity (|y| < 0.9):
 - \rightarrow J/ $\Psi \rightarrow e^+e^-$
- **Forward rapidity** (2.5 < y < 4):
 - \rightarrow J/ $\Psi \rightarrow \mu^+\mu^-$
 - $\rightarrow \Psi(2S) \rightarrow \mu^+\mu^-$
 - $ightharpoonup Y(1S), Y(2S), Y(3S) \to \mu^{+}\mu^{-}$

Open heavy flavour

Charmed hadrons (|y| < 0.5)

- $D^0 \rightarrow K^-\pi^+$
- $D^* \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$
- $D^+ \rightarrow K^-\pi^+\pi^+$
- $D_s^+ \rightarrow \phi \pi^+ \rightarrow K^- K^+ \pi^+$
- $\Lambda_c^+ \to pK^-\pi^+$, $\Lambda c \to pK^0_s$, $K^0_s \to \pi^+\pi^-$
- $\Lambda_c^+ \rightarrow e^+ \Lambda \nu$, $\Lambda \rightarrow p \pi^-$
- $(\Xi_b \rightarrow) \Xi_c^0 \rightarrow e^+\Xi^-\nu e, \Xi^- \rightarrow \pi^-\Lambda$

HF decay leptons

- c,b hadrons \rightarrow eX (|y| < 0.9)
- c,b hadrons $\to \mu X$ (2.5 < y < 4)
- $b \rightarrow eX$ via impact parameter fit

Beauty-decay J/ ψ (|*y*| < 0.9)

- b hadrons \rightarrow J/ ψ X, J/ ψ \rightarrow e⁺e⁻
- + open heavy-flavour jets, correlations, production vs multiplicity/centrality

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

HF PRODUCTION VS MULTIPLICITY

- Yield of D mesons (|y| < 0.5), HF-decay muons (2.5 < y < 4) and J/ Ψ (|y| < 0.9) show faster-than-linear increase with charged-particle multiplicity at central rapidity
 - Feature not related to hadronisation, but rather to production process
- Observed a qualitative agreement with models assuming:
 - Multi-parton interactions influencing HF production (PYTHIA8, EPOS3 w/ hydro)
 - Contributions of higher Fock-states (Kopeliovich et al.)
 - > Soft-particle saturation (Ferreiro: percolation, PYTHIA8: color reconnection)

CHARMED BARYONS IN pp AND p-Pb

- Λ_c^+/D^0 ratios in pp and p-Pb collisions are compatible within uncertainties
- First Ξ_c⁰ production measurement at LHC
- Both Λ_c^+/D^0 and Ξ_c^0/D^0 ratios are **higher than expectation** from Monte Carlo
 - Enhanced color reconnection configuration of PYTHIA 8 is closer to data
 - ightharpoonup Theory bands on Ξ_c^0 due to the uncertainty on the branching ratio $\Xi_c^0 \to e^+ \Xi^- \nu_e$

D-MESON R_{pPb} AND Q_{CP}

ALICE-PUBLIC-2017-008

- Non-strange D meson R_{pPb} is **compatible with unity** within uncertainties
 - \triangleright Described by models including cold nuclear-matter effects and, at low p_T , by those assuming QGP formation
- Better precision at low p_{T} needed to draw firmer conclusions
- Hint for D-meson "central-to-peripheral" ratio $(Q_{CP}) > 1$ with 1.5 σ in 2 < p_T < 8 GeV/ c_A
 - Need theory models for its interpretation

HEAVY-FLAVOUR ELECTRON v2 IN p-Pb

- Azimuthal correlations of heavy-flavour decay electrons with charged particles in 0-20% p-Pb collisions
 - 60-100% multiplicity class addressed to subtract jet contribution
- **Positive** v_2 for heavy-flavour decay electrons (**4.4** σ effect for 1.5 < p_T^e < 4 GeV/c)
 - Strength of v_2 comparable with charged-particles measurement (though the p_T ranges of the original partons are not equivalent)
- Initial-state effects or final-state, collective effect?

D-MESON R_{AA} RESULTS

- Strong D-meson suppression in central Pb-Pb collisions (factor ≈5 at 6-10 GeV/c)
 - Similar suppression at 5.02 TeV and 2.76 TeV: predicted by models as a balancing effect between denser medium and harder charm quark spectrum
- Hint for $R_{AA}(D_s^+) > R_{AA}(\text{non-strange D})$ in lower p_T range
 - > Due to hadronisation via coalescence in a strangeness-rich environment?

D-MESON v₂ IN Pb-Pb

arXiv:1707.01005

- First measurement of $D_s^+ v_2$, comparable with non-strange D-meson v_2
- **D-meson** $v_2 > 0$, and compatible with charged-pion v_2 within uncertainties (hint of difference for $p_T < 4$ GeV/c)
- Charm quarks participate to collective motion in the medium

D-MESON R_{AA} AND v_2 VS MODELS

POWLANG HTL

• Models with diffusion coefficient $2\pi D_s(T)$ in the range **1.5-7** at T_c with a corresponding thermalisation time $\tau_{charm} \sim 3-14$ fm/c describe better the v_2 values and trend

ALI-PUB-132101

- A simultaneous description of complementary observables (R_{AA} and v_2) over a wide p_T range is a challenging task: measurements allow us to set strong constraints to models
 - Wide variety of models available, including different effects (radiative, collisional energy loss, coalescence, realistic initial conditions and medium evolution).

13

 $p_{-}(\text{GeV}/c)$

arXiv:1707.01005

BAMPS el.+rad.

HF LEPTONS R_{AA} RESULTS

- Strong (and similar) suppression of heavy-flavor decay leptons at central and forward rapidity in Pb-Pb collisions
- Beauty is the main component from $p_T > 5$ GeV/c
 - Indication of beauty suppression at high p_T
- Hints of R_{AA} < 1 from 3 GeV/c also from beauty electrons, identified via the analysis of the electron impact parameter distribution

 $p_{_{\rm T}}$ (GeV/c)

ADDRESSING HF JETS

PHYSICS MOTIVATIONS – HF JETS

Heavy-flavour jets (with b, c content)

- Study modification of the heavy-quark fragmentation (via D-, B-tagged jets)
- Retrieve information on the energy lost in the medium by heavy quarks (via angular correlations)
 - Peak yields modifications (I_{AA}) to address jet quenching
 - Jet structure modification (particle multiplicity, opening angle, intra-jet p_T distribution)

• Comparison of b- and inclusive-jet R_{AA} to probe mass effects on medium-induced energy loss

Model by Vitev et al.:

- ✓ Mass effects relevant for p_T <75 GeV/c, dead-cone effect enters in play
- Measurements vs opening radius R to characterise energy dissipation and quantify contribution of radiative and collisional energy loss

D-MESON JETS IN pp AND p-Pb

- D-jet spectrum measured from p_T = 5 GeV/c to 30 GeV/c; tagging via full reconstruction of D mesons via hadronic decay channels
- Data described by POWHEG+PYTHIA6 (Perugia 2011 tune) simulations within uncertainties (theory uncertainties are larger than data)
- Sensitivity to fragmentation function; evaluation of D-jet R_{pPb} currently ongoing
- Closer access to parton kinematics, allows the study of charm-jet structure

HF ELECTRON CORRELATIONS IN Pb-Pb

- Near-side yields from integration of correlation distribution in $|\Delta \phi| < 1$
- At low p_T^{assoc} , **hints of a hierarchy appear** between central Pb-Pb, peripheral Pb-Pb and p-Pb, despite large uncertainties
- Similar feature observed in h-h (see backup), interesting to have predictions from models

QUARKONIUM RESULTS

J/Ψ PRODUCTION MODIFICATION IN p-Pb

- Clear **J/Ψ suppression at forward-y**, R_{pPb} compatible with unity at backward-y
- Similar R_{pPb} at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV (despite slightly different Bjorken-x coverage)
- Models based on shadowing and/or energy loss describe well data (large uncertainties, especially from shadowing)

J/Ψ VS Ψ(2S) R_{pPb}

- Stronger Ψ(2S) suppression unexpected, since at LHC energies formation time > crossing time
- Models including **final-state effects** are in fair agreement with data for both mesons
 - Ma and Venugopalan: soft color exchanges between hadronising $c\bar{c}$ pair and comovers
 - Ferreiro: "classical" comover models, break-up cross section tuned on low energy results

BOTTOMONIUM PRODUCTION IN p-Pb

- Model predictions describe the measured R_{pPb} at forward-y and tend to underestimate the suppression at backward-y
- ALICE and LHCb results are compatible within (large) uncertainties
- ALICE Run2 results, with better precision, coming soon

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

J/Ψ ELLIPTIC FLOW IN p-Pb

ALICE, arXiv:1709.06807 - ALICE, arXiv:1709.05260

- Azimuthal correlations
 of forward/backward
 J/ψ and charged
 particles at mid-rapidity
- p_T < 3 GeV/ $c \rightarrow v_2$ compatible with 0 (as from expectation of no recombination)
- 3 < p_T < 6 GeV/ $c \rightarrow$ Evidence of **positive** v_2
- Total significance (forward+backward, $\sqrt{s_{NN}} = 5.02 + \sqrt{s_{NN}} = 8.16$ TeV) about 5σ
- Values comparable to the measurements in central Pb-Pb collisions
 - **Common mechanism** for the onset of $J/\psi v_2$?

J/Ψ NUCLEAR MODIFICATION FACTOR IN Pb-Pb

- J/ Ψ suppression at $\sqrt{s_{NN}} = 5.02$ TeV similar to that at $\sqrt{s_{NN}} = 2.76$ TeV
- R_{AA} trend vs multiplicity flattens beyond $\langle N_{part} \rangle \sim 50$, differently from PHENIX results at lower energy \rightarrow substantial contribution from recombination
- Increased suppression at low p_T for forward-y measurement with respect to midrapidity results

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

J/Ψ NUCLEAR MODIFICATION FACTOR IN Pb-Pb

Statistical hadronisation: J/ Ψ produced at chemical freeze-out according to their statistical weight **Transport models**: Based on thermal rate equation with continuous J/ Ψ dissociation and regeneration in QGP and hadronic phase

Comover model: J/Ψ dissociated via parton-hadron interactions + regeneration contribution

 All models describe the data fairly well (some tension with TM2 at mid-rapidity), but are affected by large uncertainties associated to charm cross section and shadowing

J/Ψ ELLIPTIC FLOW IN Pb-Pb

ALICE, PRL 119, 242301 (2017)

- **Positive** v_2 signal observed for different centralities and p_T ranges
- Comparison with models:
 - \triangleright Low- p_T v_2 fairly reproduced including a strong J/Ψ regeneration component
 - \triangleright High- p_T v_2 underestimated (prompt J/Ψ from CMS also show positive v_2)
- Comparison with open charm gives larger values for D-meson v_2 at low p_T (but different kinematics)
 - Is J/Ψ and D-meson elliptic flow inherited from thermalized charm quarks?

BOTTOMONIUM PRODUCTION IN Pb-Pb

- Strong Y(1S) suppression in most central collisions
 - > No transverse momentum dependence within uncertainties
- Transport and anisotropic hydrodynamical models qualitatively reproduce the data
 - > No need of significant contribution from regeneration to describe data
- $R_{AA}(Y(2S))/R_{AA}(Y(1S))$ ratio: 0.26 ± 0.12(stat) ± 0.06(syst)
 - Hint of sequential Y suppression

PERSPECTIVES AFTER THE UPGRADE

With the ALICE upgrade (LS2), we move from observation to **precision era**:

- Striking improvement data precision on currently accessible observables
- \triangleright Extension of p_T ranges (D and B mesons down to 0)
- New observables available: beauty mesons and baryons, higher Ψ and Y states, non-prompt J/ Ψ and separation of muons from c and b at forward-y with Muon Forward Tracker, ...
- Large boost for beauty physics and for more differential HF observables in all systems (heavy-flavour correlations and jets, studies vs multiplicity/centrality, ...)

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

CONCLUSIONS

 ALICE produced a large set of interesting (and some surprising!) results in the heavy-flavour sector during Run1 and Run2

Open heavy-flavour

- \wedge Λ_c^+ , Ξ_c^0 baryon production underestimated by models \rightarrow Is charm hadronisation correctly understood?
- ▶ D-meson R_{pPb} compatible with unity (small CNM/QGP effects), but hint for $Q_{CP} > 1$
- ▶ Positive v_2 of HF decay electrons via e-h correlations → Collective effects in p-Pb?
- Significant D-meson suppression, hint for $R_{AA}(D_s^+) > R_{AA}(D^0, D^+, D^{*+}) \rightarrow Hadronisation via coalescence?$
- Significant charm flow observed in Pb-Pb: hint for $v_2(D) < v_2(\pi^+)$ below 4 GeV/c

Quarkonium

- \rightarrow J/ Ψ R_{pPb} can be described by cold nucler matter effects
- > Strong Ψ (2S) suppression in p-Pb \rightarrow Due to final-state effects?
- \triangleright Significant J/Ψ v_2 at intermediate p_T for both p-Pb and Pb-Pb \rightarrow Common mechanism?
- \rightarrow J/ Ψ R_{AA} described by interplay of suppression and recombination mechanisms
- Hint for sequential suppression of bottomonium states in Pb-Pb
- After the ALICE Upgrade, improved precision on current measurements and access to a new broad set of observables to characterise the QGP properties → Stay tuned!

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

BACKUP SLIDES

CROSS SECTIONS IN pp COLLISIONS

- D-meson and HF decay lepton cross sections vs p_T measured for several energies ($\sqrt{s} = 2.76, 5.02, 7, 8, 13 \text{ TeV}$)
 - \rightarrow D⁰ cross section down to $p_T = 0$
- Excellent constrain for charm and beauty production over a wide rapidity interval
- All measurements are consistent with pQCD calculations

Λ_c⁺ MEASUREMENTS IN pp AND p-Pb

arXiv:1712.09581

- $\Lambda_c^+ p_T$ -differential cross section from $p_T > 1$ (2) GeV/c in pp (p-Pb) collisions
- Λ_c^+ production cross section **higher than pQCD calculations** in pp and p-Pb collisions: is charm hadronisation correctly described?

D-MESON R_{pPb}

ALICE-PUBLIC-2017-008

- Similar R_{pPb} trend for D_s^+ and non-strange D mesons
- Non-strange D meson R_{pPb} is **compatible with unity** within uncertainties
 - ➤ Described by models including Cold Nuclear-Matter effects, as well as by those predicting QGP formation (at least at low p_T)
- Better precision at low p_T needed to draw firmer conclusions

D_s+/D+ RATIO IN ALL SYSTEMS

Hints of larger Ds+/D+ ratios at larger multiplicity below 8 GeV/c

D-MESON Q_{pPb} VS CENTRALITY

- D-meson Q_{pPb} in 0-10% and 60-100% compatible with unity and within each other
- Hint for D-meson "central-to-peripheral" ratio $(Q_{CP}) > 0$ with 1.5 σ in 2 < pT < 8 GeV/c
 - Need theory models for its interpretation
- Very similar values and trend w.r.t. charged pion QCP
 - Initial-state effect? Mass effect? Radial flow?

D-h CORRELATIONS IN p-Pb VS MC

- Correlation distributions and their p_T trend well described by PYTHIA6,8 & POWHEG
- p-Pb results in agreement with those measured in pp at 7 TeV

e-h CORRELATIONS IN p-Pb (LOW p_T)

- HFe-h azimuthal correlation distributions in p-Pb, for different centralities (V0A estimator), for $1.5 < p_T(e) < 6$ GeV/c and $0.3 < p_T(assoc) < 2$ GeV/c
- 0-20% centrality class shows an enhancement around $\Delta \phi = 0,\pi$ w.r.t. 60-100, pointing toward elliptic flow modulation also for particles from HF quarks

e-h CORRELATIONS IN p-Pb AND Pb-Pb (HIGH p_T)

• HFe-h distributions for p-Pb and Pb-Pb (0-20%) at 5.02 TeV, for $4 < p_T^e < 12$ GeV/c

- After baseline subtraction, hints of near-side enhancements at low p_T assoc
- No sensitivity for away side studies with current statistics

h-h CORRELATIONS in Pb-Pb (HIGH p_T)

Parton energy loss and jet quenching via high p_T hadron-hadron correlations in Pb-Pb

Away-side suppression at high p_T

Large in-medium energy loss due to surface bias

Near-side peak enhancement, potential interplay of:

- Modification to quark/gluon ratio
- \triangleright Bias in parton p_T spectrum due to energy loss
- Modified parton fragmentation

Similar results from in extended p_T range via π^0 -hadron correlations

Enhancement of low-p_T track in away-side peak → Redistribution of lost energy

D-MESON R_{AA}

- Indication of $R_{AA}(B) > R_{AA}(D)$
 - ▶ Different suppression and centrality dependence expected from models with quark-mass dependent energy loss ($\Delta E_g > \Delta E_{uds} ≥ \Delta E_c > \Delta E_b$)
- Similar D meson and pion R_{AA} expected from dead-cone/Casimir factor effects + different charm and gluon/light quark spectrum slope and fragmentation

M. Djordjevic, PRL112 (2014) 042302

D-MESON R_{AA} - MODELS

MC@sHQ+EPOS2: PR C89 (2014) 014905

Coll+Rad Eloss, recombination, EPOS-expansion

Parton-Hadron-String Dynamics transport, coalescence

Xu, Cao, Bass: PR C88 (2013) 044907

Langevin with Coll+Rad Eloss, recombination+hydro

SCETM,G NLO: arXiv: 1610.02043

Soft Collinear Effective Theory, Bjorken expansion

Djorkevic: PR C92 (2015) 024918

Coll+Rad Eloss, recombination, finite-size hydro

Temperature dependence of the spatial diffusion coefficient Ds $2\pi T$

PHSD: PR C92 (2015) 1, 014910, PR C93 (2016) 3, 034906 POWLANG HTL: EPJ C71 (2011) 1666; JP G38 (2011) 124144 Langevin transport, Coll Eloss, recombination, hydrodynamics AdS/CFT: JHEP 1411 (2014) 017; PR D91 (2015) 8, 085019; Ads/CFT correspondence, Langevin Eloss + fluctuations, hydro BAMPS: JP G 38 (2011) 124152; PL B 717 (2012) 430 Boltzmann transport, Coll. Eloss, expansion

TAMU: PL B735 (2014) 445-450

Transport, Coll. Eloss, resonant scatt. and coalescence+hydro

EVENT SHAPE ENGINEERING

Event eccentricity quantified by q_2 :

$$\begin{split} q_2 = & \frac{\mid \vec{Q}_2 \mid}{\sqrt{M}}, \qquad Q_{2,x} = \sum_{i=1}^{M} \cos 2\varphi_i, \qquad Q_{2,y} = \sum_{i=1}^{M} \sin 2\varphi_i \\ & \left\langle q_2^2 \right\rangle \approx 1 + \left\langle M - 1 \right\rangle \left\langle v_2^2 - \delta_2 \right\rangle \quad \text{5: non-flow effects} \end{split}$$

Study the charm-quark coupling to the bulk by measuring v_2 at different q_2 values

Significant separation of D-meson v_2 in events with large and small q_2 :

Charm quarks sensitive to the lighthadron bulk collectivity and event-byevent initial condition fluctuations

HEAVY FLAVOUR LEPTON V₂

- Similar values of v_2 of heavy-flavour decay electrons (mid-rapidity) and muons (forward rapidity)
- Positive v_2 of HF electrons in semi-central 20-40% Pb-Pb collisions at 2.76 TeV.
- Expected increase of v₂ from central to semicentral collisions.
- Similar v_2 at $\sqrt{s_{NN}} = 2.76$ and 5 TeV

J/Ψ PRODUCTION IN pp

- **ALICE, EPJC 77 (2017) 392**
- Constrain to production models + reference for Pb-Pb studies
- Good description of data by models
 - \triangleright Low p_T : NRQCD coupled to a CGC description of the proton reproduces data (small contribution from non-prompt J/ψ)
 - ightharpoonup High p_T : sizable contribution from non-prompt J/ψ from B-decays, taken into account via FONLL

J/Ψ PRODUCTION VS MULTIPLICITY IN pp

- Observed a qualitative agreement with models assuming:
 - Multi-parton effects in J/ψproduction (PYTHIA8, EPOS3 w/ hydro)
 - Contributions of higher Fock-states (Kopeliovichet al.)
 - Soft particle saturation (Ferreiro: percolation, PYTHIA8: color reconnection)
- PYTHIA predicts a hierarchy of self-normalized yields with p_T at high multiplicity
 - Not possible to claim anything on this feature with current uncertainties

BOTTOMONIUM PRODUCTION IN pp

ALICE, EPJC 76 (2016) 184 - LHCb, JHEP 11 (2015) 103

- Simultaneous measurement of Y(1S), Y(2S) and Y(3S) states at forward rapidity
- Cross section for 2.5 < y < 4, $p_T < 12$ GeV/c
 - $\sigma_{Y(1S)} = 71 \pm 6(stat) \pm 7(syst) \text{ nb}$
 - $\sigma_{Y(2S)} = 26 \pm 5(stat) \pm 4(syst) \text{ nb}$
 - $\sigma_{Y(3S)} = 9 \pm 4(stat) \pm 1(syst) \text{ nb}$
- Results are in agreement with LHCb measurements within 1.2σ

J/Ψ PRODUCTION MODIFICATION IN p-Pb

- Extended p_T coverage up to 20 GeV/c
- R_{pPb} increases with p_T at forward y, weaker momentum dependence at backward y
- Good description of the p_T trend be models, though theory uncertainties still prevent a more quantitative comparison

J/Ψ PRODUCTION VS MULTIPLICITY IN p-Pb

ALICE, PLB 776 (2018) 91-104

- Multiplicity dependent measurement (up to 1% most central events)
- Increase of the self-normalized J/ ψ yield with charged particle multiplicity
 - Mid-y and backward-y: behaviour similar to pp
 - Forward-y direction: saturation at high multiplicities (Bjorken-x range in the domain of shadowing / saturation)

48

Santa Fe, 29/01/2018

J/Ψ NUCLEAR MODIFICATION FACTOR IN Pb-Pb

- R_{AA} vs p_T for different centrality bins (and viceversa) at $\sqrt{s_{NN}} = 5.02$ TeV
- Striking features observed:
 - > R_{AA} vs centrality flattish in 0 < p_T < 2 GeV/c (large contribution from regeneration)
 - > ~80% suppression for central events at $p_T \approx 10 \text{ GeV/c}$
- Excellent precision opens up the way for disentangling among the models

R_{AA} OF $\Psi(2S)$

- Ψ(2S) measurement in Pb-Pb affected by large uncertainties (due to low S/B)
- Larger suppression than for the J/Ψ, both in central and semi-central collisions
- Good agreement with CMS results

PERSPECTIVES FOR b-JET STUDIES

- Analysis ongoing in pp and p-Pb
- Expected first measurements in all systems with run 2 data
- Precise measurements in run 3
- Complementary to CMS if low-pT reach ~15-20 GeV/c

3 approaches:

- Single-track selection based on distance-toclosest approach (DCA)
- Secondary vertex reconstruction + rectangular selections to identify displaced topology
- Single track, secondary vertices, constituent, selection based on Machine-Learning based classification

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

DATA SAMPLES

Collision	√s _{NN} (TeV)	Year	Trigger	L _{int}	Results
pp	2.76	2011	Min.Bias	0.9 nb ⁻¹	A.
pp	2.76	2011	Muon	19 nb ⁻¹	A STATE OF THE PARTY OF THE PAR
pp	5.02	2015	Min.Bias	2 nb-1	1
pp	5.02	2015	Muon	50 nb-1(SL) ,100 nb-1(SH)	1
pp	7	2010	Min.Bias	5 nb ⁻¹	
pp	7	2010	Muon	16.5 nb ⁻¹	A CONTRACTOR
pp	8	2012	Muon	2 nb-1	1
pp	13	2016	Min.Bias	3 nb ⁻¹	1
p-Pb	5.02	2013	Min.Bias	47 μb ⁻¹	
p-Pb	5.02	2013	Muon	5 nb-1 (p-Pb), 5 nb-1 (Pb-p)	A STATE OF THE PARTY OF THE PAR
p-Pb	5.02	2013	Electron	1.6 nb ⁻¹ (p-Pb), 1.1 nb ⁻¹ (Pb-p)	1
p-Pb	5.02	2016	Min.Bias	292 µb ⁻¹	1
p-Pb	8.16	2016	Muon	~8 nb-1 (p-Pb), 9 nb-1 (Pb-p)	1
Pb-Pb	2.76	2010	Min.Bias	2.7 µb ⁻¹	and and
Pb-Pb	2.76	2011	Min.Bias + Cent.	21 µb-1	nobine A
Pb-Pb	2.76	2011	Min.Bias + SemiCent.	6 μb ⁻¹	achin A
Pb-Pb	2.76	2011	Min.Bias + Periph.	2 μb ⁻¹	sohos A
Pb-Pb	2.76	2011	Muon	70 μb ⁻¹	softes A
Pb-Pb	2.76	2011	Electron	~25 µb ⁻¹	andrew A
Pb-Pb	5.02	2015	Min.Bias	13 µb-1	1
Pb-Pb	5.02	2015	Muon	225 µb-1	1

PHYSICS MOTIVATIONS – HF JETS

Heavy-flavour jets (with b, c content)

- Tight connection with HF correlations (some shared goals, alternate approach):
 - Spatial distribution of energy lost in the medium by heavy quarks
 - Modification of heavy-quark fragmentation (via D-,B-tagged jets)

- Study of di-jet imbalance useful also in the HF sector
 - ✓ Further motivation: address NLO contribution to heavy-quark production

 Comparison of b-jet R_{AA} with inclusive jet to investigate mass effect on medium-induced energy loss

PHYSICS MOTIVATIONS – HF JETS

Model by Vitev et al., radiative energy loss + collisional parton shower energy dissipation

- ✓ Mass effects relevant for p_T <75 GeV/c, dead-cone effect enters in play
- Measurements vs opening radius R to characterise energy dissipation and possibly separate collisional and radiative energy loss
- ✓ Energy loss in gluon splitting cases: b-pair seen by medium as massive gluon?

What about c-jets? Some studies by Cao et al. (Phys. Rev. C 93 (2016) 024912) but no quantitative predictions for charm jets

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

PHYSICS MOTIVATIONS – CORRELATIONS

Study of hard probes correlations in PbPb provide additional information w.r.t. single particle observables

- Probe QGP effects on hard partons via modifications of correlation pattern w.r.t. vacuum
 - ✓ Peak yields modifications (I_{AA}) to address jet quenching
 - ✓ Jet structure modification (particle multiplicity, opening angle, intra-jet p_T distribution)
- Investigate redistribution of parton energy loss (spatially and in momentum)
- Put constrain on models describing energy loss, in combination with single particle R_{AA}
- Study of collective effects also in small systems! (not discussed here)

PHYSICS MOTIVATIONS – CORRELATIONS

In particular, for heavy-flavour correlations

 Disentangle radiative and collisional inmedium energy loss

M. Nahrgang et al., Phys. Rev. C 90 (2014) 024907

- Studies in small systems crucial not only as a reference for Pb-Pb:
 - ✓ HF quark production mechanisms
 - ✓ HF quark fragmentation into jets
 - ✓ Charm/beauty separation
 - Collective effects in highmultiplicity environment

CENTRALITY ESTIMATION IN p-Pb

• Looser correlation between N_{part} vs impact parameter, and multiplicity vs N_{part} in p-Pb collisions impairs centrality evaluation based on charged-particle multiplicity

- Centrality selection based on the energy deposited by slow nucleons from the Pb nucleus remnant minimizes the biases on the centrality estimate
- Hybrid method used to derive $T_{\rm pPb}$ and $N_{\rm coll}$ for a given centrality class

ALICE, PRC 91 (2015) 064905