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WHAT CAN WE CALCULATE ANALYTICALLY?
Boosted top jets at ee collider (2008)

Answer

Fleming, Hoang, Mantry, IS (2007)
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ŝt�

Q�

m
,�, �m,µ

�
JB

�
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ŝt ⇥
M2

t �m2

m
⇤ �⌅ m

measure this extract this

6

Bt(M
2
t ,�, �mt) =

1

⇡mt

�

(

(M2
t

�m
t

2)

m
t

)

2
+ �

2
+ ↵sB

1
(�mt) +O(↵2

s) (22)

d�

dM2
t dM

2
t̄

= �0 HQ(Q, µQ) UH
Q

(Q, µQ, µm)Hm

⇣

mJ ,
Q

mJ

, µm

⌘

UH
m

⇣ Q

mJ

, µm, µ⇤

⌘

⇥
Z
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ŝt̄
0 � Ql�

mJ

,�, �m,µ�

⌘

⇣

d�

dM2
t dM

2
t̄

⌘

hemi
= �0 HQ(Q, µm) Hm

⇣

mJ ,
Q

mJ

, µm, µ
⌘

⇥
Z

dl+dl�JB

⇣

ŝt � Ql+

mJ

,�t, �m,µ
⌘

JB

⇣
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(t) called the radiator function. One can systematically improve perturbative approxi-
mation by including additional nonleading logarithmic terms in R

PT
(t) and matching the result

into exact higher order calculations using the ln R−scheme [13]. The perturbative Sudakov spec-
trum extends over the interval 0 ≤ t ≤ tmax and vanishes at the end points. The peak of the
distribution is located close to t = 0 and it is shifted towards larger t as one improves pertur-
bative approximation. Its position, tp = O(Λ

QCD
/Q), is sensitive to the emission of soft gluons

with energy ∼ Λ
QCD

indicating that the physical spectrum around the peak is of nonperturbative
origin.

Let us now estimate the effects of nonperturbative soft gluon emissions on the thrust dis-
tribution (3). We take into account that in the leading order in 1/(Q2t) the transverse size of
two quark jets k2

⊥ = O(Q2t) can be neglected, that is soft gluons with the energy ∼ Qt can not
resolve the internal structure of jets. This means that considering soft gluon emissions we may
apply the eikonal approximation and effectively replace quark jets by two relativistic classical
particles that carry the color charges of quarks and move apart along the light-cone directions p+

and p−. The interaction of the quark jets with soft gluons is factorized into the unitary eikonal
phase W (0) given by the product of two Wilson lines calculated along classical trajectories of
two particles
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with gauge fields Aµ(x) describing soft gluons. Denoting the total momentum of soft gluons
emitted into the right and left hemispheres as kR =

∑

i∈R ki and kL =
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for the differential distribution
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with k± = k0±k3. Here, the matrix element of the Wilson line operator describes the interaction
of quarks with soft gluons and the summation goes over the final states N of soft gluons with
the total momentum k = kR + kL. Expression (6) follows from the universality of soft gluon
radiation and it takes into account both perturbative and nonperturbative corrections [9].

Let us neglect for the moment the perturbative contribution to the matrix element of the
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Includes a non-perturbative function:

Korchemsky, Sterman 1999

Improved understanding of hadronization corrections
Hoang, Stewart 2007
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Factorization and SCET Higgs Jet Veto Calculation Results

H � WW vs. tt̄ � WWbb̄
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Factorization and SCET Higgs Jet Veto Calculation Results

H � WW vs. tt̄ � WWbb̄
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Why should I care about a precision        ?mt

Stability of the Standard Model vacuum! 

mt

mHiggsuncertainty dominated by mt

Andreassen, Frost, Schwartz

Butazzo, Degrassi, Giardino, Giudice, Sala

•
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Precision Electro-weak Measurements

Indirect
Global Fit

Direct Measurements

Gfitter group, 2014

•

t



Einleitung – Standardmodell Flavor-Physik als Fenster zu neuer Physik Inklusive B-Zerfälle Einblick in SIMBA

Flavor-Physik
Studiert Eigenschaften der verschiedenen Flavors ...

Massen:
GeV10�9 10�6 10�3 1 103
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... und deren Übergänge, z.B. Zerfall des Neutrons (nuklearer �-Zerfall)
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Frank Tackmann (MIT) Analyse inklusiver B-Zerfälle mit SIMBA 18.10.2010 3 / 26

measured from jets with help of 
Monte Carlo simulations

Heaviest known elementary particle.
As heavy as 180 protons!

mt = 172.84± 0.70
mt = 172.44± 0.49
mt = 174.34± 0.64Tevatron

CMS
ATLAS

GeV
GeV

GeV

MC

MC

MC
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Direct Reconstruction Methods (Tevatron & LHC)
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Kinematic Fit:

m2
t = p2

t = (pJb + pJ1 + pJ2)2
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t̄
hadrons

�shower = 1GeV
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Theory (QFT)

Experiment

Simulation
(Monte Carlo)

mpole
t ,mt,m

MSR
t , . . .

mMC
t

Definition ?
mt = mMC

t +?

an additional uncertainty � 1 GeV

L :
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Mass Definitions:
• Pole Mass

Mass that naturally appears in Breit Wigner.

Has a (renormalon) ambiguity

� 1
p/�mpole

t

�mpole
t � �QCD

MassMS• mt

Not compatible with Breit Wigner.No Ambiguity. � X
mpole

t = mt + 0.4 �smt + . . .�

7 GeV � �t = 1.4 GeV

• MSR Mass mMSR(R) (Hoang, Jain, Scimemi, IS, 2008)

a mass which nicely interpolates

No Ambiguity

Breit Wigner R � �t

R > �QCD

�
�

take R = 1GeV
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Soft Effects in 

Perturbative 
soft radiation

Hadronization

MPI / Underlying Event

t

t̄
hadrons

t

t̄

b-jetjet

jet

p

p

pp� tt̄X



pp� tt̄

Soft Effects can be significant.  eg.  Jet Mass in Pythia 

Figure 23. E↵ect of adding hadronization and MPI without (left) and with (right) soft drop grooming.

4.6 Hadronization and MPI

When MPI is added the soft drop pp result has a peak that is shifted by 4.5GeV. This is

shown most cleanly in Fig. 23 (left panel) where for pp collisions we display the no soft drop

hadronization result (blue) and hadronization+MPI result (red), including also here the purely

partonic Pythia8 result (green), and listing the positions of the various peak locations in GeV.

The shift from adding MPI to the hadronization result is about a factor of two larger than the

' 2.5GeV shift between the partonic and hadronic peak positions.

After soft drop the analogous pp results are shown in Fig. 23 (right panel). Here we observe

a significantly smaller shift between both the partonic and hadronization results, ' 1.0GeV

and between the hadronization and hadronization+MPI results, ' 1.1GeV. The latter result

is quite important; since the UE / MPI e↵ects must be modeled in a manner that goes beyond

the factorization theorem this reduction in the magnitude of their contribution provides a

significant decrease in the associated uncertainty. At the level of the analysis carried out here

we make a rough estimate that the factorization based model for including UE e↵ects, through

modifying the moment parameters ⌦n ! ⌦MPI
n , has a 30% uncertainty. This approximation for

the residual uncertainty may actually be somewhat conservative since this modeling agrees well

with Pythia8’s MPI model with much higher accuracy. Nevertheless we feel it is appropriate

to be conservative when relying on model dependent methods. This rough estimate yields a

0.3GeV uncertainty estimate for the modeling of MPI. With further dedicated studies of MPI

in samples of top, massless quark or b-jets, we may gain the needed confidence to make this

rough uncertainty estimate more precise in the future.

4.7 pT dependence of the pp ! tt̄ jet mass spectrum

In Fig. 24 we study the pT dependence of the soft-dropped spectrum predicted by Pythia8,

for four di↵erent pT bins. In the first panel we see that there is essentially no pT dependence

of the spectrum in the partonic Pythia results. The second panel includes hadronization,

and we begin to see pT dependent shifts between the bins at a very small 0.1–0.2GeV level.

These small shifts are in agreement with the dramatically reduced pT dependence predicted

by the soft drop factorization theorems. Indeed, these small shifts are compatible with the

lack of pT dependence predicted by Eq. (5.24). They are also compatible with Eq. (5.25) if the

⇤QCD is replaced by ⌦(�)
1 ⇠ 1GeV. Finally the third panel of Fig. 24 adds MPI e↵ects. Once

– 55 –



Theory Issues for
•

• suitable top mass scheme for jets

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying event/MPI

color reconnection

parton distributions•

• sum large logs Q� mt � �t

pp� tt̄X

Production Energy

ΛQCD

�t � 1.4 GeV

Q = 2pT � 1 TeV

mt = 173GeV

• hadronization
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First simplification:

• boosted top quarks,  Q = 2pT � mt

enables us to be inclusive over decay products
t

ΛQCD

�t � 1.4 GeV

Q = 2pT � 1 TeV

mt = 173GeV

Soft-Collinear EFT (SCET)

Heavy Quark EFT (HQET)

Use EFT tools:

factorization, logs, 
non-perturbative effects



Jets with Substructure
t�Wb� (u d̄ )(b) = 3 prong jet

pp� tt̄



Theory Issues for
•

• suitable top mass for jets

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying event/MPI

color reconnection

parton distributions•

• sum large logs Q� mt � �t

pp� tt̄X

First
e+e� � tt̄X
and the issues �

�

�

�

�

�
• hadronization �



Answer

Hard Functions

Evolution and decay of top 
quark close to mass shell

Perturbative Cross talk

(boosted HQET) 
Jet Functions Soft 

Function

Fleming, Hoang, Mantry, ISFactorization for double jet-mass: (2007)

control over mass scheme
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Theory (QFT)

Experiment

Simulation
(Monte Carlo)

One application:  Top Mass Calibration
Butenschoen, Dehnadi, Hoang, Mateu, Preisser, IS  

PRL 2016

mpole
t ,mt,m

MSR
t , . . .

mMC
t

e+e� =� pp

mt = mMC
t + . . . �

determined by fit to common observable

calibration
e+e� � tt̄

2

boosted

�2 �M2
t + M2

t̄



Example from Fit 
to Pythia8 Simulation:

Results:

• Depend on which QFT based
theory mass is used for fit.

• Provides uncertainties:

input: mMC
t = 173GeV

mpole
t = 172.43± 0.28 GeV

mMSR
t = 172.82± 0.22 GeV
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Calculate pp� tt̄

boosted top:

pT � mt

jet mass
MJ

t

t̄

b-jet

b-jet

jet

jet

jet

jet

p

p



Theory Issues for
•

• suitable top mass for jets

•

•

•

•

initial state radiation

final state radiation

jet observable 

underlying event/MPI

color reconnection

parton distributions•

• sum large logs Q� mt � �t

pp� tt̄X

can handle with 
SCET/HQET

�
�

�
�

�

�
�

 Jet veto

Jet Mass in Jet of radius R

multiple channels

“contamination”

�

• hadronization �
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IS, Tackmann, Waalewijn (2010)

N-jettiness event shapes for hadron colliders

WHAT CAN WE CALCULATE ANALYTICALLY?

XCone is a particularly nice choice for jet and 
beam measures

Stewart, Tackmann, Thaler, Vermilion, Wilkason, 2015

Stewart, Tackmann, Waalewijn 2010

4.1 Mass Sensitive Observable

We propose using a jet mass measurement that can be calculated with the aid of the

2-jettiness variable in order to measure the top mass from a boosted top sample in

pp collisions. We extend the factorization theorem already known for the 2-jettiness

measurement for massless jets to the case of top jets. We will be focusing on the case of

exclusive top production, and later comment on how one can make a generalization for

the inclusive case with the aid of soft drop grooming which also has other advantages.

The 2-jettiness event shape, T2, divides the event into various sectors: the top and

anti-top jet sectors and the beam sector. The jet regions are defined using a specific

algorithm and a minimization procedure, and the remaining region is considered as

the beam region. The particle momenta are combined linearly in each region which

yields a quantity that can be directly related to the invariant masses of the jets. The

2-jettiness for pp collisions is defined as follows

T2 = min
nt,nt̄

X

i

min{⇢jet(pi, nt), ⇢jet(pi, nt̄), ⇢beam(pi)}

= T t
2 + T t̄

2 + T beam
2 , (4.2)

where the sum runs over all the particles in the event with momentum pi, and ⇢

specifies a distance measure to the jet axes, nt,t̄, or to the beam. A given particle will

fall in one of these regions depending on the smallest of all three distances given by

the ⇢’s. Anti-kT [28] is the standard jet algorithm currently being employed at the

LHC. We use the XCone jet algorithm introduced in Ref. [97] to obtain two exclusive

top jets and also specify the distance measure ⇢. The XCone algorithm yields circular

jets just like jets obtained from Anti-kT algorithm, and since it is based on 2-jettiness

it allows us to simply write down a factorization theorem.

For the XCone measure, we have

⇢jet(pi, nJ) =
2 cosh yJ

R2
nJ · pi =

2 qJ · pi
QJ

, ⇢beam(pi) = pTi
, (4.3)

60

Event shapes for hadron colliders: N-jettiness (2010)

MODERN TECHNIQUES IN PERTURBATIVE QCD

(a) (b)

Figure 3: Comparison between the XCone default (β = 2) and anti-kT , using the same tt̄

events as figures 1 and 2. (a) Unlike anti-kT which merges jet regions closer in angle than

≈ R, XCone allows such jet regions to remain split. (b) For widely-separated jets, XCone

yields nearly identical jet regions to anti-kT .

change the style of the event partitioning. One can maintain conical jets, however, if one

deforms eq. (3.1) via

General Conical Measure
ρjet(pi, nA) = pT i f(pi)

(
RiA

R

)β

,

ρbeam(pi) = pT i f(pi) ,

(3.3)

where f(pi) is any dimensionless function of the particle four-momentum. This measure still

returns exactly conical jets with overlapping jets still having Voronoi partitioning, because

the factor of f(pi) drops out when comparing ρjet to ρbeam or when comparing two different

ρjet. While the partitioning for given axes does not depend on f(pi), the f(pi) factor does

play a role in determining the overall TN minimum in eq. (2.3). So the final jets will have

different axes depending on the choice of f(pi). We will exploit this possibility when defining

the conical geometric measure in section 3.3.

3.2 The Geometric Measure

A variety of N -jettiness measures were proposed and studied in refs. [16, 19]. For the purposes

of defining a cone jet algorithm, the most promising choice is the geometric measure:

Geometric Measure
ρjet(pi, nA) =

nA · pi
ρ0

,

ρbeam(pi) = min{na · pi, nb · pi} ,
(3.4)
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Figure 30. E↵ect of the nonperturbative parameters ⌦(�)
1

(left panels) and x(�)
2

(right panels) on
the cross sections predicted by the factorization theorem. The top panels are the soft drop decay
factorization theorem with ⌦(1)

1

and x(1)

2

, the middle panels the soft drop high-pT factorization theorem
with ⌦(2)

1

and x(2)

2

, and the bottom two panels use the ungroomed factorization theorems with ⌦
1

and
x
2

. In the left panels we also include a dotted curve for the purely perturbative NLL result without
hadronization.

common input value of 173.0GeV. The peak locations of these curves di↵er by 0.5GeV, which

is in agreement with the expected size of deviations caused by varying the mass scheme.

In contrast if we increase the MSR mass to 173.5GeV, yielding the dotted red curve in

Fig. 31, then we see that it agrees quite well with the pole mass result for 173.0GeV. Because

the jet scale profiles µ� are flat or vary by a small amount in the peak region, the dominant e↵ect

of varying the mass scheme between pole and MSR simply comes from the renormalization

group evolution of the MSR mass, mMSR
t (R) from the scale 1GeV up to the scale µ� of the

bHQET jet function. At the NLL order we are working the input value of mpole
t e↵ectively

corresponds to mMSR
t (R) with the scale R = µ ' 5GeV as the typical scale µ� appearing in
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Figure 30. E↵ect of the nonperturbative parameters ⌦(�)
1

(left panels) and x(�)
2

(right panels) on
the cross sections predicted by the factorization theorem. The top panels are the soft drop decay
factorization theorem with ⌦(1)

1

and x(1)

2

, the middle panels the soft drop high-pT factorization theorem
with ⌦(2)

1

and x(2)

2

, and the bottom two panels use the ungroomed factorization theorems with ⌦
1

and
x
2

. In the left panels we also include a dotted curve for the purely perturbative NLL result without
hadronization.

common input value of 173.0GeV. The peak locations of these curves di↵er by 0.5GeV, which

is in agreement with the expected size of deviations caused by varying the mass scheme.

In contrast if we increase the MSR mass to 173.5GeV, yielding the dotted red curve in

Fig. 31, then we see that it agrees quite well with the pole mass result for 173.0GeV. Because

the jet scale profiles µ� are flat or vary by a small amount in the peak region, the dominant e↵ect

of varying the mass scheme between pole and MSR simply comes from the renormalization

group evolution of the MSR mass, mMSR
t (R) from the scale 1GeV up to the scale µ� of the

bHQET jet function. At the NLL order we are working the input value of mpole
t e↵ectively

corresponds to mMSR
t (R) with the scale R = µ ' 5GeV as the typical scale µ� appearing in
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  known that using a larger 
  accurately captures MPI effects
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(IS, Tackmann, Waalewijn 2015)
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1



pp� tt̄
Issue is that MPI contamination is significant (Pythia), so 
uncertainty from this modeling may be too large for 
a precision measurement.

Figure 23. E↵ect of adding hadronization and MPI without (left) and with (right) soft drop grooming.

4.6 Hadronization and MPI

When MPI is added the soft drop pp result has a peak that is shifted by 4.5GeV. This is

shown most cleanly in Fig. 23 (left panel) where for pp collisions we display the no soft drop

hadronization result (blue) and hadronization+MPI result (red), including also here the purely

partonic Pythia8 result (green), and listing the positions of the various peak locations in GeV.

The shift from adding MPI to the hadronization result is about a factor of two larger than the

' 2.5GeV shift between the partonic and hadronic peak positions.

After soft drop the analogous pp results are shown in Fig. 23 (right panel). Here we observe

a significantly smaller shift between both the partonic and hadronization results, ' 1.0GeV

and between the hadronization and hadronization+MPI results, ' 1.1GeV. The latter result

is quite important; since the UE / MPI e↵ects must be modeled in a manner that goes beyond

the factorization theorem this reduction in the magnitude of their contribution provides a

significant decrease in the associated uncertainty. At the level of the analysis carried out here

we make a rough estimate that the factorization based model for including UE e↵ects, through

modifying the moment parameters ⌦n ! ⌦MPI
n , has a 30% uncertainty. This approximation for

the residual uncertainty may actually be somewhat conservative since this modeling agrees well

with Pythia8’s MPI model with much higher accuracy. Nevertheless we feel it is appropriate

to be conservative when relying on model dependent methods. This rough estimate yields a

0.3GeV uncertainty estimate for the modeling of MPI. With further dedicated studies of MPI

in samples of top, massless quark or b-jets, we may gain the needed confidence to make this

rough uncertainty estimate more precise in the future.

4.7 pT dependence of the pp ! tt̄ jet mass spectrum

In Fig. 24 we study the pT dependence of the soft-dropped spectrum predicted by Pythia8,

for four di↵erent pT bins. In the first panel we see that there is essentially no pT dependence

of the spectrum in the partonic Pythia results. The second panel includes hadronization,

and we begin to see pT dependent shifts between the bins at a very small 0.1–0.2GeV level.

These small shifts are in agreement with the dramatically reduced pT dependence predicted

by the soft drop factorization theorems. Indeed, these small shifts are compatible with the

lack of pT dependence predicted by Eq. (5.24). They are also compatible with Eq. (5.25) if the

⇤QCD is replaced by ⌦(�)
1 ⇠ 1GeV. Finally the third panel of Fig. 24 adds MPI e↵ects. Once
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Soft Drop Larkoski, Marzani, Soyez, Thaler 2014

Grooms soft radiation from the jet

z > zcut ��

two grooming parameters

min(pTi, pTj)
pTi + pTj

> zcut

��Rij

R0

��

Can still carry out calculations: Larkoski, Marzani, Soyez, Thaler 2014

Fri, Larkoski, Schwartz, Yan 2016

ie.



To derive
fact. theorem:  

Remove soft 
contamination.

Decouples top-jet from rest of the event!      

Figure 8. Comparing all the constraints as a function of MJ .

Figure 9. Constraints on z
cut

as function of pT and MJ for various �.
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Light Soft Drop for tops
zcut � 0.01

THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

HOW DO WE USE THESE THEORETICAL TOOLS?
Groomed top jet mass cross section:
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ŝt � ŝ0�Q`
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where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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ŝt�
Q`

m
, �m,�t, µ

⌘

⇥
Z

dk0 SC

h⇣

`� mk0

Q

⌘

(2�Qz
cut

)
1

1+� ,�, µ
i

F̃C(k
0,�,m/Q) , (3.31)

where the induced nonperturbative model function is

F̃C

⇣

k0,�,
m

Q

⌘

=

Z

d�d
dt(�d)

h(�d,
m
Q )

FC

⇣ k0

h(�d,
m
Q )

,�
⌘

. (3.32)

3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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‣ Fully correct computation: gluon radiation off the top and decays 
properly accounted for. Width dependence of radiation taken 
care of. 

‣ Scale settings: Bulk of higher order corrections already taken 
care of through scale settings. Experience from ee studies. 

‣ Resummation of logarithms: EFT approach designed for specific 
kinematics of this process.

Merits of EFT calculation:

top decay products & radiation

leftover “collinear-soft” radiation 
R

soft radiation groomed 
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The top quark mass mt is one of the most important
Standard Model (SM) parameters. It significantly af-
fects studies of the SM vacuum stability [1] and the elec-
troweak precision observables [2]. The most precise top
mass measurements are based on kinematic reconstruc-
tion, yielding results such as m

MC

t = 172.44(49) GeV
(CMS) [3], m

MC

t = 172.84(70) GeV (ATLAS) [4] and
m

MC

t = 174.34(64) GeV (Tevatron) [5]. These measure-
ments are based on Monte Carlo (MC) simulations and
determine the mass parameter m

MC

t of the MC genera-
tor, which depends on the shower dynamics and its in-
terface with hadronization. Identifying these values with
a Lagrangian top-mass scheme mt induces an additional
ambiguity at the 0.5–1.0 GeV level [6, 7]. We propose
a factorization approach to remove this uncertainty in
pp ! tt̄ by constructing an observable that has high kine-
matic sensitivity to mt and at the same time allows for
hadron level predictions from QCD employing a short
distance top-mass. It can be used to extract mt from ex-
perimental data, or to calibrate the parameter m

MC

t as
was done for 2-Jettiness in e

+

e

� collisions [8].

We consider boosted tops whose decay products are
collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4GeV
is the top width andQ is twice the large momentum along
the boost direction. For pp collisions Q = 2pT cosh(⌘)
with pT and ⌘ being the jet’s transverse momentum and
pseudo-rapidity, respectively. Recently an experimental
analysis along these lines was carried out by CMS [10].
For e

+

e

� ! tt̄ a hadron level factorization theorem for
a distribution with high kinematic sensitivity to a short
distance mt was derived in [9, 11]. So far an analogous
approach has been missing for pp ! tt̄, due to theory
complications in controlling external radiation, parame-
ters like the jet radius R, and soft contamination from
initial state radiation and underlying event (UE), which
is often modeled in MC simulations by multiple particle

interactions (MPI).
Our method relies on deriving new factorization the-

orems that enable the measurement of the jet mass MJ

on a jet of radius R ⇠ 1 with light soft drop grooming in
a boosted top sample. The soft drop algorithm [12, 13]
removes peripheral soft radiation by comparing subse-
quent jet constituents i, j in an angular ordered cluster
tree until

min[pTi, pTj ]/(pTi + pTj) > z

cut

(Rij/R)� , (1)

is satisfied. Here Rij is the angular distance in the
rapidity-� plane, and z

cut

and � are fixed soft drop pa-
rameters. When Eq. (1) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet ra-
dius Rg < R for the groomed jet. This retains strong
kinematic sensitivity to mt as in the template method,
grooms away contamination from other parts of the colli-
sion, and allows for a factorization based description [14].
It also reduces tuning dependence in MC simulations [15].
We make use of the Soft-Collinear E↵ective Theory [16]

to derive peak region factorization formulae for the cross-
section, with the modes pictured in Fig. 1a. Our calcu-
lation requires light grooming which satisfies

�t

4mt

⇣
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The first constraint enables a simple treatment of the
top-decay products and ensures �t/mt(Q/2mt)� � z

cut

so that boosted ultra-collinear (UC) massless radiation
associated with the top quark is not modified. These
e↵ects are then described by the same inclusive jet func-
tion JB(ŝ, �m,�t, µ) as in [9, 11], providing control over
the scheme for mt through �m = m

pole

t �mt. This con-
straint is significantly stronger than that needed to retain
the decay products, (Q/2mt)� � z

cut

. The second con-
straint ensures that wide angle soft radiation (y-axis of
Fig. 1a above the green dot) is groomed away, isolating
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The top quark mass mt is one of the most important
Standard Model (SM) parameters. It significantly af-
fects studies of the SM vacuum stability [1] and the elec-
troweak precision observables [2]. The most precise top
mass measurements are based on kinematic reconstruc-
tion, yielding results such as m

MC

t = 172.44(49) GeV
(CMS) [3], m

MC

t = 172.84(70) GeV (ATLAS) [4] and
m

MC

t = 174.34(64) GeV (Tevatron) [5]. These measure-
ments are based on Monte Carlo (MC) simulations and
determine the mass parameter m

MC

t of the MC genera-
tor, which depends on the shower dynamics and its in-
terface with hadronization. Identifying these values with
a Lagrangian top-mass scheme mt induces an additional
ambiguity at the 0.5–1.0 GeV level [6, 7]. We propose
a factorization approach to remove this uncertainty in
pp ! tt̄ by constructing an observable that has high kine-
matic sensitivity to mt and at the same time allows for
hadron level predictions from QCD employing a short
distance top-mass. It can be used to extract mt from ex-
perimental data, or to calibrate the parameter m

MC

t as
was done for 2-Jettiness in e

+

e

� collisions [8].

We consider boosted tops whose decay products are
collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4GeV
is the top width andQ is twice the large momentum along
the boost direction. For pp collisions Q = 2pT cosh(⌘)
with pT and ⌘ being the jet’s transverse momentum and
pseudo-rapidity, respectively. Recently an experimental
analysis along these lines was carried out by CMS [10].
For e

+

e

� ! tt̄ a hadron level factorization theorem for
a distribution with high kinematic sensitivity to a short
distance mt was derived in [9, 11]. So far an analogous
approach has been missing for pp ! tt̄, due to theory
complications in controlling external radiation, parame-
ters like the jet radius R, and soft contamination from
initial state radiation and underlying event (UE), which
is often modeled in MC simulations by multiple particle

interactions (MPI).
Our method relies on deriving new factorization the-

orems that enable the measurement of the jet mass MJ

on a jet of radius R ⇠ 1 with light soft drop grooming in
a boosted top sample. The soft drop algorithm [12, 13]
removes peripheral soft radiation by comparing subse-
quent jet constituents i, j in an angular ordered cluster
tree until

min[pTi, pTj ]/(pTi + pTj) > z

cut

(Rij/R)� , (1)

is satisfied. Here Rij is the angular distance in the
rapidity-� plane, and z

cut

and � are fixed soft drop pa-
rameters. When Eq. (1) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet ra-
dius Rg < R for the groomed jet. This retains strong
kinematic sensitivity to mt as in the template method,
grooms away contamination from other parts of the colli-
sion, and allows for a factorization based description [14].
It also reduces tuning dependence in MC simulations [15].
We make use of the Soft-Collinear E↵ective Theory [16]

to derive peak region factorization formulae for the cross-
section, with the modes pictured in Fig. 1a. Our calcu-
lation requires light grooming which satisfies
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The first constraint enables a simple treatment of the
top-decay products and ensures �t/mt(Q/2mt)� � z

cut

so that boosted ultra-collinear (UC) massless radiation
associated with the top quark is not modified. These
e↵ects are then described by the same inclusive jet func-
tion JB(ŝ, �m,�t, µ) as in [9, 11], providing control over
the scheme for mt through �m = m

pole

t �mt. This con-
straint is significantly stronger than that needed to retain
the decay products, (Q/2mt)� � z

cut

. The second con-
straint ensures that wide angle soft radiation (y-axis of
Fig. 1a above the green dot) is groomed away, isolating
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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‣ Fully correct computation: gluon radiation off the top and decays 
properly accounted for. Width dependence of radiation taken 
care of. 

‣ Scale settings: Bulk of higher order corrections already taken 
care of through scale settings. Experience from ee studies. 

‣ Resummation of logarithms: EFT approach designed for specific 
kinematics of this process.

Merits of EFT calculation:

top decay products & radiation

leftover “collinear-soft” radiation 
R

soft radiation groomed 
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The top quark mass mt is one of the most important
Standard Model (SM) parameters. It significantly af-
fects studies of the SM vacuum stability [1] and the elec-
troweak precision observables [2]. The most precise top
mass measurements are based on kinematic reconstruc-
tion, yielding results such as m

MC

t = 172.44(49) GeV
(CMS) [3], m

MC

t = 172.84(70) GeV (ATLAS) [4] and
m

MC

t = 174.34(64) GeV (Tevatron) [5]. These measure-
ments are based on Monte Carlo (MC) simulations and
determine the mass parameter m

MC

t of the MC genera-
tor, which depends on the shower dynamics and its in-
terface with hadronization. Identifying these values with
a Lagrangian top-mass scheme mt induces an additional
ambiguity at the 0.5–1.0 GeV level [6, 7]. We propose
a factorization approach to remove this uncertainty in
pp ! tt̄ by constructing an observable that has high kine-
matic sensitivity to mt and at the same time allows for
hadron level predictions from QCD employing a short
distance top-mass. It can be used to extract mt from ex-
perimental data, or to calibrate the parameter m

MC

t as
was done for 2-Jettiness in e

+

e

� collisions [8].

We consider boosted tops whose decay products are
collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4GeV
is the top width andQ is twice the large momentum along
the boost direction. For pp collisions Q = 2pT cosh(⌘)
with pT and ⌘ being the jet’s transverse momentum and
pseudo-rapidity, respectively. Recently an experimental
analysis along these lines was carried out by CMS [10].
For e

+

e

� ! tt̄ a hadron level factorization theorem for
a distribution with high kinematic sensitivity to a short
distance mt was derived in [9, 11]. So far an analogous
approach has been missing for pp ! tt̄, due to theory
complications in controlling external radiation, parame-
ters like the jet radius R, and soft contamination from
initial state radiation and underlying event (UE), which
is often modeled in MC simulations by multiple particle

interactions (MPI).
Our method relies on deriving new factorization the-

orems that enable the measurement of the jet mass MJ

on a jet of radius R ⇠ 1 with light soft drop grooming in
a boosted top sample. The soft drop algorithm [12, 13]
removes peripheral soft radiation by comparing subse-
quent jet constituents i, j in an angular ordered cluster
tree until

min[pTi, pTj ]/(pTi + pTj) > z

cut

(Rij/R)� , (1)

is satisfied. Here Rij is the angular distance in the
rapidity-� plane, and z

cut

and � are fixed soft drop pa-
rameters. When Eq. (1) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet ra-
dius Rg < R for the groomed jet. This retains strong
kinematic sensitivity to mt as in the template method,
grooms away contamination from other parts of the colli-
sion, and allows for a factorization based description [14].
It also reduces tuning dependence in MC simulations [15].
We make use of the Soft-Collinear E↵ective Theory [16]

to derive peak region factorization formulae for the cross-
section, with the modes pictured in Fig. 1a. Our calcu-
lation requires light grooming which satisfies

�t

4mt

⇣
Q

4mt

⌘�
>⇠ z

cut

, z

1
2+�

cut

� 1

2

✓
�t

mt

4m2

t

Q

2

◆ 1
2+�

. (2)

The first constraint enables a simple treatment of the
top-decay products and ensures �t/mt(Q/2mt)� � z

cut

so that boosted ultra-collinear (UC) massless radiation
associated with the top quark is not modified. These
e↵ects are then described by the same inclusive jet func-
tion JB(ŝ, �m,�t, µ) as in [9, 11], providing control over
the scheme for mt through �m = m

pole

t �mt. This con-
straint is significantly stronger than that needed to retain
the decay products, (Q/2mt)� � z

cut

. The second con-
straint ensures that wide angle soft radiation (y-axis of
Fig. 1a above the green dot) is groomed away, isolating
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t of the MC genera-
tor, which depends on the shower dynamics and its in-
terface with hadronization. Identifying these values with
a Lagrangian top-mass scheme mt induces an additional
ambiguity at the 0.5–1.0 GeV level [6, 7]. We propose
a factorization approach to remove this uncertainty in
pp ! tt̄ by constructing an observable that has high kine-
matic sensitivity to mt and at the same time allows for
hadron level predictions from QCD employing a short
distance top-mass. It can be used to extract mt from ex-
perimental data, or to calibrate the parameter m
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t as
was done for 2-Jettiness in e
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e

� collisions [8].

We consider boosted tops whose decay products are
collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4GeV
is the top width andQ is twice the large momentum along
the boost direction. For pp collisions Q = 2pT cosh(⌘)
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pseudo-rapidity, respectively. Recently an experimental
analysis along these lines was carried out by CMS [10].
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distance mt was derived in [9, 11]. So far an analogous
approach has been missing for pp ! tt̄, due to theory
complications in controlling external radiation, parame-
ters like the jet radius R, and soft contamination from
initial state radiation and underlying event (UE), which
is often modeled in MC simulations by multiple particle

interactions (MPI).
Our method relies on deriving new factorization the-

orems that enable the measurement of the jet mass MJ

on a jet of radius R ⇠ 1 with light soft drop grooming in
a boosted top sample. The soft drop algorithm [12, 13]
removes peripheral soft radiation by comparing subse-
quent jet constituents i, j in an angular ordered cluster
tree until
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dius Rg < R for the groomed jet. This retains strong
kinematic sensitivity to mt as in the template method,
grooms away contamination from other parts of the colli-
sion, and allows for a factorization based description [14].
It also reduces tuning dependence in MC simulations [15].
We make use of the Soft-Collinear E↵ective Theory [16]

to derive peak region factorization formulae for the cross-
section, with the modes pictured in Fig. 1a. Our calcu-
lation requires light grooming which satisfies

�t

4mt

⇣
Q

4mt

⌘�
>⇠ z

cut

, z

1
2+�

cut

� 1

2

✓
�t

mt

4m2

t

Q

2

◆ 1
2+�

. (2)

The first constraint enables a simple treatment of the
top-decay products and ensures �t/mt(Q/2mt)� � z

cut

so that boosted ultra-collinear (UC) massless radiation
associated with the top quark is not modified. These
e↵ects are then described by the same inclusive jet func-
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Figure 5. Modes on z-✓ plane for the “decay” case.

3.1.3 E↵ects of Top-Decay Products

In the previous section we analyzed a case with pT = 1500GeV. For high-pT top jets the decay

products are more collimated and hence in this case the location of the non-perturbative mode

is analogous to the case of jets from massless quarks. In particular for high-pT the dashed line

in Fig. 4 is always on the right hand side of the ⇤ modes.

However, for an intermediate pT range of experimental interest the dashed line moves

further to the left, and we find that the dominant non-perturbative modes are located on the

dashed line. This occurs because the brown line now hits the dashed line instead of the orange

line. This is shown in Fig. 5 for pT = 750 GeV.

In such case the the non perturbative modes have the angle set by the decay product that

is furthest away from the top jet axis and stops the groomer:

✓⇤ ⇠ ✓d . (3.26)

We refer to the two cases in Figs. 4 and 5 as “high-pT ” and “decay” cases respectively. We

can ask at what Q we transition between the two pictures by comparing the p+ components

of the ⇤ modes, since the contribution of a mode to the measurement is proportional to the

plus component contribution as shown in Eq. (2.8). We first parameterize the plus component

of ⇤ mode in Fig. 5 as follows

p+⇤ = ⇤QCD
m

Q
h(✓d) , (3.27)

where we have factored out the leading dependence on the boost Q/m and parameterized the

subleading dependence in an O(1) number, h(✓d), that is related to the fraction of the top

quark energy carried by the decay product at angle ✓d. Comparing the p+ components for the

“decay” and “high-pT ” cases in Eqs. (3.27) and (3.25) we find that the “decay” case is relevant

for

pdecay+⇤ & phigh pT +
⇤ ) Q . 2mh

✓

mhzcut
⇤QCD

◆

1

�

. (3.28)
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MPI contamination reduced by factor of 5 
with Light Soft Drop (eg. 4.5 GeV to 0.9 GeV):

Figure 23. E↵ect of adding hadronization and MPI without (left) and with (right) soft drop grooming.

4.6 Hadronization and MPI

When MPI is added the soft drop pp result has a peak that is shifted by 4.5GeV. This is

shown most cleanly in Fig. 23 (left panel) where for pp collisions we display the no soft drop

hadronization result (blue) and hadronization+MPI result (red), including also here the purely

partonic Pythia8 result (green), and listing the positions of the various peak locations in GeV.

The shift from adding MPI to the hadronization result is about a factor of two larger than the

' 2.5GeV shift between the partonic and hadronic peak positions.

After soft drop the analogous pp results are shown in Fig. 23 (right panel). Here we observe

a significantly smaller shift between both the partonic and hadronization results, ' 1.0GeV

and between the hadronization and hadronization+MPI results, ' 1.1GeV. The latter result

is quite important; since the UE / MPI e↵ects must be modeled in a manner that goes beyond

the factorization theorem this reduction in the magnitude of their contribution provides a

significant decrease in the associated uncertainty. At the level of the analysis carried out here

we make a rough estimate that the factorization based model for including UE e↵ects, through

modifying the moment parameters ⌦n ! ⌦MPI
n , has a 30% uncertainty. This approximation for

the residual uncertainty may actually be somewhat conservative since this modeling agrees well

with Pythia8’s MPI model with much higher accuracy. Nevertheless we feel it is appropriate

to be conservative when relying on model dependent methods. This rough estimate yields a

0.3GeV uncertainty estimate for the modeling of MPI. With further dedicated studies of MPI

in samples of top, massless quark or b-jets, we may gain the needed confidence to make this

rough uncertainty estimate more precise in the future.

4.7 pT dependence of the pp ! tt̄ jet mass spectrum

In Fig. 24 we study the pT dependence of the soft-dropped spectrum predicted by Pythia8,

for four di↵erent pT bins. In the first panel we see that there is essentially no pT dependence

of the spectrum in the partonic Pythia results. The second panel includes hadronization,

and we begin to see pT dependent shifts between the bins at a very small 0.1–0.2GeV level.

These small shifts are in agreement with the dramatically reduced pT dependence predicted

by the soft drop factorization theorems. Indeed, these small shifts are compatible with the

lack of pT dependence predicted by Eq. (5.24). They are also compatible with Eq. (5.25) if the

⇤QCD is replaced by ⌦(�)
1 ⇠ 1GeV. Finally the third panel of Fig. 24 adds MPI e↵ects. Once
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THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

HOW DO WE USE THESE THEORETICAL TOOLS?
Groomed top jet mass cross section:
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where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

HOW DO WE USE THESE THEORETICAL TOOLS?
Groomed top jet mass cross section:
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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0,�d, m/Q)

Z

d` JB

⇣M2

J �m2

t �Q`

mt
� ŝ0, �m,µ

⌘

⇥
Z

dk SC

h⇣

`� mk

Q
h
�

�d,
m

Q

�

⌘

(2�Qz
cut

)
1

1+� ,�, µ
i

FC(k, 1)

Dt(ŝ
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ŝt�
Q`

m
, �m,�t, µ

⌘

⇥
Z

dk0 SC

h⇣

`� mk0

Q

⌘

(2�Qz
cut

)
1

1+� ,�, µ
i

F̃C(k
0,�,m/Q) , (3.31)

where the induced nonperturbative model function is

F̃C

⇣

k0,�,
m

Q

⌘

=

Z

d�d
dt(�d)

h(�d,
m
Q )

FC

⇣ k0

h(�d,
m
Q )

,�
⌘

. (3.32)

3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation
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Z
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0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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0,�d)

Z

d` JB

⇣
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z
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0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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ŝt � ŝ0�Q`
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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0,�d)

Z

d` JB

⇣

ŝt � ŝ0�Q`
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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⇡(ŝ0 2 + �2

t )
dt(�d, m/Q) . (3.30)

d�(�J)

dMJ
= N(�J , zcut,�, µ)

Z

d` JB

⇣

ŝt�
Q`

m
, �m,�t, µ

⌘

⇥
Z

dk0 SC

h⇣

`� mk0

Q

⌘

(2�Qz
cut

)
1

1+� ,�, µ
i

F̃C(k
0,�,m/Q) , (3.31)

where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

HOW DO WE USE THESE THEORETICAL TOOLS?
Groomed top jet mass cross section:
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where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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Q = 2 pT cosh(⌘J)

Parameters in the factorization formula:
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where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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‣ Kinematic scales pT, ηJ : determines statistics of boosted top events 

‣ mt and Ω1 : parameters to be fitted (Γt is fixed to SM value) 

‣ δm : choice of renormalization scheme 

‣ Soft drop parameters zcut and β: adjust the strength of the groomer 

‣ Renormalization scale μ: use for estimating perturbative uncertainties

t t t t t t t t
b
q
q ‘

Figure 11. Bubble chain for an unstable top quark leading to a Breit-Wigner together with a di↵erential
distribution for the top decay products. From the closed two-loop bubble calculation involving bqq̄0 only
the imaginary top width term is kept.

and are described by the same non-perturbative function. We also see that in the decay case

there is no � dependence in the non-perturbative function, so the � dependence of the cross

section is perturbatively calculable.

Since our jet mass measurement is inclusive over the decay products we must now explicitly

integrate over �d. This means that we need to resolve the Breit Wigner inside the ultra-

collinear function to include the angluar cross section of the top decay products. This subtlety

was ignored when we originally arrived at Eq. (3.59). We start by considering the fact that the

unstable top jet function JB(ŝt,�t, �m,µ) and stable top jet function J�t=0
B (ŝt, �m,µ) by [35]

JB(ŝt,�t, �m,µ) =

Z ŝt

�1
dŝ0t J

�
t

=0
B (ŝt, �m,µ)

�t

⇡
�

ŝ0 2t + �2
t

� . (3.81)

To include the angluar distribution of the top decay products we define a top-decay resolved

jet function:

JDt
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, �m,µ

◆

=

Z ŝt
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B (ŝt � ŝ0t, �m,µ)Dt
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ŝ0t,�d,
m

Q

◆

. (3.82)

Here Dt(ŝ0,�d,mt/Q) encodes the angular cross section of the top-decay products, which can

be considered to be a perturbative calculation carried out at a scale ⇠ m, and thus in the hard

region. The presence of these boosted colored decay products does not change the nature of

the decoupling of the collinear-soft or global soft modes from this jet function, they are still

eikonal Wilson lines in the same directions since they only see the total color channel of the

decay products, and are independent of the normalization of the light-like vectors on which

they depend. By consistency the µ dependence of JDt is the same as that for JB and hence is

described by the stable top quark jet function.

The calculation of Dt at lowest order requires a geometric sum of decay product bubbles,

where one hadronically decaying bubble is cut, shown in Fig. 11. In the non-cut bubbles we

just keep �t yielding the resonant contribution

Dt
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mt
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⇡(ŝ0 2t +�2
t )

dt
⇣

�d,
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⌘ h

1+O
⇣ ŝ0t
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⌘i

, (3.83)

where dt(�d,mt/Q) is the angular dependence of the top-decay with
R

�d dt(�d,mt/Q) = 1.

For the calculation of dt we can set ŝ0t = 0, leading to the factorized structure in Eq. (3.83).

We calculate dt exactly below in Sec. 3.3.5. Integrating over the decay products phase space

�d gives back the unstable top jet function:

JB(ŝt,�t, �m,µ) =

Z

d�d JDt

✓

ŝt,�d,
m

Q
, �m,µ
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. (3.84)
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�d = 5 phase space variables for decay

“decay” fact. thm.

2

a)

b)

FIG. 1. (a) Modes appearing in the factorization theorem
where z = 2E/Q for energy E, and ✓ is the polar angle relative
to the top jet-axis. (b) Allowed values of z

cut

which are strong
enough to isolate the jet from contaminating radiation (above
red band), but not so strong as to invalidate the factorization
formulae we derive (below blue band).

the jet, and removing the majority of soft contamination.
The remaining perturbative collinear-soft (CS) radiation
is then captured by the same function SC defined ear-
lier for soft-dropped massless quark jets in [14, 17]. Both
UC and CS radiation contribute to MJ in the relevant
region M

2

J �m

2

t ⇠ mt�t (blue curve of Fig.1a). The final
components are the factorization theorem’s description
of non-perturbative hadronization corrections (FC), and
our modeling of underlying event, to be discussed below.
We do not study pileup corrections here, but it would be
important to do so in the future. We take � = 2 as our de-
fault. The allowed z

cut

region satisfying Eq. (2) is shown
as a function of pT in Fig. 1b (red line replaces “a � b”
by “a > 3b”). For pT ' 750GeV this is 0.02 >⇠ z

cut

and

z

1/4
cut

� .073 which is satisfied by z

cut

' 0.01. This light
grooming is an order of magnitude smaller than typically
used for jets at the LHC, but as we will see, is still very
e↵ective for mt measurements. For smaller � the allowed
region is more constrained, so for experimentally acces-
sible pT s the expansions used to derive the factorization
formulae are less convergent.

We present here the key aspects of the factorized cross-
sections, postponing a detailed discussion to elsewhere.
There are two relevant formulas depending on the dom-
inant non-perturbative modes ⇤. Shown in Fig.1a is the

case (called “decay”) when soft drop stops when compar-
ing decay products, so ⇤ is determined by the intersection
of the brown p

2 = ⇤2

QCD

line and the dashed line at the
angle ✓d between the jet-axis and the last decay product
to be re-clustered by soft drop. This occurs for

Q

<⇠ 4mt

�
2mtzcut/⇤QCD

�
1/�

. (3)

We define ŝt ⌘ (M2

J � m

2

t )/mt, �J = {pT , ⌘J}, Qcut

⌘
2�z

cut

Q, and the jet mass as the sum over all constituents
in the jet of radius R after soft-drop has been applied,
M

2

J = (
P

i2Jsd
p

µ
i )

2. After soft drop the dependence on
the jet-algorithm and R are power suppressed. Then the
“decay” groomed top-jet mass cross section is
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0
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Here N contains factors that a↵ect only the normaliza-
tion like parton distributions, the global soft function,
the hard function, as well as the other t or t̄ jet, and
may also be factorized and computed explicitly. For our
predictions below we compute N using N-Jettiness with
XCone or anti-kT jets [18–22] and a loose jet-veto fol-
lowing Ref. [23], though beyond capturing the Born �J

dependence our analysis is insensitive to this choice. For
larger Q than in Eq. (3) the top-decay products are well
inside the groomed jet and the dashed line in Fig. 1a
moves to the right. In this case (called “high-pT ”) the
⇤ modes are at the intersection of the brown line and
orange line for Eq. (1), and the cross section is
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i

⇥ FC(k,�) . (5)

In Eqs. (4) and (5) only MJ associated to either the
hadronically decaying t or t̄ is measured, while the other
can decay hadronically or semi-leptonically. In fully
hadronic decays both jets can be sampled independently.
FC(k,�) in Eq. (5) is a non-perturbative function

which is identical to that for a soft dropped jet initiated
by a massless quark, and can be determined by fitting its

first few moments ⌦(�)
n =

R
dk k

n
FC(k,�). The induced

nonperturbative function in Eq. (4) is also determined by
the same FC(k,�) with � = 1,
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⌘
. (6)

Here �d are the 5 independent kinematic variables of
the top-decay t ! bqq̄

0 in its rest frame (4 angles,

Soft drop stops when comparing 
energetic top decay products

Hoang, Mantry, Pathak, IS  (2017)

t

W

b

q

q ‘p
t

p
b

p1
p2

Figure 12. Top quark decay to three quarks, showing the notation used for their four-momenta.

The exact form of FC for our implementation for either the high-pT or decay groomed

top jet factorization is given in Sec. 5.1.3 below. It can be determined by fitting its first few

moments defined by

⌦(�)
n =

Z

dk knFC(k,�) . (3.90)

Once again the first moment ⌦(�)
1 is the most important parameter as it determines the dimen-

sional scale in this function. There is no reason to expect that this parameter is insensitive to

� and indeed we find some evidence that the � dependence is significant. The other parameter

we keep in our analysis is related to the second moment, defined again with a dimensionless

ratio

x(�)2 =
⌦(�)
2 � ⌦(�) 2

1

⌦(�) 2
1

. (3.91)

We explore the dependence of the soft drop cross section on ⌦(�)
1 and x(�)2 in detail in Sec. 5.2.

3.3.5 Angular Distribution of Decay Products

We now have two di↵erent factorization formulae in Eqs. (3.70) and (3.88) that di↵er in their

treatment of non-perturbative corrections. The choice between one or the other at a given

pT is dependent on the distribution of top decay products and is given by the condition in

Eq. (3.28). In this section we calculate the functions dt(�d,m/Q) and h(�d,m/Q), and then

use the results to further explore the question of the regions where each of the decay and

high-pT factorization theorems are appropriate.

We perform the calculation of h using variables defined in the rest frame of top quark, and

then apply a boost in the top jet direction to obtain the result in the pp center of mass frame.

We start by simplifying the form of phase space integration for the three body top decay shown

in Fig. 12, using momenta for the quarks q, q̄0, and b as p1, p2, and pb, respectively. The phase

space integration measure is given by

PS ⌘
Z

d�d =

Z

d3p1
(2⇡)3E1

Z

d3p2
(2⇡)3E2

Z

d3pb
(2⇡)3Eb

(2⇡)4 �(4)
�

pt � p1 � p2 � pb
�

. (3.92)

Out of these nine variables for the momenta of three onshell particles, only five of them are

independent after using the momentum conserving �-function. Our choice of independent rest
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Factorization with Soft Drop on one jet:

THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

HOW DO WE USE THESE THEORETICAL TOOLS?
Groomed top jet mass cross section:
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ŝt�
Q`

m
, �m,�t, µ

⌘

⇥
Z

dk0 SC

h⇣

`� mk0

Q

⌘

(2�Qz
cut

)
1

1+� ,�, µ
i

F̃C(k
0,�,m/Q) , (3.31)

where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET
+

theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa is related to that at the beam jet scale µa by the RG evolution equation

Bna(xa, ta, µSa) =

Z

dt0a UBa(ta � t0a, µSa ;µa)Bna(xa, t
0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function

UBa(ta � t0a, µSa ;µa) ! �(ta � t0a), (4.2)
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� ŝ0, �m,µ

⌘

⇥
Z

dk SC

h⇣

`� mk

Q
h
�

�d,
m

Q

�

⌘

(2�Qz
cut

)
1

1+� ,�, µ
i

FC(k, 1)

Dt(ŝ
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� ŝ0, �m,µ

⌘

⇥
Z

dk SC

h⇣

`� mk

Q
h
�

�d,
m

Q

�

⌘

(2�Qz
cut

)
1

1+� ,�, µ
i

FC(k, 1)

Dt(ŝ
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 decay product reclustered 
 by soft-drop 

Figure 5. Modes on z-✓ plane for the “decay” case.

3.1.3 E↵ects of Top-Decay Products

In the previous section we analyzed a case with pT = 1500GeV. For high-pT top jets the decay

products are more collimated and hence in this case the location of the non-perturbative mode

is analogous to the case of jets from massless quarks. In particular for high-pT the dashed line

in Fig. 4 is always on the right hand side of the ⇤ modes.

However, for an intermediate pT range of experimental interest the dashed line moves

further to the left, and we find that the dominant non-perturbative modes are located on the

dashed line. This occurs because the brown line now hits the dashed line instead of the orange

line. This is shown in Fig. 5 for pT = 750 GeV.

In such case the the non perturbative modes have the angle set by the decay product that

is furthest away from the top jet axis and stops the groomer:

✓⇤ ⇠ ✓d . (3.26)

We refer to the two cases in Figs. 4 and 5 as “high-pT ” and “decay” cases respectively. We

can ask at what Q we transition between the two pictures by comparing the p+ components

of the ⇤ modes, since the contribution of a mode to the measurement is proportional to the

plus component contribution as shown in Eq. (2.8). We first parameterize the plus component

of ⇤ mode in Fig. 5 as follows

p+⇤ = ⇤QCD
m

Q
h(✓d) , (3.27)

where we have factored out the leading dependence on the boost Q/m and parameterized the

subleading dependence in an O(1) number, h(✓d), that is related to the fraction of the top

quark energy carried by the decay product at angle ✓d. Comparing the p+ components for the

“decay” and “high-pT ” cases in Eqs. (3.27) and (3.25) we find that the “decay” case is relevant

for

pdecay+⇤ & phigh pT +
⇤ ) Q . 2mh

✓

mhzcut
⇤QCD

◆

1

�

. (3.28)
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a)

b)

FIG. 1. (a) Modes appearing in the factorization theorem
where z = 2E/Q for energy E, and ✓ is the polar angle relative
to the top jet-axis. (b) Allowed values of z

cut

which are strong
enough to isolate the jet from contaminating radiation (above
red band), but not so strong as to invalidate the factorization
formulae we derive (below blue band).

the jet, and removing the majority of soft contamination.
The remaining perturbative collinear-soft (CS) radiation
is then captured by the same function SC defined ear-
lier for soft-dropped massless quark jets in [14, 17]. Both
UC and CS radiation contribute to MJ in the relevant
region M

2

J �m

2

t ⇠ mt�t (blue curve of Fig.1a). The final
components are the factorization theorem’s description
of non-perturbative hadronization corrections (FC), and
our modeling of underlying event, to be discussed below.
We do not study pileup corrections here, but it would be
important to do so in the future. We take � = 2 as our de-
fault. The allowed z

cut

region satisfying Eq. (2) is shown
as a function of pT in Fig. 1b (red line replaces “a � b”
by “a > 3b”). For pT ' 750GeV this is 0.02 >⇠ z

cut

and

z

1/4
cut

� .073 which is satisfied by z

cut

' 0.01. This light
grooming is an order of magnitude smaller than typically
used for jets at the LHC, but as we will see, is still very
e↵ective for mt measurements. For smaller � the allowed
region is more constrained, so for experimentally acces-
sible pT s the expansions used to derive the factorization
formulae are less convergent.

We present here the key aspects of the factorized cross-
sections, postponing a detailed discussion to elsewhere.
There are two relevant formulas depending on the dom-
inant non-perturbative modes ⇤. Shown in Fig.1a is the

case (called “decay”) when soft drop stops when compar-
ing decay products, so ⇤ is determined by the intersection
of the brown p

2 = ⇤2

QCD

line and the dashed line at the
angle ✓d between the jet-axis and the last decay product
to be re-clustered by soft drop. This occurs for

Q

<⇠ 4mt

�
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�
1/�

. (3)

We define ŝt ⌘ (M2
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2
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Q, and the jet mass as the sum over all constituents
in the jet of radius R after soft-drop has been applied,
M

2

J = (
P

i2Jsd
p

µ
i )

2. After soft drop the dependence on
the jet-algorithm and R are power suppressed. Then the
“decay” groomed top-jet mass cross section is
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Here N contains factors that a↵ect only the normaliza-
tion like parton distributions, the global soft function,
the hard function, as well as the other t or t̄ jet, and
may also be factorized and computed explicitly. For our
predictions below we compute N using N-Jettiness with
XCone or anti-kT jets [18–22] and a loose jet-veto fol-
lowing Ref. [23], though beyond capturing the Born �J

dependence our analysis is insensitive to this choice. For
larger Q than in Eq. (3) the top-decay products are well
inside the groomed jet and the dashed line in Fig. 1a
moves to the right. In this case (called “high-pT ”) the
⇤ modes are at the intersection of the brown line and
orange line for Eq. (1), and the cross section is
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In Eqs. (4) and (5) only MJ associated to either the
hadronically decaying t or t̄ is measured, while the other
can decay hadronically or semi-leptonically. In fully
hadronic decays both jets can be sampled independently.
FC(k,�) in Eq. (5) is a non-perturbative function

which is identical to that for a soft dropped jet initiated
by a massless quark, and can be determined by fitting its

first few moments ⌦(�)
n =

R
dk k

n
FC(k,�). The induced

nonperturbative function in Eq. (4) is also determined by
the same FC(k,�) with � = 1,
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Here �d are the 5 independent kinematic variables of
the top-decay t ! bqq̄

0 in its rest frame (4 angles,

Soft drop stops when comparing 
energetic top decay products
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Q � 4mt(2mtzcut/�QCD)1/�“high-pT”
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Figure 4. Modes on z-✓ plane for the “high-pT ” case.

we have

zcut ⌧ �t

m

✓

Q

2m

◆�

<
2m

Q
, (3.20)

since �t/m < (2m/Q)1+� for the Qs we consider here, and � = 0, 1, 2.

3.1.2 Non-Perturbative Modes

Next we turn to the discussion of the non-perturbative mode present after grooming. To

facilitate our discussion we now consider another illustration of the modes and constraints by

representing them on ln(1/z)-ln(1/✓) plane in Fig. 4. To start out we set pT = 1500 GeV,

⌘J = 0, and ⇤QCD ⇠ 300 MeV. Here the orange line corresponds to the soft drop constraint in

Eq. (3.6), and the blue curve represents the peak region constraint in Eq. (3.5). The orange

shaded region indicates the particles groomed away by soft drop. The brown line corresponds

to the onset of non-perturbative region, and particles above this line are confined in hadrons.

The location of the modes discussed earlier is also indicated in Fig. 4, with modes to the

right being more collinear, and modes higher up being softer. The collinear soft mode satisfies

the peak region constraint in Eq. (3.5) and lives on the boundary of soft drop region, and hence

sits at the intersection of the blue and orange curves. The ultra collinear mode, being higher

in virtuality is located to the right on the blue curve. The previous ultrasoft modes that were

present at the intersection of blue curve and y-axis are groomed away and we are left with the

(global) soft wide angle modes at the boundary of soft dropped region (green dot).

The dashed line indicates the point when soft drop stops, which we previously discussed

in terms of the groomed jet radius Rg < R. Due to the special top decay topology, and for

zcut in the range given by Eq. (3.9), the soft drop criteria in Eq. (3.2) is first satisfied when

the algorithm reaches the branch that corresponds to a pair of sub-jets of top-decay products

of commensurate energy, after having vetoed away the ultra-soft particles at larger angles. If

among the decay products labeled by indices d1, d2, and d3, the subjet corresponding to the
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Figure 31. (left panel) Dependence on mMSR

t for the decay soft drop factorization theorem, showing
that the peak shifts in a manner directly proportional to the value of the top-mass. The dependence
in the high-pT factorization theorem, and ungroomed factorization theorem is very similar and hence
not shown. (right panel) Comparison of results in the pole and MSR top mass schemes for the decay
factorization theorem. For the reasons discussed in the text, the di↵erence between schemes is primarily
a shift, and hence similar spectra can be obtained by using di↵erent input masses in the two schemes
as shown.

JB(ŝt, �m,�t, µ�). The observed di↵erence in pole and MSR fit results is compatible with the

result from evolving between these scales, mMSR
t (1GeV)�mMSR

t (5GeV) = 0.53GeV.

We point out that having a correspondence between mpole
t and mMSR

t , with a value of

mpole
t that is 0.5GeV smaller than the mMSR

t , is not compatible with the pole mass obtained

from converting between schemes at one-loop order, mpole
t = mMSR

t (1GeV) + 0.17GeV, which

has the opposite sign. However, it is known that the pole mass has a renormalon ambiguity of

⇠ ⇤QCD, so that this conversion is not being carried out by a convergent series, and furthermore

that the mpole
t parameter is in general expected to be more unstable than that of the short-

distance MSR mass. The fact that the pole mass is scale independent but ambiguous because

of the ⇠ ⇤QCD renormalon can be directly attributed to the reason why the correspondence

between the mpole
t and mMSR

t values that give equivalent cross sections does not agree with a

direct conversion between these schemes.4 In general this should be interpreted as additional

uncertainty that is inherent to using the pole mass. For this reason we continue to take the

MSR mass as our default for further plots in this section.

5.4 Factorization Theorem pT dependence

For boosted top quarks we require m/pT ⌧ 1, and as discussed in Sec. 3.2 the soft drop

constraints also require a minimum pT to in order to place us in the desired region for the various

expansions. Within the region of validity, the three factorization theorems make somewhat

di↵erent predictions for the pT dependence. In both soft drop cases this dependence turns out

to be much weaker than that in the non soft-dropped factorization theorem. For the discussion

below recall that Q = 2pT cosh(⌘).

In the non soft-dropped factorization theorem there is pT dependence in the perturba-

tive resummation of double logarithms, and from the boost factor Q/m which appears as a

multiplicative factor on the momentum ` in the argument of the boosted jet function JB in

4For example, if fits for mt were made in two renormalon free short distance schemes, then one would expect

that the perturbative relation between the schemes would be satisfied by the fit results.

– 67 –

sensitive to top mass:
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Figure 30. E↵ect of the nonperturbative parameters ⌦(�)
1

(left panels) and x(�)
2

(right panels) on
the cross sections predicted by the factorization theorem. The top panels are the soft drop decay
factorization theorem with ⌦(1)

1

and x(1)

2

, the middle panels the soft drop high-pT factorization theorem
with ⌦(2)

1

and x(2)

2

, and the bottom two panels use the ungroomed factorization theorems with ⌦
1

and
x
2

. In the left panels we also include a dotted curve for the purely perturbative NLL result without
hadronization.

common input value of 173.0GeV. The peak locations of these curves di↵er by 0.5GeV, which

is in agreement with the expected size of deviations caused by varying the mass scheme.

In contrast if we increase the MSR mass to 173.5GeV, yielding the dotted red curve in

Fig. 31, then we see that it agrees quite well with the pole mass result for 173.0GeV. Because

the jet scale profiles µ� are flat or vary by a small amount in the peak region, the dominant e↵ect

of varying the mass scheme between pole and MSR simply comes from the renormalization

group evolution of the MSR mass, mMSR
t (R) from the scale 1GeV up to the scale µ� of the

bHQET jet function. At the NLL order we are working the input value of mpole
t e↵ectively

corresponds to mMSR
t (R) with the scale R = µ ' 5GeV as the typical scale µ� appearing in
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Figure 30. E↵ect of the nonperturbative parameters ⌦(�)
1

(left panels) and x(�)
2

(right panels) on
the cross sections predicted by the factorization theorem. The top panels are the soft drop decay
factorization theorem with ⌦(1)

1

and x(1)

2

, the middle panels the soft drop high-pT factorization theorem
with ⌦(2)

1

and x(2)

2

, and the bottom two panels use the ungroomed factorization theorems with ⌦
1

and
x
2

. In the left panels we also include a dotted curve for the purely perturbative NLL result without
hadronization.

common input value of 173.0GeV. The peak locations of these curves di↵er by 0.5GeV, which

is in agreement with the expected size of deviations caused by varying the mass scheme.

In contrast if we increase the MSR mass to 173.5GeV, yielding the dotted red curve in

Fig. 31, then we see that it agrees quite well with the pole mass result for 173.0GeV. Because

the jet scale profiles µ� are flat or vary by a small amount in the peak region, the dominant e↵ect

of varying the mass scheme between pole and MSR simply comes from the renormalization

group evolution of the MSR mass, mMSR
t (R) from the scale 1GeV up to the scale µ� of the

bHQET jet function. At the NLL order we are working the input value of mpole
t e↵ectively

corresponds to mMSR
t (R) with the scale R = µ ' 5GeV as the typical scale µ� appearing in
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Groomed Factorization Results
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Figure 32. Dependence on pT in the decay factorization theorem (top left panel), high-pT factorization
theorem (top right panel), and ungroomed factorization theorem (bottom panel). The decay and high-
pT variations are very similar but not identical, whereas the ungroomed variations are significantly
di↵erent. Since the ungroomed factorization may apply at lower pT , we show a fourth lower pT bin.

Eq. (2.33). Since the perturbative soft function S(`�k, . . .) and non-perturbative soft function

F (k, . . .) have momentum appearing at the same level, `�k, the Q/m boost factor also causes

a boost of the corrections from hadronization. For example the factorization theorem yields a

peak position that behaves qualitatively as [34]
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Here the second term includes perturbative corrections that depend on the mass scheme, and

the last term is from the boosted hadronization e↵ects.

For the decay factorization theorem in Eq. (3.88) there is still a pT dependence in the

Sudakov logarithms that appear between the jet and collinear-soft scales, but these scales are

numerically closer. In addition the impact of the non-perturbative soft function is modified by

the presence of a m/Q factor appearing in the convolution between the perturbative collinear-

soft function SC

⇥

(` � hkm/Q)Qcut
⇤

and the non-perturbative collinear-soft function FC(k).

This m/Q factor encodes the fact that the decay products approach the jet axis as the jet is

boosted to larger Q values. When considering the impact of hadronization on the jet mass, this

m/Q compensates the Q/m boost factor in JB, leading for example to a stable peak position

as pT is varied,

Mpeak
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' m+ (↵s�t + . . .) + ⇤QCD + . . . . (5.24)
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Figure 32. Dependence on pT in the decay factorization theorem (top left panel), high-pT factorization
theorem (top right panel), and ungroomed factorization theorem (bottom panel). The decay and high-
pT variations are very similar but not identical, whereas the ungroomed variations are significantly
di↵erent. Since the ungroomed factorization may apply at lower pT , we show a fourth lower pT bin.
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F (k, . . .) have momentum appearing at the same level, `�k, the Q/m boost factor also causes
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Here the second term includes perturbative corrections that depend on the mass scheme, and

the last term is from the boosted hadronization e↵ects.

For the decay factorization theorem in Eq. (3.88) there is still a pT dependence in the

Sudakov logarithms that appear between the jet and collinear-soft scales, but these scales are

numerically closer. In addition the impact of the non-perturbative soft function is modified by

the presence of a m/Q factor appearing in the convolution between the perturbative collinear-

soft function SC

⇥

(` � hkm/Q)Qcut
⇤

and the non-perturbative collinear-soft function FC(k).

This m/Q factor encodes the fact that the decay products approach the jet axis as the jet is

boosted to larger Q values. When considering the impact of hadronization on the jet mass, this

m/Q compensates the Q/m boost factor in JB, leading for example to a stable peak position

as pT is varied,
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Test Theory Predictions with Simulations



Predict: 
independent of 

Jet Radius 
�

Without 
Soft Drop

(huge):

R

Figure 19. pvetoT dependence for soft drop (left) and no soft drop (right)

Figure 20. Dependence of the MJ spectrum on the jet radius R with soft drop (left) and without soft
drop (right)

indistinguishable from having no-veto by the time we get to pvetoT = 100. This implies that for

experimental analysis one may work with no veto, and hence not restrict the number of events

by this cut. In our analyses we use the value of pvetoT = 200 by default, simply as a reminder

that our later theoretical calculation of the normalization factors N do technically implement

a loose jet-veto, though again we emphasize that this is a negligible e↵ect at the desired level

of precision.

For jets without soft drop it turns out that there is also insensitivity to the jet veto. As

explained in Ref. [42], for jets produced by the hard scattering of massless quarks or gluons,

this is predicted by the non-soft drop factorization theorem, because at NLL the dependence on

the jet-veto factorizes from the MJ dependence, and hence mostly drops out of the normalized

spectra. Furthermore it was found in [42] that the impact of the fixed order NLO corrections

that might modify this picture, and which are included first at NNLL order, are very small.

In Fig. 19 (right panel) we show that this is also the case for pp ! tt̄ events simulated with

Pythia8, validating the picture that even without the protection from soft drop that the jet

veto dependence of the normalized MJ spectrum is small.

4.4 Jet radius dependence

After carrying out soft-drop the jet is groomed of soft radiation at larger angles, which reduces

the radius from R down to the groomed radius Rg < R. The same Rg is obtained independent
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Figure 20. Dependence of the MJ spectrum on the jet radius R with soft drop (left) and without soft
drop (right)
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this is predicted by the non-soft drop factorization theorem, because at NLL the dependence on

the jet-veto factorizes from the MJ dependence, and hence mostly drops out of the normalized

spectra. Furthermore it was found in [42] that the impact of the fixed order NLO corrections

that might modify this picture, and which are included first at NNLL order, are very small.

In Fig. 19 (right panel) we show that this is also the case for pp ! tt̄ events simulated with

Pythia8, validating the picture that even without the protection from soft drop that the jet

veto dependence of the normalized MJ spectrum is small.
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zcut dependence (simulation)
Predict transition for “light Soft Drop” � most contamination

is removed

Figure 15. z
cut

dependence of the normalized MJ spectrum from Pythia8, showing a transition at
the predicted light soft drop values.

Figure 16. � dependence of the normalized MJ spectrum from Pythia8. We fix z
cut

= 0.01 so that
there is still a fairly light soft drop being applied as we vary �.

spectrum makes a rapid evolution, exhibiting a narrower width and peaking significantly closer

to the input top-mass. Once the light soft drop is active the peak is at a value that is only

' 1GeV higher than the input Monte Carlo top-mass.

As we increase zcut further, to values > 0.01, the peak location in Fig. 15 remains stable.

This demonstrates that stronger grooming is not actually removing additional soft particles

that still contaminate the top resonance region. This occurs because the top-decay products

are energetic and always pass the soft-drop condition even for this stronger grooming. The

decay products set a minimum value for Rg determined by the angle ✓d discussed in Sec. 3.1.2,
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Fit Factorization to Simulations
(Calibration)



43Figure 34. Comparison of Pythia8 without and with MPI to the “decay” and “high-pT ” factorization
theorems at NLL. The mt parameter is in the MSR mass scheme for the factorization theorems here.
The top-mass parameter in Pythia8 is referred to as mMC

t .

Ref. [31] carried out a more sophisticated analysis of theoretical uncertainties, and correlations

between uncertainties than we will carry out here. (In the future our exploratory analysis

should be extended to this level of analysis, in particular once full NNLL results for the soft

drop top cross section are available.) In particular we do not intend to quote here the final

uncertainties for the fit parameters, but will try to give some indication for what one may

roughly anticipate the size of these uncertainties to be.

6.1 Soft Drop Pythia and Factorization Comparison

In Fig. 34 we show a comparison of Pythia8 results with the “decay” and “high-pT ” fac-

torization formulae. As fit parameters in the factorization results we take the MSR mass

mMSR
t ⌘ mMSR

t (R = 1GeV), and the two non-perturbative parameters ⌦(�)
1 and x(�)2 . We do a

simultaneous fit of these parameters to results for the pT � 750GeV and pT � 1000GeV bins.

For the fit range we take MJ 2 [173, 180]GeV, over which the curves are also normalized. To

maximize the use of shape information we compare cross sections for 10 bins in this range,

using a �2 function that provides more weight to the peak of the distribution to simulate the

fact that experimental uncertainties are expected to be smaller there. To obtain the best fit

values we do a scan over values of the parameters with step size of 0.1GeV for mt and ⌦(�)
1 ,

and of step size of 0.1 for x(�)2 (also including the value x(�)2 = 0.05).

In the upper two plots of Fig. 34 we include only hadronization in Pythia8, whereas the

lower two plots also include MPI. The orange band shows the perturbative NLL uncertainty

on the “decay” result, from varying scales in the factorization theorem through our profile
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Figure 34. Comparison of Pythia8 without and with MPI to the “decay” and “high-pT ” factorization
theorems at NLL. The mt parameter is in the MSR mass scheme for the factorization theorems here.
The top-mass parameter in Pythia8 is referred to as mMC

t .

Ref. [30] carried out a more sophisticated analysis of theoretical uncertainties, and correlations

between uncertainties than we will carry out here. (In the future our exploratory analysis

should be extended to this level of analysis, in particular once full NNLL results for the soft

drop top cross section are available.) In particular we do not intend to quote here the final

uncertainties for the fit parameters, but will try to give some indication for what one may

roughly anticipate the size of these uncertainties to be.

6.1 Soft Drop Pythia and Factorization Comparison

In Fig. 34 we show a comparison of Pythia8 results with the “decay” and “high-pT ” fac-

torization formulae. As fit parameters in the factorization results we take the MSR mass

mMSR
t ⌘ mMSR

t (R = 1GeV), and the two non-perturbative parameters ⌦(�)
1 and x(�)2 . We do a

simultaneous fit of these parameters to results for the pT � 750GeV and pT � 1000GeV bins.

For the fit range we take MJ 2 [173, 180]GeV, over which the curves are also normalized. To

maximize the use of shape information we compare cross sections for 10 bins in this range,

using a �2 function that provides more weight to the peak of the distribution to simulate the

fact that experimental uncertainties are expected to be smaller there. To obtain the best fit

values we do a scan over values of the parameters with step size of 0.1GeV for mt and ⌦(�)
1 ,

and of step size of 0.1 for x(�)2 (also including the value x(�)2 = 0.05).

In the upper two plots of Fig. 34 we include only hadronization in Pythia8, whereas the

lower two plots also include MPI. The orange band shows the perturbative NLL uncertainty

on the “decay” result, from varying scales in the factorization theorem through our profile
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Contamination: mMC

t = 173.1 GeV
unchanged!

dominant change is as expected:
Figure 34. Comparison of Pythia8 without and with MPI to the “decay” and “high-pT ” factorization
theorems at NLL. The mt parameter is in the MSR mass scheme for the factorization theorems here.
The top-mass parameter in Pythia8 is referred to as mMC

t .

Ref. [30] carried out a more sophisticated analysis of theoretical uncertainties, and correlations

between uncertainties than we will carry out here. (In the future our exploratory analysis

should be extended to this level of analysis, in particular once full NNLL results for the soft

drop top cross section are available.) In particular we do not intend to quote here the final

uncertainties for the fit parameters, but will try to give some indication for what one may

roughly anticipate the size of these uncertainties to be.

6.1 Soft Drop Pythia and Factorization Comparison

In Fig. 34 we show a comparison of Pythia8 results with the “decay” and “high-pT ” fac-

torization formulae. As fit parameters in the factorization results we take the MSR mass

mMSR
t ⌘ mMSR

t (R = 1GeV), and the two non-perturbative parameters ⌦(�)
1 and x(�)2 . We do a

simultaneous fit of these parameters to results for the pT � 750GeV and pT � 1000GeV bins.

For the fit range we take MJ 2 [173, 180]GeV, over which the curves are also normalized. To

maximize the use of shape information we compare cross sections for 10 bins in this range,

using a �2 function that provides more weight to the peak of the distribution to simulate the

fact that experimental uncertainties are expected to be smaller there. To obtain the best fit

values we do a scan over values of the parameters with step size of 0.1GeV for mt and ⌦(�)
1 ,

and of step size of 0.1 for x(�)2 (also including the value x(�)2 = 0.05).

In the upper two plots of Fig. 34 we include only hadronization in Pythia8, whereas the

lower two plots also include MPI. The orange band shows the perturbative NLL uncertainty

on the “decay” result, from varying scales in the factorization theorem through our profile
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MSR Mass versus Pole Mass

Figure 35. Comparison of Pythia8 without and with MPI to the “decay” and “high-pT ” factorization
theorems at NLL. The mt parameter is in the pole-mass scheme for the factorization theorems here.
The top-mass parameter in Pythia8 is referred to as mMC

t .

functions. The values of pT being considered are close to the upper limit of Eq. (3.29) (both

above and below it), and our fits show that both factorization theorems actually reproduce the

Pythia8 results quite accurately in the fit range.

The mMSR
t fit values obtained from the fits in Fig. 34 are within 0.3GeV of the input

mMC
t . The variation between the five best fit values from the scan is �mMSR

t = ±0.3GeV for

both the Had and Had+MPI fits, so we conclude that these values agree within the anticipated

uncertainties. This is compatible with theoretical expectations for this mass parameter [14, 16],

as well as results from the e+e� calibration analysis in [31]. We also observe that the fit values

of mMSR
t are compatible between the “decay” and “high-pT ” results (within 0.2GeV), and

between results with and without MPI e↵ects (within 0.3GeV). As anticipated, the dominant

e↵ect of adding MPI is to significantly increase the scale of the hadronization parameter, for

example going from ⌦(1)
1 = 2GeV to ⌦(1)MPI

1 = 3.4GeV. Interestingly the fit values for ⌦(2)
1 and

⌦(2)MPI
1 for the high-pT factorization theorem give values that are half as large, in agreement

with the rough comparisons of the theory results in Sec. 5.2. Adding MPI also modifies

the fit results for x(�)2 . The fact that mMSR
t unchanged and only the hadronic parameters are

modified is crucial, and validates that our approach to modeling the UE/MPI e↵ects is working

as anticipated. This fact is what enables a precision mt to be obtained from this method.

In Fig. 34 and other fits given below there is a noticeable di↵erence between the factoriza-

tion theorem results and Pythia8 for the tail on the left of the peak. For this reason we have

purposely started the fit region at 173GeV so that it includes less of the region on the left of

the peak. We discuss this left of the peak region further in Sec. 6.5 below.
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should be extended to this level of analysis, in particular once full NNLL results for the soft

drop top cross section are available.) In particular we do not intend to quote here the final

uncertainties for the fit parameters, but will try to give some indication for what one may

roughly anticipate the size of these uncertainties to be.
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torization formulae. As fit parameters in the factorization results we take the MSR mass

mMSR
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t (R = 1GeV), and the two non-perturbative parameters ⌦(�)
1 and x(�)2 . We do a

simultaneous fit of these parameters to results for the pT � 750GeV and pT � 1000GeV bins.

For the fit range we take MJ 2 [173, 180]GeV, over which the curves are also normalized. To

maximize the use of shape information we compare cross sections for 10 bins in this range,

using a �2 function that provides more weight to the peak of the distribution to simulate the

fact that experimental uncertainties are expected to be smaller there. To obtain the best fit

values we do a scan over values of the parameters with step size of 0.1GeV for mt and ⌦(�)
1 ,

and of step size of 0.1 for x(�)2 (also including the value x(�)2 = 0.05).

In the upper two plots of Fig. 34 we include only hadronization in Pythia8, whereas the

lower two plots also include MPI. The orange band shows the perturbative NLL uncertainty

on the “decay” result, from varying scales in the factorization theorem through our profile

– 71 –

equally good fit (an order dependent shift)

pole mass comes out smaller, just like

MSR pole

e+e�



47

Retain agreement when we vary other knobs:

Figure 36. Predictions from the decay factorization theorem for values of the soft drop parameters
other than the z

cut

= 0.01 and � = 2 used for the fit. Results are compared to Pythia8 where the (left
panel) varies to z

cut

= 0.02 and the (right panel) varies to � = 1. These two variations are observed to
yield very similar cross sections.

6.2 Predictions for higher zcut and lower �

Having determined the parameters of the soft drop factorization theorems we can now make

predictions for other amounts of soft drop grooming. Here we consider predictions coming

from the decay factorization theorem where both the zcut and � dependence are calculable.

In the left panels of Fig. 36 we show the factorization predictions (red curves) obtained when

we double zcut to zcut = 0.02. The upper panel shows the parameters fixed from the Had fit,

while the bottom panel shows those obtained from the Had+MPI fit. Also shown in the left

panels of Fig. 36 are results from Pythia8 for this value of zcut (dashed blue curves), which

agree well with the factorization results over a wide range of MJ values (an exception again

being the region to the left of the peak). These results seem promising, showing that the fit

results are pertinent, and can make meaningful predictions. Since the zcut dependence of the

high-pT factorization theorem is stronger than that of decay, it fits the Pythia8 results from

this variation less well. (This implies that Pythia8 agrees better with the decay factorization

theorem, but does not necessarily answer the question as to which data prefers.)

Also shown in Fig. 36, in the two right panels, are predictions from varying � to � = 1 in

the decay factorization theorem (red lines). These again agree well with the Pythia8 results

(blue dashed curves). In fact we observe that the zcut = 0.01 ! 0.02 variation and � = 2 ! 1

variation are close to having degenerate e↵ects on the cross section. The dependence on zcut
and � does not immediately provide a simple explanation for this degeneracy.
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Retain agreement when we vary other knobs:

Figure 36. Predictions from the decay factorization theorem for values of the soft drop parameters
other than the z

cut

= 0.01 and � = 2 used for the fit. Results are compared to Pythia8 where the (left
panel) varies to z

cut

= 0.02 and the (right panel) varies to � = 1. These two variations are observed to
yield very similar cross sections.

6.2 Predictions for higher zcut and lower �

Having determined the parameters of the soft drop factorization theorems we can now make

predictions for other amounts of soft drop grooming. Here we consider predictions coming

from the decay factorization theorem where both the zcut and � dependence are calculable.

In the left panels of Fig. 36 we show the factorization predictions (red curves) obtained when

we double zcut to zcut = 0.02. The upper panel shows the parameters fixed from the Had fit,

while the bottom panel shows those obtained from the Had+MPI fit. Also shown in the left

panels of Fig. 36 are results from Pythia8 for this value of zcut (dashed blue curves), which

agree well with the factorization results over a wide range of MJ values (an exception again

being the region to the left of the peak). These results seem promising, showing that the fit

results are pertinent, and can make meaningful predictions. Since the zcut dependence of the

high-pT factorization theorem is stronger than that of decay, it fits the Pythia8 results from

this variation less well. (This implies that Pythia8 agrees better with the decay factorization

theorem, but does not necessarily answer the question as to which data prefers.)

Also shown in Fig. 36, in the two right panels, are predictions from varying � to � = 1 in

the decay factorization theorem (red lines). These again agree well with the Pythia8 results

(blue dashed curves). In fact we observe that the zcut = 0.01 ! 0.02 variation and � = 2 ! 1

variation are close to having degenerate e↵ects on the cross section. The dependence on zcut
and � does not immediately provide a simple explanation for this degeneracy.
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But smaller pT fails for Soft Drop:

Figure 37. Comparison for a smaller pT bin of Pythia8 without and with MPI to the “decay” and
“high-pT ” factorization theorems at NLL. The factorization results use the values obtained from the
fit to the higher pT bins. Here mt is in the MSR mass scheme, and the pole scheme results look very
similar.

6.3 Soft Drop Results for Smaller pT

Another possible variation that can be considered are di↵erent bins in pT . While we leave a

more detailed exploration of these variations to the future, a relevant question is whether the

soft drop factorization theorem can be applied to smaller pT values than those included in our

fit, and where precisely do the predictions break down. This is particularly interesting since

in the short term data from CMS and ATLAS will still be most statistically significant for

smaller pT .

In Fig. 37 we make predictions from both the decay and high-pT factorization theorems for

a bin with smaller pT in the range [550, 750]GeV. The left panel shows the results compared

to Pythia8 with only hadronization, and still exhibit nice agreement within the theoretical

uncertainty band, and in particular for the peak location. On the other hand in the right

panel of Fig. 37 we show the prediction when MPI is included, and here theory and Pythia8

are no longer in agreement. In particular the peak positions now di↵er by 0.8GeV and the

shapes are quite di↵erent. We attribute this to the fact that pT 2 [550, 750]GeV is becoming

close to the boundary allowed by the expansions in our soft drop factorization theorem, and

that the soft drop is no longer as e↵ective for grooming the extra soft particles present with

MPI turned on, and hence that higher order terms in the soft drop factorization expansions

are becoming important. This initial exploration therefore appears to indicate that we should

consider pT & 700GeV to ensure the validity of the soft drop factorization theorems. It should

be noted that adding this lower pT bin in the soft drop based fit of Sec. 6 does not change this

conclusion, since the results from this type of fit clearly exhibit tensions between the higher

and lower pT bins.

6.4 Comparison of Pythia and Factorization without grooming

In this section we repeat the comparison between factorization and Pythia8 but using the

cross sections without jet grooming. While there are clear advantages to using grooming,

the extra theoretical expansions involved in deriving the soft drop factorization theorem also

require jets with larger pT than the ungroomed case. Indeed we have seen in Sec. 6.3 that the

soft drop factorization predictions appear to be breaking down in the presence of MPI when

considering a bin with pT 2 [550, 750]GeV. It is therefore interesting to consider whether we
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not unexpected since in pinch of validity region 
Figure 8. Comparing all the constraints as a function of MJ .

Figure 9. Constraints on z
cut

as function of pT and MJ for various �.
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Figure 38. Comparison of Pythia8 and the fit with the factorization theorem at NLL for the case
without grooming. The fit regions are shown by the vertical dashed lines. In the factorization theorem
we take the mt parameter in the MSR scheme.

could make predictions for smaller pT if we considered the ungroomed cross section and use

Eq. (2.33). This also will provide a test of whether we are able to handle the much larger

amount of soft radiation from UE/MPI with the approach we have adopted that is based on

using a modified parameters in the non-perturbative function F .

Much like our soft drop analysis, we carry out the fit using two bins in pT , this time

taking pT 2 [550, 750]GeV and pT � 750GeV so as to focus on smaller pT . Because of the

larger peak shifts from both hadronization and MPI, we also adjust our fit windows, taking

MJ 2 [173, 184] for the hadronization case and MJ 2 [173, 190] for the case including MPI.

Other than these changes, the analysis stradegy is the same as for the fits done in Sec. 6, in

particular the parameters are still mMSR
t , plus ⌦1, and x2, which are now determining the

function F .

The results of the fit are shown in Fig. 38 with solid magenta curves for the ungroomed

factorization theorem, and dashed blue curves for the input Pythia8 results. We see that

the factorization theorem results accurately reproduce Pythia8 both inside and above the fit

window, even though we have included a lower pT bin than was done for the soft drop fit.

Examining the values of the parameters obtained from the fit, we see that mMSR
t is within

0.1GeV of the input mMC
t mass, is only modified by 0.3GeV by the introduction of MPI.

Comparing the best five fits we find variations of �mMC
t = ±0.2GeV, and again we conclude

that these results for the masses are compatible within uncertainties. The dominant e↵ect of

adding MPI is to significantly modify the parameter ⌦1 which here goes from ⌦1 = 1.6GeV

to the much larger value of ⌦MPI
1 = 5.6GeV. The larger value obtained for ⌦MPI

1 is fully
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Promising new techniques to answer “what mass is it?”



Summary

•
Answers from connecting theory (QFT) to Monte Carlo or Data•
A dominant uncertainty in the top mass is “what mass is it?”

Discussed a promising new method for Top Jet Mass predictions
in pp with/without a light Soft Drop 

•

Can Calibrate MC to determine relation:   • mMC
t = mt + . . .

Figure 34. Comparison of Pythia8 without and with MPI to the “decay” and “high-pT ” factorization
theorems at NLL. The mt parameter is in the MSR mass scheme for the factorization theorems here.
The top-mass parameter in Pythia8 is referred to as mMC

t .

Ref. [30] carried out a more sophisticated analysis of theoretical uncertainties, and correlations

between uncertainties than we will carry out here. (In the future our exploratory analysis

should be extended to this level of analysis, in particular once full NNLL results for the soft

drop top cross section are available.) In particular we do not intend to quote here the final

uncertainties for the fit parameters, but will try to give some indication for what one may

roughly anticipate the size of these uncertainties to be.

6.1 Soft Drop Pythia and Factorization Comparison

In Fig. 34 we show a comparison of Pythia8 results with the “decay” and “high-pT ” fac-

torization formulae. As fit parameters in the factorization results we take the MSR mass

mMSR
t ⌘ mMSR

t (R = 1GeV), and the two non-perturbative parameters ⌦(�)
1 and x(�)2 . We do a

simultaneous fit of these parameters to results for the pT � 750GeV and pT � 1000GeV bins.

For the fit range we take MJ 2 [173, 180]GeV, over which the curves are also normalized. To

maximize the use of shape information we compare cross sections for 10 bins in this range,

using a �2 function that provides more weight to the peak of the distribution to simulate the

fact that experimental uncertainties are expected to be smaller there. To obtain the best fit

values we do a scan over values of the parameters with step size of 0.1GeV for mt and ⌦(�)
1 ,

and of step size of 0.1 for x(�)2 (also including the value x(�)2 = 0.05).

In the upper two plots of Fig. 34 we include only hadronization in Pythia8, whereas the

lower two plots also include MPI. The orange band shows the perturbative NLL uncertainty

on the “decay” result, from varying scales in the factorization theorem through our profile
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Figure 38. Comparison of Pythia8 and the fit with the factorization theorem at NLL for the case
without grooming. The fit regions are shown by the vertical dashed lines. In the factorization theorem
we take the mt parameter in the MSR scheme.

could make predictions for smaller pT if we considered the ungroomed cross section and use

Eq. (2.33). This also will provide a test of whether we are able to handle the much larger

amount of soft radiation from UE/MPI with the approach we have adopted that is based on

using a modified parameters in the non-perturbative function F .

Much like our soft drop analysis, we carry out the fit using two bins in pT , this time

taking pT 2 [550, 750]GeV and pT � 750GeV so as to focus on smaller pT . Because of the

larger peak shifts from both hadronization and MPI, we also adjust our fit windows, taking

MJ 2 [173, 184] for the hadronization case and MJ 2 [173, 190] for the case including MPI.

Other than these changes, the analysis stradegy is the same as for the fits done in Sec. 6, in

particular the parameters are still mMSR
t , plus ⌦1, and x2, which are now determining the

function F .

The results of the fit are shown in Fig. 38 with solid magenta curves for the ungroomed

factorization theorem, and dashed blue curves for the input Pythia8 results. We see that

the factorization theorem results accurately reproduce Pythia8 both inside and above the fit

window, even though we have included a lower pT bin than was done for the soft drop fit.

Examining the values of the parameters obtained from the fit, we see that mMSR
t is within

0.1GeV of the input mMC
t mass, is only modified by 0.3GeV by the introduction of MPI.

Comparing the best five fits we find variations of �mMC
t = ±0.2GeV, and again we conclude

that these results for the masses are compatible within uncertainties. The dominant e↵ect of

adding MPI is to significantly modify the parameter ⌦1 which here goes from ⌦1 = 1.6GeV

to the much larger value of ⌦MPI
1 = 5.6GeV. The larger value obtained for ⌦MPI

1 is fully
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The End
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