Jet Mass Spectrum for Groomed and Ungroomed Top Jets

Iain Stewart MIT

based on: Hoang, Mantry, Pathak, IS (1708.02586 + ongoing work)

Sante Fe Jets and Heavy Flavor Workshop January 2018

Outline

• Motivation for Studying Top Jets: Top Mass from Jet Mass measurement Quantify Soft Effects $M^2 = \Big(\sum_{i \in J} p_i^\mu\Big)^2$

Factorization Theorems: Ungroomed and Groomed

Calibration of Monte Carlo and Comparisons

Conclusion

The Top Quark is Special

Largest Mass $m_t = 173 \, \mathrm{GeV}$ Largest Higgs Coupling

Dominates Higgs Production

The only quark that decays before it binds into a hadron

$$\Gamma_t = 1.4 \, \mathrm{GeV}$$

Top width
$$\Gamma_t = 1.4\,\mathrm{GeV}$$
 > $\Lambda_\mathrm{QCD} \simeq 0.3\,\mathrm{GeV}$

The Top Quark is Special

Largest Mass $m_t = 173 \, \mathrm{GeV}$ Largest Higgs Coupling

Dominates Higgs Production

The only quark that decays before it binds into a hadron

Top width

$$\Gamma_t = 1.4 \, \mathrm{GeV}$$

$$\Gamma_t = 1.4 \, \mathrm{GeV} > \Lambda_{\mathrm{QCD}} \simeq 0.3 \, \mathrm{GeV}$$

 $t \to bW$

confinement scale m_t 0.30 **Breit** 0.25 Wigner 0.20 0.15 0.10 0.05 172 173 174

$$\frac{1}{\left(\frac{q^2 - m_t^2}{m_t}\right)^2 + \Gamma_t^2}$$

Why should I care about a precision m_t ?

Stability of the Standard Model vacuum!

uncertainty dominated by m_t

Butazzo, Degrassi, Giardino, Giudice, Sala

Precision Electro-weak Measurements

Direct Measurements

Heaviest known elementary particle. As heavy as 180 protons!

Tevatron
$$m_t^{\text{MC}} = 174.34 \pm 0.64 \;\; \text{GeV}$$

CMS
$$m_t^{\text{MC}} = 172.44 \pm 0.49 \text{ GeV}$$

ATLAS
$$m_t^{\text{MC}} = 172.84 \pm 0.70 \text{ GeV}$$

measured from jets with help of Monte Carlo simulations

Direct Reconstruction Methods (Tevatron & LHC)

 \mathcal{L} :

$$m_t^{\text{pole}}, \overline{m}_t, m_t^{\text{MSR}}, \dots$$

Theory (QFT)

Experiment

 $m_t^{
m MC}$

Definition?

$$m_t = m_t^{\mathrm{MC}} + ?$$

an additional uncertainty $\sim 1\,\mathrm{GeV}$

Mass Definitions:

Pole Mass

Mass that naturally appears in Breit Wigner.

Has a (renormalon) ambiguity $\Delta m_t^{
m pole} \sim \Lambda_{
m QCD}$

 $\overline{
m MS}$ Mass m_t

No Ambiguity. ✓ Not compatible with Breit Wigner. X

$$m_t^{\text{pole}} = \overline{m}_t + 0.4 \,\alpha_s \overline{m}_t + \dots$$

$$7 \,\text{GeV} \gg \Gamma_t = 1.4 \,\text{GeV}$$

• MSR Mass $m^{\mathrm{MSR}}(R)$ (Hoang, Jain, Scimemi, IS, 2008)

a mass which nicely interpolates

take
$$R = 1 \,\text{GeV}$$

No Ambiguity $R > \Lambda_{\rm QCD}$ \checkmark

Breit Wigner $R \sim \Gamma_t$

Soft Effects can be significant. eg. Jet Mass in Pythia

Theory Issues for $pp \rightarrow t\bar{t}X$

- jet observable
- suitable top mass scheme for jets
- initial state radiation
- final state radiation
- underlying event/MPI
- color reconnection
- parton distributions
- sum large logs $Q \gg m_t \gg \Gamma_t$
- hadronization

Production Energy

 $\Gamma_t \simeq 1.4 \, \mathrm{GeV}$

First simplification:

boosted top quarks, $Q=2p_T\gg m_t$ enables us to be inclusive over decay products

Use EFT tools:

Soft-Collinear EFT (SCET)

Heavy Quark EFT (HQET)

factorization, logs, non-perturbative effects

$$\longrightarrow$$
 $Q = 2p_T \sim 1 \,\mathrm{TeV}$
 \longrightarrow $m_t = 173 \,\mathrm{GeV}$
 \longrightarrow $\Gamma_t \simeq 1.4 \,\mathrm{GeV}$

CMS Experiment at LHC, CERN

Data recorded: Sun Jul 12 07:25:11 2015 CEST

Run/Event: 251562 / 111132974

Lumi section: 122

Orbit/Crossing: 31722792 / 2253

Jets with Substructure

$$t \to Wb \to (u \bar{d})(b) = 3 \text{ prong jet}$$

Theory Issues for $pp \rightarrow t\bar{t}X$

- jet observable *
- suitable top mass for jets
- initial state radiation
- final state radiation *
- underlying event/MPI
- color reconnection *
- parton distributions
- sum large logs $Q\gg m_t\gg \Gamma_t$
- hadronization *

First

$$e^+e^- \to t\bar{t}X$$

and the issues \star

Factorization for double jet-mass:

Fleming, Hoang, Mantry, IS (2007)

$$\times J_B\left(\hat{s}_t - \frac{Q\ell}{m}, \Gamma, \delta m, \mu\right) J_B\left(\hat{s}_{\bar{t}} - \frac{Q\ell'}{m}, \Gamma, \delta m, \mu\right) S_{\text{hemi}}(\ell - k, \ell' - k', \mu) F(k, k')$$

SCET

(boosted HQET) Jet Functions

Evolution and decay of top quark close to mass shell

$$\hat{s}_t \equiv \frac{M_t^2 - m^2}{m} \sim \Gamma \ll m$$

Perturbative Cross talk

dominant

Answer

effect is from

Hadronization

first moment

$$\Omega_1 = \int dk' dk \, k \, F(k, k')$$

Factorization for double jet-mass:

Fleming, Hoang, Mantry, IS (2007)

$$\begin{pmatrix} \frac{d^2\sigma}{dM_t^2\,dM_t^2} \end{pmatrix}_{\text{hemi}} = \sigma_0 H_Q(Q,\mu_m) H_m \Big(m, \frac{Q}{m}, \mu_m, \mu \Big)$$

$$\times J_B \Big(\hat{s}_t - \frac{Q\ell}{m}, \Gamma, \delta m, \mu \Big) J_B \Big(\hat{s}_{\bar{t}} - \frac{Q\ell'}{m}, \Gamma, \delta m, \mu \Big) S_{\text{hemi}} (\ell - k, \ell' - k', \mu) F(k, k')$$

$$M^{\text{peak}} \simeq m_t + \Gamma_t (\alpha_s + \alpha_s^2 + \ldots) + \frac{Q\Omega_1}{m_t}$$

$$\text{measure extract this this} \frac{d\sigma}{dM} \Big|_{0.008}^{0.012} \Big|_{0.008}$$

$$M^{\text{peak}} \simeq m_t + \Gamma_t (\alpha_s + \alpha_s^2 + \ldots) + \frac{M^{\text{peak}}}{m_t} \Big|_{0.008}$$

One application: Top Mass Calibration

$$m_t = m_t^{\text{MC}} + \dots$$

Butenschoen, Dehnadi, Hoang, Mateu, Preisser, IS PRL 2016

determined by fit to common observable

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau_2} = f(m_t^{\mathrm{MSR}}, \alpha_s(m_Z), \Omega_1, \Omega_2, \dots, \mu_H, \mu_J, \mu_S, \mu_M, R, \Gamma_t)$$

 $\tau_2 \sim M_t^2 + M_{\bar{t}}^2$

any scheme

non-perturbative

renorm. scales

finite lifetime

$$m_t^{\text{pole}}, \overline{m}_t, m_t^{\text{MSR}}, \dots$$

Theory (QFT)

 $e^+e^- \rightarrow t\bar{t}$ calibration

Simulation (Monte Carlo)

$$e^+e^- \Longrightarrow pp$$

Experiment

 $m_t^{
m MC}$

Example from Fit to Pythia8 Simulation:

Results:

- Depend on which QFT based theory mass is used for fit.
- Provides uncertainties:

input:
$$m_t^{\text{MC}} = 173 \,\text{GeV}$$

 $m_t^{\text{pole}} = 172.43 \pm 0.28 \,\text{GeV}$
 $m_t^{\text{MSR}} = 172.82 \pm 0.22 \,\text{GeV}$

boosted top:

Theory Issues for $pp \rightarrow t\bar{t}X$

- jet observable
 Jet Mass in Jet of radius R
- suitable top mass for jets *
- initial state radiation \star Jet veto

★ can handle with SCET/HQET

- final state radiation \star
- underlying event/MPI "contamination"
- color reconnection *

- sum large logs $Q \gg m_t \gg \Gamma_t$ *
- hadronization *

N-jettiness event shapes for hadron colliders

$$\mathcal{T}_{2} = \min_{n_{t}, n_{\bar{t}}} \sum_{i} \min\{\rho_{\text{jet}}(p_{i}, n_{t}), \rho_{\text{jet}}(p_{i}, n_{\bar{t}}), \rho_{\text{beam}}(p_{i})\}$$
$$= \mathcal{T}_{2}^{t} + \mathcal{T}_{2}^{\bar{t}} + \mathcal{T}_{2}^{\text{beam}}$$

$$\mathcal{T}_2^t = \frac{M_{J1}^2}{Q_t}$$
 gives jet-mass

 $\mathcal{T}_2^{\mathrm{beam}}$ gives jet-veto

IS, Tackmann, Waalewijn (2010)

Ungroomed Factorization Formula: Hoang, Mantry, Pathak, IS (to appear soon)

$$\frac{d^2\sigma}{dM_{J1}^2dM_{J2}^2dT_2^{\rm beam}} = {\rm tr}\big[\hat{\boldsymbol{H}}_{Qm}\hat{\boldsymbol{S}}(T_2^{\rm beam},R,\ldots)\otimes\boldsymbol{F}\big]\otimes\boldsymbol{J}_{B}\otimes\boldsymbol{J}_{B}\otimes\boldsymbol{J}_{B}\otimes\boldsymbol{I}\boldsymbol{I}\otimes\boldsymbol{f}\boldsymbol{f}$$
 hard pert. soft hadronization initial state radiation generalizes ee result to LHC same Jet functions!

Hadronization effects

24

first moment Ω_1 dominates

$$x_2 = \frac{\Omega_2 - \Omega_1^2}{\Omega_1^2}$$

higher moments Ω_2 , ...

give smaller effects

MPI / UE effects: $\Omega_1^{ ext{MPI}}$

jet mass from massless quarks & gluons, known that using a larger $\Omega_1^{\rm MPI}>\Omega_1$ accurately captures MPI effects

(IS, Tackmann, Waalewijn 2015)

Issue is that MPI contamination is significant (Pythia), so uncertainty from this modeling may be too large for a precision measurement.

Soft Drop

Grooms soft radiation from the jet

$$\frac{\min(p_{Ti}, p_{Tj})}{p_{Ti} + p_{Tj}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R_0}\right)^{\beta}$$

ie.

$$z>z_{\mathrm{cut}}\, heta^{eta}$$

two grooming parameters

Groomed Jet

Groomed Clustering Tree

Can still carry out calculations:

Larkoski, Marzani, Soyez, Thaler 2014

Fri, Larkoski, Schwartz, Yan 2016

Light Soft Drop for tops

$$z_{\rm cut} \sim 0.01$$

$$Q = 2 p_T \cosh(\eta_J)$$

To derive fact. theorem:
$$\frac{\Gamma_t}{4m_t} \Big(\frac{Q}{4m_t}\Big)^{\beta} \gtrsim z_{\rm cut}$$

Remove soft contamination.

$$z_{\text{cut}}^{\frac{1}{2+\beta}} \gg \frac{1}{2} \left(\frac{\Gamma_t}{m_t} \frac{4m_t^2}{Q^2} \right)^{\frac{1}{2+\beta}}$$
 10⁻³

Zcut

Decouples top-jet from rest of the event!

 p_T [GeV]

light groomed factorization invalid

soft radiation groomed

top decay products & radiation

leftover "collinear-soft" radiation

Light Soft Drop for tops

$$z_{\mathrm{cut}} \sim 0.01$$

$$Q = 2 p_T \cosh(\eta_J)$$

Modes:

To derive fact. theorem:
$$\frac{\Gamma_t}{4m_t} \Big(\frac{Q}{4m_t}\Big)^{\beta} \gtrsim z_{\rm cut}$$
 $\ln(z^{-1})$

Remove soft contamination.
$$z_{\mathrm{cut}}^{\frac{1}{2+\beta}}\gg \frac{1}{2}\Big(\frac{\Gamma_t}{m_t}\frac{4m_t^2}{Q^2}\Big)^{\frac{1}{2+\beta}}$$

Decouples top-jet from rest of the event!

soft radiation groomed

top decay products & radiation

leftover "collinear-soft" radiation

MPI contamination reduced by factor of 5 with Light Soft Drop (eg. 4.5 GeV to 0.9 GeV):

Hoang, Mantry, Pathak, IS (2017)

Factorization with Soft Drop on one jet:

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' d\Phi_d D_t(\hat{s}', \Phi_d, m/Q) \int d\ell J_B\left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\right)
\times \int dk S_C\left[\left(\ell - \frac{mk}{Q}h(\Phi_d, \frac{m}{Q})\right)(2^{\beta}Qz_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, 1)$$

Hoang, Mantry, Pathak, IS (2017)

Factorization with Soft Drop on one jet:

left over perturbative collinear-soft radiation

non-perturbative soft radiation

$$\Omega_1, x_2$$

Hoang, Mantry, Pathak, IS (2017)

Factorization with Soft Drop on one jet:

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' d\Phi_d D_t(\hat{s}', \Phi_d, m/Q) \int d\ell J_B\left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\right)
\times \int dk S_C \left[\left(\ell - \frac{mk}{Q}h(\Phi_d, \frac{m}{Q})\right)(2^{\beta}Qz_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, 1)$$

"decay" fact. thm.

$$Q \lesssim 4m_t \left(2m_t z_{\rm cut}/\Lambda_{\rm QCD}\right)^{1/\beta}$$

Soft drop stops when comparing energetic top decay products

$$D_t(\hat{s}', \Phi_d, m/Q) = \frac{\Gamma_t}{\pi(\hat{s}'^2 + \Gamma_t^2)} d_t(\Phi_d, m/Q)$$

$$\underbrace{t \qquad t \qquad t \qquad d}_{q'} \underbrace{t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t \qquad t \qquad t}_{q'} \cdots \underbrace{t \qquad t \qquad t$$

 $\Phi_d = 5$ phase space variables for decay

Factorization with Soft Drop on one jet:

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\hat{s}' d\Phi_d D_t(\hat{s}', \Phi_d, m/Q) \int d\ell J_B\left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t} - \hat{s}', \delta m, \mu\right)
\times \int dk S_C \left[\left(\ell - \frac{mk}{Q}h(\Phi_d, \frac{m}{Q})\right)(2^{\beta}Qz_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, 1)$$

"decay" fact. thm.

$$Q \lesssim 4m_t \left(2m_t z_{\rm cut}/\Lambda_{\rm QCD}\right)^{1/\beta}$$

Soft drop stops when comparing energetic top decay products

 $\ln(z^{-1})$ Softer $p_T = 750 \text{ GeV}$ $p^2 \sim \Lambda_{QCD}^2$ Collinear $M_J^2 - m_t^2 \sim m_t \Gamma_t$ UC $\ln(z_{cut}^{-1})$ $\ln(\theta_d^{-1})$ $\ln(\theta^{-1})$

 $\tan(\theta_d/2) = \frac{m}{O}h(\Phi_d, \frac{m}{O})$

 $heta_d$ is angle to jet-axis of last decay product reclustered by soft-drop

Factorization with Soft Drop on one jet:

"high-pT"
$$Q \gtrsim 4m_t (2m_t z_{\rm cut}/\Lambda_{\rm QCD})^{1/\beta}$$

decay products well inside groomed jet

$$\frac{d\sigma(\Phi_J)}{dM_J} = N(\Phi_J, z_{\text{cut}}, \beta, \mu) \int d\ell J_B \left(\frac{M_J^2 - m_t^2 - Q\ell}{m_t}, \Gamma_t, \delta m, \mu\right)
\times \int dk S_C \left[\left(\ell - k\left(\frac{k}{2^{\beta}Qz_{\text{cut}}}\right)^{\frac{1}{1+\beta}}\right) (2^{\beta}Qz_{\text{cut}})^{\frac{1}{1+\beta}}, \beta, \mu\right] F_C(k, \beta)$$

Groomed Factorization Results (NLL + Hadronization)

Groomed Factorization Results

sensitive to top mass:

Groomed Factorization Results

Hadronization effects (smaller than ungroomed):

 Ω_1 dominates

$$x_2 = \frac{\Omega_2 - \Omega_1^2}{\Omega_1^2}$$
 smaller

Groomed Factorization Results

pT dependence (smaller than ungroomed):

Soft Drop groomed

Ungroomed

Test Theory Predictions with Simulations

Without
Soft Drop
(huge):

z_{cut} dependence (simulation)

Fit Factorization to Simulations (Calibration)

Simultaneous fit to different pTs

Pythia Simulation vs. Factorization (with SoftDrop)

without Contamination:

$$m_t^{\text{MSR}} = 172.8 \,\text{GeV}$$

 $m_t^{\text{MC}} = 173.1 \,\text{GeV}$

Pythia Simulation vs. Factorization (with SoftDrop)

with Contamination:

```
m_t^{
m MSR}=173.1\,{
m GeV} \simeq {
m unchanged!} \ m_t^{
m MC}=173.1\,{
m GeV}
```


dominant change is as expected: Ω_1

MSR Mass versus Pole Mass

equally good fit (an order dependent shift) pole mass comes out smaller, just like e^+e^-

Retain agreement when we vary other knobs:

$$z_{\rm cut} = 0.02$$

Retain agreement when we vary other knobs:

$$\beta = 1$$

But smaller pT fails for Soft Drop:

not unexpected since in pinch of validity region

Could still use ungroomed factorization for smaller pT

Fit works, gives a larger Ω_1^{MPI} as expected

Promising new techniques to answer "what mass is it?"

Summary

- A dominant uncertainty in the top mass is "what mass is it?"
- Answers from connecting theory (QFT) to Monte Carlo or Data
- Can Calibrate MC to determine relation: $m_t^{
 m MC} = m_t + \dots$

 Discussed a promising new method for Top Jet Mass predictions in pp with/without a light Soft Drop

The End

