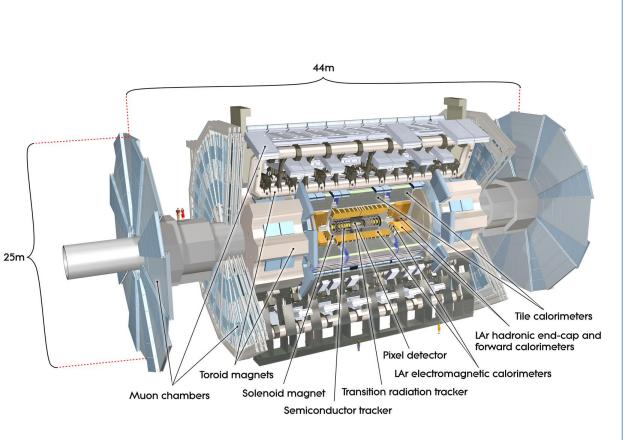
Overview of ATLAS Heavy Flavor Measurements


Sally Seidel University of New Mexico

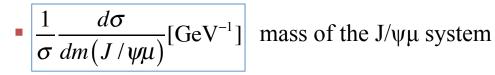
Santa Fe Jets and Heavy Flavor Workshop 31 January 2018

- I. Introduction to ATLAS
- II. b-Hadron Pair Production Cross-section
- III. Prompt J/ ψ Pair Production Cross-section
- IV. $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ and $X(3872) \rightarrow J/\psi\pi^+\pi^-$ Production
- V. Angular Analysis of $B_d^0 \to K^* \mu^+ \mu^-$ Decays

Introduction

The 4 most recent public results in B-Physics from ATLAS, all using LHC pp data collected at $\sqrt{s} = 8$ TeV, and released in 2017.

ATLAS from inside to out:


- Inner detector (pixel, silicon microstrips, strawtube TRT) $|\eta| < 2.5$, surrounded by a 2T axial B field from the solenoid
- Sampling calorimeters (LAr EM $|\eta| < 3.2$; Scint tile HAD $|\eta| < 3.2$; LAr HAD $1.5 < |\eta| < 4.9$)
- Air core toroids provide B field for Muon drift tubes + cathode strip chambers (muon tracking to $|\eta| < 2.7$) and resistive plate + thin gap chambers (triggering to $|\eta| < 2.4$) 3

Measurement of b-hadron Pair Production Cross-section*

Message: This total cross section is measured: $\sigma (B(\rightarrow J/\psi [\rightarrow \mu^+ \mu^-] + X)B(\rightarrow \mu + X))$

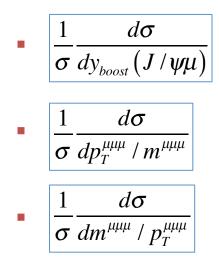
Using it, 8 differential cross sections are obtained:

separation between the J/ ψ and the third μ in the azimuth-rapidity plane

 $\frac{1}{\sigma} \frac{d\sigma}{d\Delta R(J/\psi\mu)}$

 $\frac{1}{\sigma} \frac{d\sigma}{dp_{\tau} (J/\psi u)}$

 $\frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi (J/\psi\mu)}$ [rad⁻¹] azimuthal separation $\Delta\phi$ between the J/ ψ and the third μ


transverse momentum p_T of the 3-muon system

$$\frac{1}{\sigma} \frac{d\sigma}{d\Delta y (J/\psi\mu)}$$

rapidity separation Δy between the J/ ψ and the third μ

the list continues.....

*JHEP 11 (2017) 062.

magnitude y_{boost} of the avg. rapidity of the J/ ψ and the third μ

ratio of the p_T to the invariant mass of the 3-muon system,

and its inverse

These differential cross sections are compared to predictions from several event generators.

Motivation:

- Factorization of QCD calculations into parton distribution functions, hard matrix elements, and soft parton shower components allows the heavy (b) quark mass to be introduced at *different stages*.
- *Several schemes are possible* for inclusion of the heavy quark masses
- Previous analyses of heavy flavor production highlighted disagreements *among* theoretical predictions and *between* predictions and data. *This analysis constrains the options*.
- The region of small-angle $b\overline{b}$ production is *especially sensitive* to details of the calculations but has previously been *only loosely constrained* by data.
- Searches for Higgs produced in association with a vector boson (VH) and decaying to $b\overline{b}$ rely on the modeling of the background $b\overline{b} + V$

Details of the analysis (1)

- Trigger: 2 oppositely charged muons with a common vertex, $p_T(\mu) > 4$ GeV, $|\eta(\mu)| < 2.4$, 2.5 $< m(\mu\mu) < 4.3$ GeV
- Integrated luminosity = 11.4 fb⁻¹
- Primary vertex: ≥ 2 tracks, each with $p_T > 400$ MeV, with largest summed p_T^2 .
- Form the muon candidates:
 - use combined inner detector and muon spectrometer tracks
 - $p_{\rm T}(\mu) > 6 \text{ GeV}, |\eta(\mu)| < 2.5$
- J/ψ candidates:
 - opposite-sign muon pairs with $|\eta(\mu)| < 2.3$ and directional correspondence with the trigger-level candidate
 - $2.6 < m(\mu\mu) < 3.5 \text{ GeV}$
 - If multiple candidates per event, choose the one with mass closest to J/ψ_{PDG} .
- Third muon: choose the highest- p_T one not included in the J/ ψ reconstruction.
- The J/ψ and the third μ may come from feed-down or cascade.
- The data are first compared to these simulations:
 - Inclusive b-hadron pairs from PYTHIA8.186 (2->2 matrix element with parton shower); CTEQ6L1 pdf, AU2 tune; b quarks are massless in the pdf but the mass is reinstated during the shower; pile-up included with PYTHIA8 + MSTW2008 pdf + A2 tune.
 - $pp \rightarrow b\overline{b}$ simulated with HERWIG++, CTEQ6L1, UE-EE5 tune; b-quarks are massive in the matrix element and in the parton shower.
- 4-momenta of photons near muon ($\Delta R_{\eta}(\mu,\gamma) < 0.1$) added to muon

Analysis details (2)

Corrections:

- for trigger efficiency including vertex recon and spatial overlap of muons
- for muon reconstruction efficiency
- To collect the J/ψ 's produced in decays of b-hadrons:
 - Define L_{xy} : transverse distance between primary vertex (PV) and dimuon vertex, signed positively for momentum pointing away from primary vertex.
 - Define pseudo-proper decay time:

$$\tau \equiv \frac{L_{xy} \cdot m \left(J / \psi_{PDG} \right)}{p_T \left(\mu^+ \mu^- \right)}$$

- J/ ψ 's from most b decays are non-prompt, so to optimize for signal events, require $\tau > 0.25$ mm/c.
- simultaneous maximum likelihood fit to the distributions of dimuon mass and τ .
- Extract # non-prompt J/ψ 's.

Analysis details (3)

- To select the third muon, reject bkgs: prompt muons, muons from charged π/K decay, fake muons from decay in flight and hadron shower leakage, muons combined with continuum (false) J/ψ, and muons in pile-up.
- Discriminate third-muon signal from bkg with a simultaneous fit on 2 observables:
 - transverse impact parameter significance

$$S_{d_0} \equiv d_0 \, / \, \boldsymbol{\sigma}_{d_0}$$

(d_0 is distance of closest approach of the muon track to the PV in the r- ϕ projection, with sign given by the sign of the angular momentum of the track around the beam at point of closest approach)

- Output of a boosted decision tree using kinematic variables related to track deflection significance, momentum balance, and $|\eta|$.
- Subtract 3 remaining irreducible bkgs from fitted yields:
 - $B_c \rightarrow J/\psi + \mu + X$ (very small, taken from simulation)
 - Semileptonic decays of c-hadrons not resulting from b-hadron feed-down
 - "Sail through" charged π/K: traverses the detector to the muon spectrometer without interacting or decaying (mimics a muon, taken from simulation)

Analysis details (4)

Corrections:

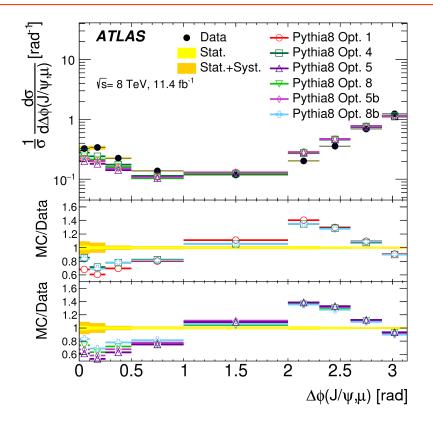
- for the τ requirement: extrapolate to full range
- for detector resolution on momentum and η of muons. Issue: migration between bins and in/out of fiducial volume.

Repeat for every kinematic bin for each differential cross section.

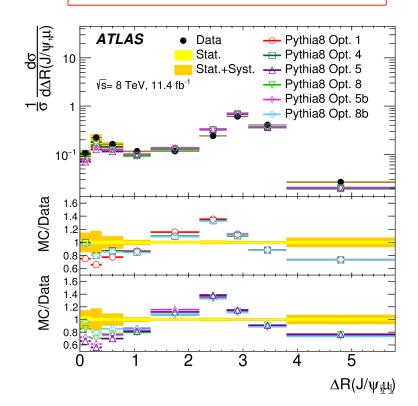
Systematic uncertainties:

- Muon efficiency corrections to data
- J/ψ model
- Background components in the fits

Statistical uncertainties:

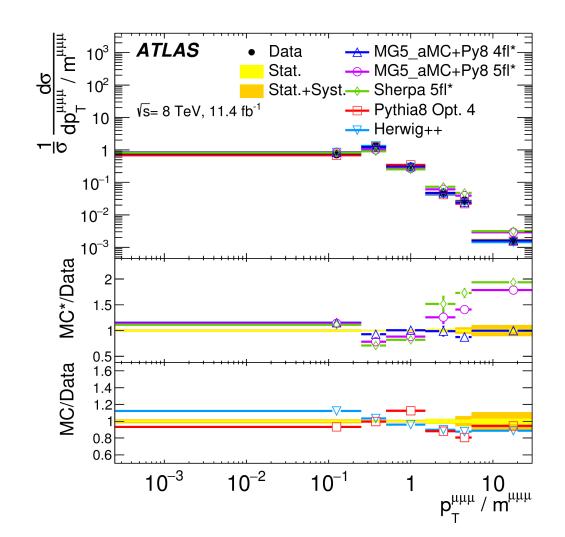

- On the data statistics
- On the third-muon templates taken from simulation

Luminosity uncertainty: 1.9%


Result 1:
$$\sigma \left(B \left(\rightarrow J / \psi \left[\rightarrow \mu^+ \mu^- \right] + X \right) B \left(\rightarrow \mu + X \right) \right) = 17.7 \pm 0.1 \text{(stat)} \pm 2.0 \text{(syst) nb.}$$

Result 2: Is the scale of α_s during splitting set by *relative* p_T or by *mass*? Compare differential cross sections using 6 options in PYTHIA8 for the $g \rightarrow b\overline{b}$ splitting kernel (dominates small angle b-hadron production).

PYTHIA8 does not reproduce the shape of the angular distributions for any of the 6 options.


Some of the options of splitting function form and α_s scale fit better to the mass or ΔR distributions. Example:

Result 3:

Extend the comparison of data to HERWIG++, SHERPA, and MADGraph5_AMC@NLOv2.2.2 + PYTHIA8.186 parton shower model. These cover a range of matrix element calculations and parton shower models. Consider options with 4 or 5 massless flavors. Compare all of these to PYTHIA8.

- HERWIG++ reproduces the ΔR and Δφ graphs best.
- 4-massless flavors models ΔR and Δφ better than 5.
- Δy spectrum is well modeled by MadGraph and SHERPA
- All models reproduce y_{boost} well.
- 5-massless flavor MadGraph models low mass distribution better than 4,
- but 4-massless flavor MadGraph models high p_T/m best.

Conclusions:

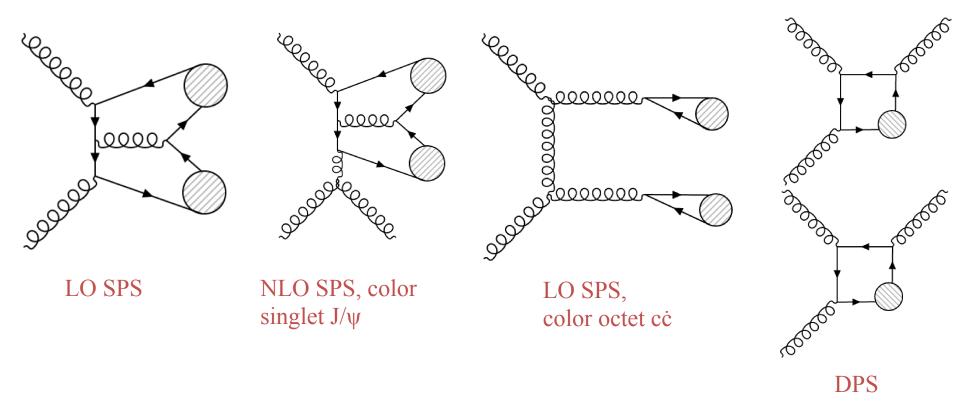
- Considering all distributions, the 4-massless flavor prediction from MadGraph5_AMC@NLO+PYTHIA8 best describes the data.
- Predictions of PYTHIA8 and HERWIG++ are comparable.
- Among PYTHIA8 options studied, the p_T-based splitting kernel is best.

Measurement of Prompt J/ ψ Pair Production Cross-section^{*}

Message: The cross section for production of 2 prompt centrally-produced J/ ψ mesons is measured. *"Prompt" means: produced at a point consistent with the primary vertex, not as a product of the decay of a long-lived hadron.*

Differential cross sections are produced as a function of:

- p_T of the lower- p_T meson (called "J/ ψ_2 ") Measurements use subleading meson J/ ψ_2 to access full kinematic region.
- $di-J/\psi p_T$
- di-J/ψ mass
- Δy between the 2 mesons
- $\Delta \phi$ between the 2 mesons


Characterization of kinematic correlations between the 2 J/ ψ 's is used to extract the fraction of prompt pair events arising from double parton scattering.

Total and double parton scattering cross sections are compared with predictions.

The effective cross section of a double parton scattering is measured.

This is the first such measurement at 8 TeV, and it probes a different kinematical range from previous (1.96 TeV and 7 TeV) measurements. *Eur. Phys. J. C (2017) 77:76.

What the events look like: each shaded circle is a J/ψ meson. Di-J/ ψ 's can be produced from single parton (g-g) scattering ("SPS") or from double parton scattering ("DPS").

Motivation:

Goal #1: measure the *fraction of events that result from double parton scattering*. The DPS cross section is sensitive to the spatial distribution of gluons in the proton.

Goal #2: use the fraction of DPS events f_{DPS} to measure the effective cross section of DPS. Effective cross section is:

$$\sigma_{eff} = \frac{1}{2} \frac{\sigma_{J/\psi}^2}{f_{DPS} \cdot \sigma_{J/\psi J/\psi}}$$

It relates the production cross section of the 2 individual interactions to the total production cross section. Testing correlations of non-perturbative origin between the partons in a DPS may improve understanding of non-perturbative QCD.

Goal #3: DPS can be modeled and subtracted to *provide input to SPS quarkonium production models.* Quarkonium production is a background to new physics searches. Make comparisons between the data and various production models using different techniques to compute di-J/ ψ production at LO, NLO, NLO color singlet NRQCD without loops (NLO*), and intrinsic parton transverse momentum fractions.

Details of the analysis (1)

- Integrated luminosity = 11.4 fb⁻¹
- Accept prompt-prompt mesons produced directly or through feed-down from $\psi(2S)$ decay
- Dimuon trigger, each muon's $p_T > 4$ GeV; $2.5 < m(\mu^+\mu^-) < 4.3$ GeV
- Reconstruction:
 - \geq 3 muons in the muon spectrometer data
 - Record $|d_z|$ of 2 J/ ψ decay vertices projected onto the beam axis
 - $|\eta^{\mu}| < 2.3, p_T^{\mu} > 2.5 \text{ GeV}$
 - $2.8 < m(\mu\mu) < 3.4 \text{ GeV}$
 - $|y^{J/\psi}| < 2.1, p_T^{J/\psi} > 8.5 \text{ GeV}$
- For each J/ψ candidate, find the signed transverse decay length L_{xy} (recall from page 8)
- Because J/ ψ mass resolution is worse in forward region, measure cross section separately for 2 rapidity regions: $|y^{J/\psi}| < 1.05$ ("central") and $1.05 < |y^{J/\psi}| < 2.1$ ("forward")

Analysis details (2)

Signal extraction procedure:

- Weight each event by efficiency of trigger, reconstruction, and selection, and by geometrical acceptance.
- First find *all* di-J/ψ events:
 - Build a 2-d distribution of the m(J/ψ₁) vs. m(J/ψ₂) from inclusive single J/ψ events. Signal for each J/ψ is modeled by Crystal Ball function, bkg (muons from semileptonic decays of b-hadrons and from continuum) is modeled by polynomial
 - Fit the data to this 2-d probability density function. Subtract this non-J/ ψ bkg. What remains is inclusive di-J/ ψ signal (prompt and non-prompt).
- To extract only prompt-prompt ("PP") events from that inclusive di-J/ ψ sample:
 - Construct 2 L_{xy} probability distributions from the inclusive J/ψ sample one for prompt-prompt and one for nonprompt-nonprompt. Prompt events have L_{xy} consistent with resolution, non-prompt with an exponential (decay constant τ). Mixed prompt-nonprompt events are negligible.
 - Classify events according to the rapidity bins (central or forward) of the 2 J/ ψ 's and apply bin-specific decay constants τ to the exponentials.
 - For each event, plot L_{xy} of J/ψ_1 versus L_{xy} of J/ψ_2 and compare it to the PP and NP-NP PDFs, then classify it.
- Divide the PP-weighted PDF by the full PDF to get the likelihood that the event is PP as a function of its mesons' values for L_{xy} and rapidity.
- Subtract pileup bkg: remove events with $|d_z| > 1.2$ mm.

Analysis details (3)

- Determine DPS fraction:
 - Construct a data-driven DPS template by combining J/ψ mesons from different random events in the di- J/ψ sample.
 - Construct a data-driven SPS template by subtracting the DPS template from the di-J/ψ samples' Δy vs. Δφ distribution.
 - Normalize the DPS sample to the data in the region $\Delta y > 1.8$ and $\Delta \phi < \pi/2$ (where SPS is negligible).

• Construct weights
$$w_{DPS(SPS)}(\Delta\phi, \Delta y) = \frac{N_{DPS(SPS)}(\Delta\phi, \Delta y)}{N_{Data}(\Delta\phi, \Delta y)}$$

- For every event, apply these weights, apply the PP weight, fit to template of m(J/ψ₁) vs. m(J/ψ₂) in bins of the chosen variable, extract PP SPS signal and PP DPS signals, compute f_{DPS}.
- For this fixed f_{DPS}, compare distribution to LO DPS and NLO* SPS model distributions.
- Extract effective cross section

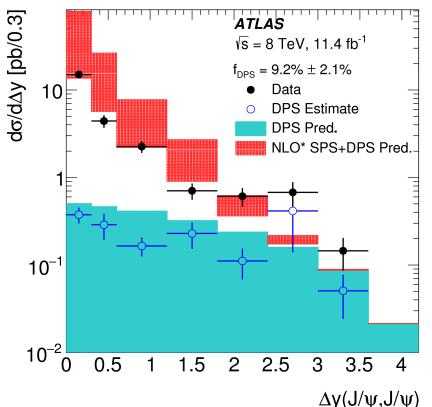
Analysis details (4)

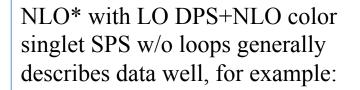
Corrections:

- Dimuon trigger efficiency including (1) correlations between vtx resolution and oppositesign requirement and (2) muons overlapped and unresolvable by the trigger
- Muon recon efficiency
- Kinematic acceptance (from simulation effect of p_T and η cuts on fiducial region)
- Signal efficiency on d_z and L_{xy} .
- p_T -dependence of reconstructed mass and mass resolution of J/ ψ

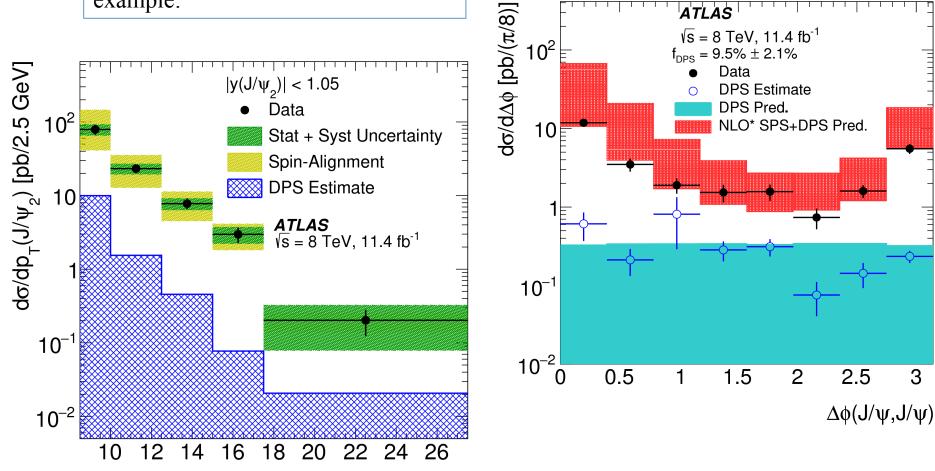
Systematic uncertainties:

Trigger selection, muon recon, kinematic acceptance, mass model developed from inclusive J/ ψ sample, J/ ψ mass and width bias function of p_T, prompt-prompt model (from inclusive J/ ψ sample) dependence on p_T, pile-up, J/ ψ to dimuon branching fraction, luminosity, DPS model and binning.

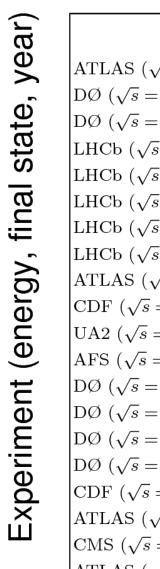

Results:


Prompt-prompt cross sections measured:

 $\sigma_{central} (J/\psi J/\psi) = 82.2 \pm 8.3 \text{ (stat.)} \pm 6.3 \text{ (syst.)} \pm 0.9 \text{ (BF)} \pm 1.6 \text{ (lumi) pb}$ $\sigma_{forward} (J/\psi J/\psi) = 78.3 \pm 9.2 \text{ (stat.)} \pm 6.6 \text{ (syst.)} \pm 0.9 \text{ (BF)} \pm 1.5 \text{ (lumi) pb}$


- Data are compared to theoretical distributions.[§] Shapes of DPS distributions are consistent with models. For SPS, the data distributions in Δy, |Δφ|, m(J/ψJ/ψ), and p_T(J/ψJ/ψ) are wider than predicted by the NLO calculation.
- Data and predictions especially diverge for Δy > 1.8. This may indicate a large effect due to k_T or contributions via feeddown from color-singlet ψ(2S).

[§]LO DPS: C. Borschensky and A. Kulesza, arXiv: 1610.00666 [hep-ph]; NLO* SPS: J.P. Lansbert, H.S. Shao, Phys. Lett. B 751, 479 (2015) and PRL 111, 122001 (2013).



 $f_{DPS} = (9.2 \pm 2.1 \text{ (stat)} \pm 0.5 \text{ (syst)})\%$, consistent with model predictions, for example:

 $p_{\tau}(J/\psi_{2})$ [GeV]

ATLAS

 ATLAS (
$$\sqrt{s} = 8 \text{ TeV}, J/\psi + J/\psi, 2016$$
)

 DØ ($\sqrt{s} = 1.96 \text{ TeV}, J/\psi + J/\psi, 2014$)

 DØ ($\sqrt{s} = 1.96 \text{ TeV}, J/\psi + \Upsilon, 2016$)

 LHCb ($\sqrt{s} = 7.88 \text{ TeV}, \Upsilon(1S) + D^{0,+}, 2015$)

 LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi + \Lambda_c^+, 2012$)

 LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi + D^+, 2012$)

 LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi + D^+, 2012$)

 LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi + D^0, 2012$)

 ATLAS ($\sqrt{s} = 7 \text{ TeV}, 4 \text{ jets}, 1993$)

 LHCb ($\sqrt{s} = 7 \text{ TeV}, 4 \text{ jets}, 1993$)

 LHCb ($\sqrt{s} = 630 \text{ GeV}, 4 \text{ jets}, 1993$)

 UA2 ($\sqrt{s} = 630 \text{ GeV}, 4 \text{ jets}, 1993$)

 UA2 ($\sqrt{s} = 630 \text{ GeV}, 4 \text{ jets}, 1986$)

 DØ ($\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2014$)

 DØ ($\sqrt{s} = 1.96 \text{ TeV}, \gamma + 4 \text{ jets}, 2014$)

 DØ ($\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2014$)

 DØ ($\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2014$)

 DØ ($\sqrt{s} = 1.8 \text{ TeV}, \gamma + 3 \text{ jets}, 1997$)

 ATLAS ($\sqrt{s} = 8 \text{ TeV}, Z + J/\psi, 2015$)

 CMS ($\sqrt{s} = 7 \text{ TeV}, W + 2 \text{ jets}, 2014$)

 ATLAS ($\sqrt{s} = 7 \text{ TeV}, W + 2 \text{ jets}, 2013$)

 $\sigma_{eff} = (6.3 \pm 1.6 \text{ (stat)} \pm 1.0 \text{ (syst)} \pm 0.1 \text{ (BF)} \pm 0.1 \text{ (lumi)}) \text{ mb}$

 $\sigma_{_{eff}}\,[\text{mb}]$

Measurements of $\psi(2S) \rightarrow J / \psi \pi^+ \pi^-$ and $X(3872) \rightarrow J / \psi \pi^+ \pi^-$ Production^{*}

Message:

Differential cross sections of X(3872) and $\psi(2S)$ are measured and compared to models, for *prompt and non-prompt* production.

The ratio of production cross sections $X(3872)/\psi(2S)$ is measured.

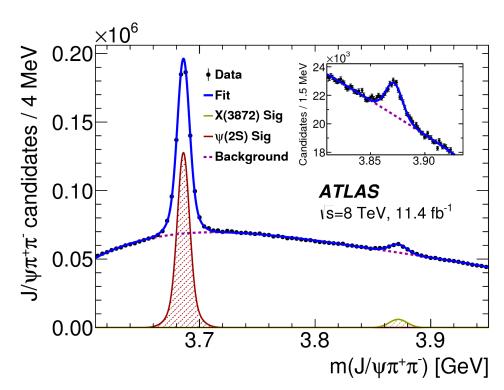
The fraction of non-prompt X(3872) and the fraction of non-prompt \psi(2S) are measured.

The non-prompt X(3872) sample requires 2 lifetimes in the fit. The short lifetime component involves X(3872)'s produced in B_c decays.

The *invariant mass of the dipion* system in the $J/\psi\pi^+\pi^-$ final state is measured and found to be consistent with the process $\rho^0 \to \pi^+\pi^-$.

*JHEP 01 (2017) 117.

Motivation:


This study examines:

- the production mechanisms for these hidden charm states: direct versus feed-down from one or more heavy hadrons.
- the production mechanism of the dipion in the final state

The current best model for the X(3872) is a mixed $\chi_{c1}(2P) - D^0 \overline{D}^{*0}$ state.

Details of the analysis (1)

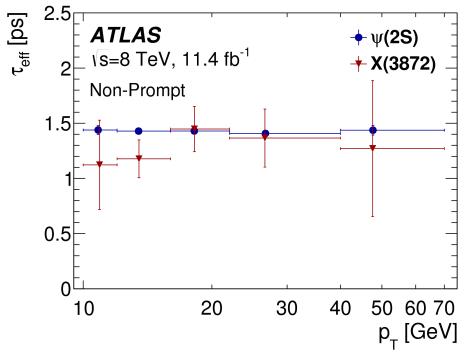
- Integrated luminosity = 11.4 fb⁻¹
- Trigger: dimuons fitted to a common vertex
- Reconstruction:
 - Muons well matched to trigger objects
 - $p_T(\mu) > 4$ GeV, $|\eta(\mu)| < 2.3$, $m(\mu\mu)$ within $m_{J/\psi} \pm 120$ MeV
- Find $J/\psi\pi^+\pi^-$ candidates:
 - Constrain m($\mu\mu$) to m(J/ ψ)_{PDG}, then assign pion masses to 2 additional oppositely charged non-muon tracks and fitted to a common vertex with the muons. p_T(π) > 0.6 GeV, | $\eta(\pi)$ | < 2.4.
 - $J/\psi \pi^+ \pi^-$ rapidity |y| < 0.75;10 < p_T < 70 GeV.
 - ΔR(J/ψ,π[±]) < 5: the angular distance between momenta of the dimuon system and each candidate.
 - Require: $Q = m(J/\psi\pi^+\pi^-) m(J/\psi) m(\pi\pi) < 0.3$ GeV: suppresses combinatorial bkg while saving 90% of signal.

Analysis details (2)

- Bin candidates in p_T.
- Weight each candidate for p_T and η -dependent selection and recon efficiencies
- Subdivide candidates in each p_T bin according to pseudo-proper lifetime where

$$\tau = \frac{L_{xy}m}{cp_T}$$
$$L_{xy} = \frac{\vec{L} \cdot \vec{p}_T}{p_T}$$

 \vec{L} is the vector pointing from the PV to the J/ $\psi \pi^+ \pi^-$ vertex.


- Define 4 lifetime intervals.
- Fit data distribution in each lifetime interval to a function with 2 double-Gaussian signal functions (the $\psi(2S)$ and the X(3872), polynomial bkg. Extract signal yields Y.

Analysis details (3)

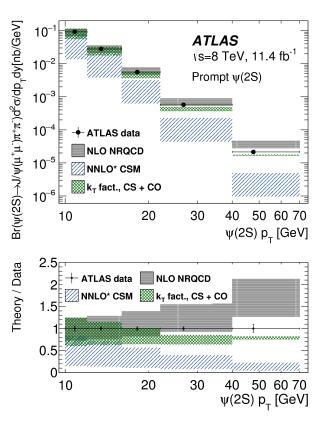
Apply yields Y to find double differential cross sections × branching ratios, for *i* = X(3872) or ψ(2S):

$$B(i \to J / \psi \pi^+ \pi^-) B(J / \psi \to \mu^+ \mu^-) \cdot \frac{d^2 \sigma(i)}{dp_T dy} = \frac{Y(i)}{\Delta p_T \Delta y \int L dt}$$

• First fit data in each p_T bin assuming one prompt component and one non-prompt (τ_{eff}) component. Observe: τ_{eff} is different for low- $p_T X(3872)$ decays. Do these proceed by a different mechanism?

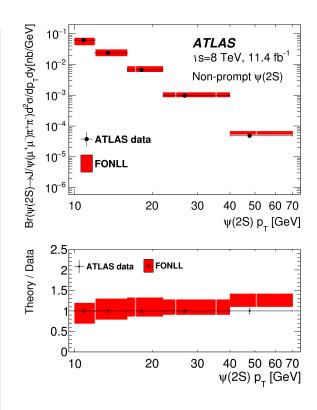
Analysis details (4) and results:

- Try 2 lifetimes for the non-prompt decays. (Short component: from B_c decays, long component from all other B[±], B⁰, B_s, and b-baryons.)
 - Observe: no short-lived non-prompt component in $\psi(2S)$ production.
 - For X(3872), short-lived non-prompt fraction is 25%:


$$\frac{\sigma(pp \to B_c) \cdot B(B_c \to X(3872))}{\sigma(pp \to \text{non-prompt } X(3872))} = (25 \pm 13 \text{ (stat)} \pm 2 \text{ (syst)} \pm 5 \text{ (spin)})\%$$

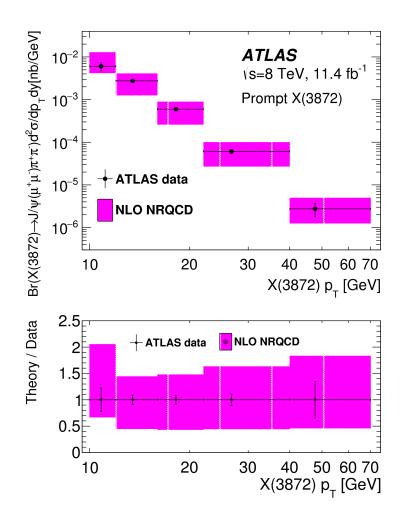
Measure ratio:

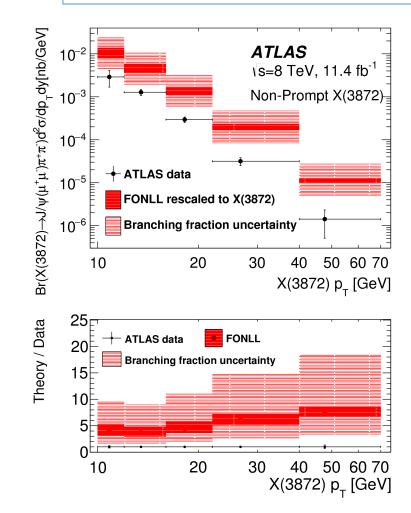
$$R = \frac{B(B \to X(3872) + any) \cdot B(X(3872) \to J / \psi \pi^+ \pi^-)}{B(B \to \psi(2S) + any) \cdot B(\psi(2S) \to J / \psi \pi^+ \pi^-)} = (3.57 \pm 0.33 \pm 0.11)) \times 10^{-2}$$


This ratio is below the value inferred from the ratio of Tevatron data (numerator) to the world average of branching fractions (denominator): 0.18 ± 0.08 .

Results on differential cross sections:

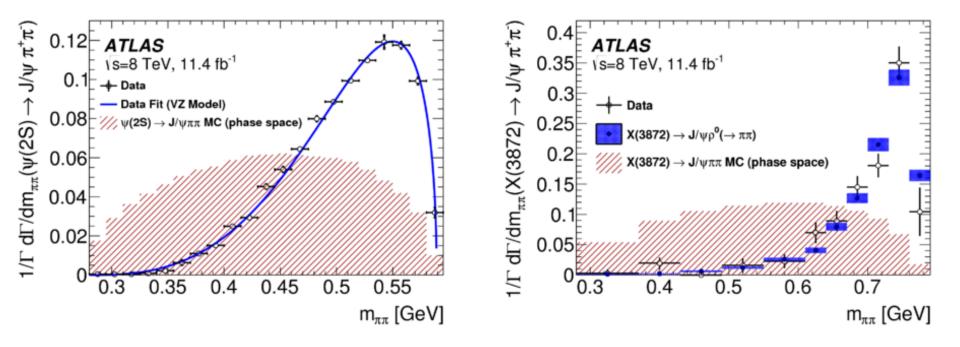
For prompt $\psi(2S)$:


- Generally good agreement between data and NLO NRQCD using long distance matrix elements derived from Tevatron data, below highest p_T
- k_T factorization model including color-octet contributions tuned on 7 TeV CMS data + color singlet contributions describes data well but underestimates at highest p_T.
- NNLO* color singlet model agrees at low p_T.


For non-prompt $\psi(2S)$: good agreement with FONLL over full p_T range

Results on differential cross sections, continued:

For prompt X(3872): described adequately by NRQCD as $\chi_{c1}(2P) - D^0 \overline{D}^{*0}$ mixture



For non-prompt X(3872): FONLL model overestimates data by factor 4-8, increasing with p_T

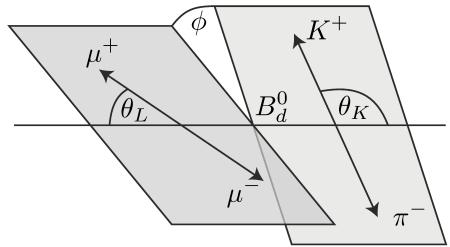
Results on differential cross sections, continued:

Using the normalized differential decay width in bins of dipion invariant mass, we see that phase space decay is disfavored: the pion production occurs through $\rho^0 \rightarrow \pi^+ \pi^-$.

Angular Analysis of $B_d^0 \to K^* (\to K^+ \pi^-) \mu^+ \mu^-$ Decays^{*}

The message:

The longitudinal polarization of the K^* is measured and compared to theoretical predictions.


This polarization can be influenced by *penguin diagrams involving new physics*.

Hadron form factors dominate the prediction at leading order. LHCb has adopted *a method[§] for minimizing uncertainties in hadron form factors* in this measurement. LHCb observes[¶] a 3.4 sigma deviation from Standard Model calculations. The LHCb method is used here.

*ATLAS-CONF-2017-023 (3 April 2017). \$LHCb Collaboration, PRL 111 (2013) 191801. \$LHCb Collaboration, JHEP 02 (2016) 104.

The method:

- 3 angular variables:
 - θ_K, between the K⁺ and the direction opposite the B_d, in the K^{*} frame
 - θ_L , between the μ^+ and the direction opposite the B_d , in the dimuon frame
 - φ, between the two decay planes formed by the Kπ and dimuon systems, in the B_d frame.

• Measure:

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[F_L \cos^2\theta_K + \frac{3(1-F_L)}{4} \sin^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_L \right]$$
$$-F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi$$
$$+S_4 \sin 2\theta_K \sin 2\theta_L \cos\phi + S_5 \sin 2\theta_K \sin\theta_L \cos\phi$$
$$+S_6 \sin^2\theta_K \cos\theta_L + S_7 \sin 2\theta_K \sin\theta_L \sin\phi$$
$$+S_8 \sin 2\theta_K \sin 2\theta_L \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi$$

The familiar forward-backward asymmetry is given by $A_{FB} = 3S_6/4$.

The method to reduce hadronic form factor dependence is this: the S_i depend on the form factors and have significant uncertainty at LO. Transform the S_i using ratios constructed to cancel the form factor dependence at LO:

$$P_{1} = \frac{2S_{3}}{1 - F_{L}}$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{1 - F_{L}}$$

$$P_{3} = -\frac{S_{9}}{1 - F_{L}}$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_{L}(1 - F_{L})}}$$

All these parameters depend on the invariant mass squared of the dilepton system (q²), so analyze data in 6 partially-overlapping q² bins.

Analysis details:

- Integrated luminosity = 20.3 fb^{-1}
- Trigger: 1, 2, or 3 muons
- **Reconstruct muons**: $p_T > 3.5$ GeV, $|\eta| < 2.5$
- Require: $\mu^+\mu^-$ reconstruct to a common vertex
- Candidate kaon, pion tracks: $p_T > 0.5$ GeV [no dedicated particle ID in ATLAS]
- Select K^{*} mesons: $p_T(K^*) > 3.0$ GeV, $m(K\pi)$ within [846,946] MeV.
- Reconstruct B candidate:
 - Flavor assigned from K charge.
 - Vertex K^* with $\mu^+\mu^-$
 - Require consistent vectors: vector from PV to B_d decay vertex, and B_d momentum vector
- Suppress combinatorial bkg with lifetime significance cut: $\tau(B_d)/\sigma_{\tau} > 12.5$
- Suppress partially recon decays with tight lower cut around nominal B_d mass: $5150 < m(K\pi\mu\mu) < 5700 \text{ MeV}$
- to eliminate extra candidates per event, choose best match to $m(K^*)_{PDG}$, and best B vertex fit.
- q^2 bin range: [0.04,6.0] excluding [9.8,1.1] (to remove ϕ resonance)
- Compare data to a model using maximum likelihood, for Gaussian signal, with parameters taken from a control region, and 4 bkg components
- To overcome low statistics, a "folding procedure" of transformations is used that exploits trigonometric relations among the angular parameters. 36

The models:

- Ciuchini et al. (CFFMPSV)¹ QCD factorization framework to perform consistency checks of the LHCb data with theory expectations
- Descotes-Genon et al. (DHMV)² QCD factorization
- Jäger and Camalich (JC)³ QCD factorization, focus on impact of long distance corrections using a helicity amplitude approach

Results:

Good agreement except in 3 q^2 bins: P'_4 and P'_5 in q^2 bin [4.0,6.0] and P'_8 in q^2 bin [2.0,4.0].

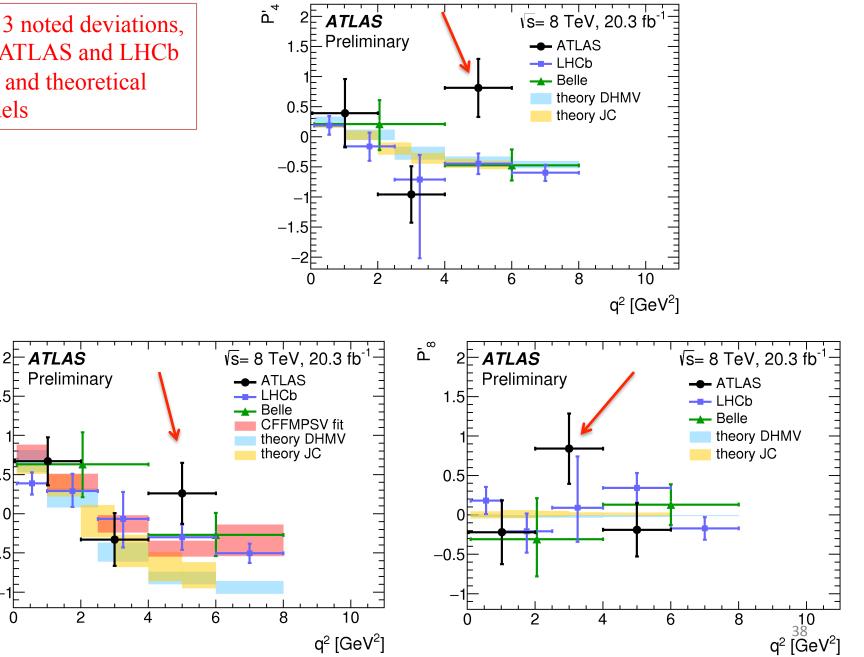
The P'_4 (P'_5) deviations are consistent with the LHCb observation and are 2.5 (2.7) sigma from the DHMV model. All measurements are within 3 sigma of the SM theory band. They are also compatible with the LHCb result.

¹ JHEP 06 (2016)116, arXiv: 1512.07157 [hep-ph]

² JHEP 12 (2014) 125, arXiv: 1407.8526 [hep-ph]

³ JHEP 05 (2013) 043, arXiv: 1212.2263 [hep-ph]; PRD 93 (2016) 014028, arXiv: 1412.3183 [hep-ph]

The 3 noted deviations, for ATLAS and LHCb data and theoretical models


٦

1.5

0.5

-0.5

0

Summary

ATLAS presents 4 measurements using data recorded at $\sqrt{s} = 8$ TeV at the LHC. All are compared to contemporary models.

- Differential cross sections for b-hadron pair production to improve the theoretical description of quarkonium production and to facilitate background subtractions in new physics searches.
- Prompt J/ψ pair production differential cross sections to characterize double parton scattering as a probe of the gluon distribution in the proton, and to investigate correlations in the non-perturbative regime.
- Differential production cross sections for $\psi(2S)$ and X(3872), both observed in decays to $J / \psi \pi^+ \pi^-$ - a study of production mechanisms through examination of prompt and non-prompt signals.
- An angular analysis of $B_d^0 \to K^* \mu^+ \mu^-$ decays a potential probe of new physics contributions through penguin diagrams.