New results on Higgs boson coupling to heavy flavor

Thomas CALVET for the ATLAS collaboration

Stony Brook University

Santa Fe Jets and Heavy Flavor

Jan 31st, 2018

A Short Outline

- Some words of context
- ttH analyses:
 - $> ttH(ZZ*\rightarrow 4l)$
 - $> ttH(\gamma\gamma)$
 - > ttH(bb)
 - $\gt ttH(WW^*, \tau\tau, ZZ^*)$
- H→bb:
 - $\gt VBF+\gamma, H\rightarrow bb$
 - > *VH*(*bb*)
- H→cc
- Conclusions

Context

A Bit Of History

- Higgs boson discovery 2012:
 - > ATLAS and CMS experiments
 - > 48 years after its prediction
 - > Nobel Prize in 2013
- Measure observed particle properties:
 - > Rich area of physics.

Mass measurements (high precision):

Run 1	ATLAS + CMS	$125.09 \pm 0.24 \text{ GeV}$		
Run 2	ATLAS	$124.98 \pm 0.28 \text{ GeV}$		
	CMS	$125.26 \pm 0.21 \text{ GeV}$		

Spin and Parity:

 \rightarrow Compatible with SM 0+

Combined results: the excess

N-The fue-ex-en-

The New Hork Times

GITAL SUBSCRIPTION: 4 WEEKS FOR 9

N-TW GRANANT

Fe, Jan 31th 2018

Higgs Boson Searches at LHC

Searches in various production modes and final states.

Higgs boson production at LHC

Higgs boson decay modes

Prod	ggH	VBF	VH		ttH
σ (pb) (13 TeV)	48.5	3.78	2.25		0.507
Yukawa Coupling	Top, b,, BSM	Vector Boson	Vector Boson		Top

Couplings Measurements: Overview

• Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$

Coupling	κ_{Z}	$\kappa_{ m W}$	$\kappa_{ au}$	κ_{t}	κ_{b}	
Exp Unc.	10%	10%	15%	15%	25%	

Couplings to vector bosons

Coupling to fermions

- dataset
 - Best constraints on Higgs boson couplings
 - From ATLAS+CMS Run 1 combination:
 - > JHEP 08 (2016) 045

Couplings Measurements: Overview

• Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$

Coupling	κ_{Z}	$\kappa_{ m W}$	$\kappa_{ au}$	
Exp Unc.	10%	10%	15%	

- High precision:
 - ➤ All 3 decay modes observed in Run 1 data

Today's interest

We Have Run 1 Couplings Measurements

• Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$

Coupling	$\kappa_{ m Z}$	$\kappa_{ m W}$	$\kappa_{ au}$	$\kappa_{\rm t}$	κ_{b}
Exp Unc.	10%	10%	15%	15%	25%

- ➤ Largest Yukawa coupling in the SM
- > Good constraint on top Yukawa coupling with respect to other couplings
- > Combines indirect and direct measurements

top quark contribution to the loop is fixed in SM. But, what if there is BSM?

We Have Run 1 Couplings Measurements

• Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$

• Coupling m	ieasurements:	Kappa Frame	work K _j = 1 ³	/ I	SM		
Coupling	$\kappa_{ m Z}$	$\kappa_{ m W}$	$\kappa_{ au}$		$\kappa_{\rm t}$		$\kappa_{\rm b}$
Exp Unc.	10%	10%	15%				25%
					30%	4	
				ACTI		1 D 1	
					LAS+CMS 2.3 ^{+0.7} _{-0.6}	S Kun I	
_					$(2.3) \sigma ob$	s. (exp)	
		scenario				,000000 B	t/b
	⇒ 100p cont	tent unknown			_	-000	000
Н		t/b		H	T		Н
	γ	g Q00000				g ω 000000	$ar{t}/ar{b}$

We Have Run 1 Couplings Measurements

• Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$

Coupling	$\kappa_{ m Z}$	$\kappa_{ m W}$	$\mathbf{K}_{\mathbf{ au}}$	$\kappa_{\rm t}$	$\kappa_{ m b}$	
Exp Unc.	10%	10%	15%	15%	25%	

b quark has highest branching ration

⇒ crucial to constrain Higgs boson width.

Coupling to b: involved in indirect and direct measurements

Similar to top, but sub-leading contribution in loops

=> most of the sensitivity from Run 1 H \rightarrow bb searches

ttH analysis

ttH Channels

- ttH: direct access to κ_t
 - ➤ Constrain BSM in loops
- Small cross section + complex final state
 - \triangleright Divided in 4 analyses ttH(bb), ttH(multi-leptons), ttH($\gamma\gamma$), ttH($ZZ*\rightarrow 41$)

ttH(bb)

arXiv:1712.08895

ttH(bb) A Complex Final State

• The ttH(bb) search is a complex analysis

candidate

candidate

Strategy:

- Separate signal and each tt+jets components
- Fit all components to data simultaneously

- Separate signal and tt+jets components:
 - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b
 - ➤ MVA technics to separate tt+≥1b and ttH(bb)
- Fit all components to data simultaneously

Categorization:

Use N(jets) and N(b-tags) at multiple working points

19 categories defined

- Separate signal and tt+jets components:
 - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b
 - ➤ MVA technics to separate tt+≥1b and ttH(bb)
- Fit all components to data simultaneously

Categorization:

Use N(jets) and N(b-tags) at multiple working points

b-tagging can't separate ttH(bb) and tt+bb (4 b-quarks)

⇒ Maximum purity 5.4%

19 categories defined

- Separate signal and tt+jets components:
 - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b
 - ➤ MVA technics to separate tt+≥1b and ttH(bb)
- Fit all components to data simultaneously

Step 1: reconstruction

- → Exploit final state properties
- \rightarrow BDT to find best matching reco objets \leftrightarrow final state particles

Reconstructed Higgs mass | Solution | Solut

Step 2: Final BDT for ttH(bb) VS tt+bb separation:

→ combines step 1 output with b-tag and general variables

- Separate signal and tt+jets components:
 - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b
 - > MVA technics to separate tt+≥1b and ttH(bb)
- Fit all components to data simultaneously

ttH(bb) result

- Separate signal and tt+jets components:
 - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b
 - ➤ MVA technics to separate tt+≥1b and ttH(bb)
- Fit all components to data simultaneously

Observed $\mu = 0.84^{+0.64}_{-0.61}$ $\Rightarrow 1.1\sigma$ significance (1.4 exp)

In terms of upper limit:

 $\Rightarrow \mu < 2 \times SM \text{ at } 95\% \text{ CL}$

And What About The Modeling?

Impact of and corrections applied to the 20 most important uncertainties

And What About The Modeling?

Impact of and corrections applied to the 20 most important uncertainties

And What About The Modeling?

Impact of and corrections applied to the 20 most important uncertainties

Very little guidance how to model additional g→bb

→ Different predictions (g→bb from PS, ME, mix)

All giving the same results (within uncertainties)

→ Confidence in signal extraction

 $ttH(WW*, \tau\tau, ZZ*)$

arXiv:1712.08891

ttH(multi-leptons)

The needs of the many (leptons) outweigh the needs of the few

Primarily targeting $H\rightarrow WW^*$, $\tau\tau$, ZZ^*

ttH(multi-leptons): Associated Backgrounds

Selection leads to 2 main background types

ttH(multi-leptons): Associated Backgrounds

Non-prompt leptons, τ and charge misassignment:

- → Data driven estimate in control regions
- → Reduced by applying cuts on dedicated BDTs

Prompt e and µ identification efficiencies for the chosen BDT working point

- Further reduce background contributions with BDTs
- Fit all components to data simultaneously

- Further reduce background contributions with BDTs
- Fit all components to data simultaneously

Similar strategy as ttH(bb), but:

- → several backgrounds to isolate
- → independent MVAs for each categories (with enough statistic)

	$2\ell { m SS}$	-3ℓ	4ℓ	$1\ell + 2\tau_{\mathrm{had}}$	$2\ell SS + 1\tau_{had}$	$2\ell \text{OS} + 1\tau_{\text{had}}$	$3\ell{+}1 au_{ m had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t},t\bar{t}W,t\bar{t}Z,\mathrm{VV}$	$t \overline{t} Z$ / -	$t \bar t$	all	$\overline{t}\overline{t}$	-
Discriminant	$2\times1\mathrm{D}\ \mathrm{BDT}$	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1 / 1	2	2	10	1
Control regions	-	4	- -	-	-	_	-

- Further reduce background contributions with BDTs
- Fit all components to data simultaneously

Similar strategy as ttH(bb), but:

- → several backgrounds to isolate
- → independent MVAs for each categories (with enough statistic)

- Further reduce background contributions with BDTs
- Fit all components to data simultaneously

	ATLAS			√s=13 TeV, 36.1 fb ⁻¹			
	─Tot.	···· Sta	at.	Tot.	(Stat.,	Syst.)	
2ℓ OS + $1\tau_{had}$		•	Н	1.7 ^{+2.1} _{-1.9}	$\binom{+1.6}{-1.5}$,	^{+1.4} _{-1.1})	
$1\ell + 2\tau_{had}$		4		-0.6 ^{+1.6} _{-1.5}			
4ℓ	 			-0.5 ^{+1.3} _{-0.9}	$\binom{+1.3}{-0.8}$,	^{+0.2} _{-0.3})	
$3\ell + 1\tau_{had}$		•••••	4	1.6 ^{+1.8} _{-1.3}	$\binom{+1.7}{-1.3}$,	^{+0.6} _{-0.2})	
2ℓ SS + $1\tau_{had}$		B	•+	ı 3.5 ^{+1.7} −1.3		^{+0.9} _{-0.5})	
3ℓ		+ • • +		1.8 ^{+0.9} -0.7	(_0.6,	$^{+0.6}_{-0.5}$)	
2ℓSS	ı	₩		1.5 $^{+0.7}_{-0.6}$	(_0.4,	$^{+0.5}_{-0.4})$	
combined		HOH!		1.6 $^{+0.5}_{-0.4}$		^{+0.4} _{-0.3})	
	-2 0	2	4	6 8	10	12	
			Ве	est-fit $\mu_{t\overline{t}H}$ for	or m _H =12	25 GeV	

Channel	Significance				
	Observed	Expected			
$2\ell OS + 1\tau_{had}$	0.9σ	0.5σ			
$1\ell + 2\tau_{\rm had}$	_	0.6σ			
4ℓ	_	0.8σ			
$3\ell + 1\tau_{\rm had}$	1.3σ	0.9σ			
$2\ell SS+1\tau_{had}$	3.4σ	1.1σ			
3ℓ	2.4σ	1.5σ			
$2\ell { m SS}$	2.7σ	1.9σ			
Combined	4.1σ	2.8σ			

Observed signal strength: $\mu = 1.6^{+0.5}_{-0.4}$ Corresponding to a 4.1 σ observed significance (for 2.8 σ expected)

 $ttH(ZZ^*\rightarrow 41)$

arXiv:1712.02304

$ttH(ZZ^* \rightarrow 41)$: A New Player

- Included in main H→ZZ*→4l analysis:
 - "ttH enriched category":
 1 b-tag + (≥4 jets or 1 lepton and ≥2 jets)
- Very pure channel
- Very low stat: 0.39 ttH events expected 0 observed

Expected Composition

Reconstructed	Signal	ZZ^*	Other	Total	Observed
event category		background	backgrounds	expected	
ttH-enriched	0.39 ± 0.04	0.014 ± 0.006	0.07 ± 0.04	0.47 ± 0.05	0

Setting upper limits at 120 fb at the 95% CL (8 times SM)

$ttH(\gamma\gamma)$

ATLAS-CONF-2017-045

$ttH(\gamma\gamma)$

- Included in main $H \rightarrow \gamma \gamma$ analysis
- Rely on excellent M(γγ) resolution over a continuous background

Strategy:

- \triangleright Use H $\rightarrow \gamma \gamma$ selections
- "Enriched ttH category":
 - ➤ high N(jets), N(b-tags)
 - \triangleright 0 or 1 lepton \Rightarrow hadronic or semi-lep categories
 - ➤ In hadronic categories:
 - > BDT to discriminate ggH and ttH
 - Used to refine categorisation

Fraction of Signal Process / Category

$ttH(\gamma\gamma)$

- Included in main $H \rightarrow \gamma \gamma$ analysis
- Rely on excellent M(γγ) resolution over a continuous background

Strategy:

- \triangleright Use H $\rightarrow \gamma \gamma$ selections
- "Enriched ttH category"
- Consider categories enriched in tH

Combined fit with other $H \rightarrow \gamma \gamma$ channels $\mu(ttH) = 0.5 \pm 0.6$

Signal as double sided crystal ball around 125 GeV

Fraction of Signal Process / Category

ttH combination

arXiv:1712.08891

Combination Of ttH Analyses: Result

Best fit value: $\mu = 1.2 \pm 0.3$

- \rightarrow Compatible with SM
- \rightarrow Syst limited:
 - → Channel specific modeling unc.
 - → Signal uncertainties

Channel	Best	-fit μ	Signif	Significance		
	Observed Expected		Observed	Expected		
Multilepton	$1.6_{-0.4}^{+0.5}$	$1.0_{-0.4}^{+0.4}$	4.1σ	2.8σ		
$H o b ar{b}$	$0.8_{-0.6}^{+0.6}$	$1.0^{+0.6}_{-0.6}$	1.4σ	1.6σ		
$H \to \gamma \gamma$	$0.6_{-0.6}^{+0.7}$	$1.0^{+0.8}_{-0.6}$	0.9σ	1.7σ		
$H \to 4\ell$	< 1.9	$1.0^{+3.2}_{-1.0}$		0.6σ		
Combined	$1.2_{-0.3}^{+0.3}$	$1.0^{\ +0.3}_{\ -0.3}$	4.2σ	3.8σ		

Evidence of ttH production:

4.2σ (exp: 3.8σ)

Measured Cross section:

790⁺²³⁰₋₂₁₀ fb (SM: 507⁺³⁵₋₅₀ fb)

Kappa coupling: fermions against bosons

H→bb analysis

Where To Search For H→bb?

4 production modes are available:

Where To Search For H→bb?

• 4 production modes are available:

Where To Search For H→bb?

4 production modes are available:

Where To Search For $H\rightarrow bb$?

4 production modes are available:

43

VBF+γ, H→bb

ATLAS-CONF-2016-063

VBF+ γ With H \rightarrow bb

ATLAS-CONF-2016-063

Trigger additional photon:

- \Rightarrow large loss in cross section
- ⇒ drastic multi-jet reduction + background destructive interference

Step1: Signal VS background BDT to define 3 regions

(avoid variables correlated to m_{bb})

Step 2: Fit m_{bb} in each regions

Low sensitivity:

 $0.4\sigma \exp$ $\mu = -3.9^{+2.8}_{-2.7}$ Done at 12.6 fb⁻¹ will need stat

VH(bb)

JHEP 12 (2017) 024

VH(bb) The Savior

ATLAS Simulation Preliminary $\sqrt{s} = 13 \text{ TeV}, \text{ tt} \quad \text{b jets}$ --- Light-flavour jets 10^{-2} 10^{-3}

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

MV2c10 BDT Output

High performance b-tag

Flavor	Efficiency	
b-jet	70%	
c-jet	8.2%	
light-jet	0.3%	

Reconstruction of the 2 b is a key ingredient

Precise $p_T(b)$ measurements

"Re-calibrate" b-jets:

→ Muon in jet corrections

Use response from MC (PtReco)
 → 21 channel: fit llbb transverse kinematic

Improves m_{bb} resolution by up to 40%

VH(bb) Channels

Analysis split in channels depending on N(lep)

0-lepton and MET

1-lepton (and MET)

2-lepton

VH(bb) Final Categories

Further categorize events:

- \rightarrow Sensitive to relatively high $p_T(V)$
- \rightarrow Also split in 2 or 3 jets

		Categories				
Channel	SR/CR	75 GeV	$V < p_{\mathrm{T}}^{V} < 150 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{V} > 150 \; \mathrm{GeV}$		
	Sit/Oit	2 jets	3 jets	2 jets	3 jets	
0-lepton	SR	-	-	✓	√	
1-lepton	SR	_	_	\checkmark	✓	
2-lepton	SR	✓	✓	\checkmark	✓	

Main backgrounds:

VH(bb) Final Categories

Further categorize events:

- \rightarrow Sensitive to relatively high $p_T(V)$
- \rightarrow Also split in 2 or 3 jets

		Categories				
Channel	SR/CR	75 GeV	$V < p_{\mathrm{T}}^{V} < 150 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{V} > 1$.50 GeV	
	SIL/ OIL	2 jets	3 jets	2 jets	3 jets	
0-lepton	SR	_	_	BDT	BDT	
1-lepton	SR	-	-	BDT	BDT	
2-lepton	SR	BDT	BDT	BDT	BDT	
1-lepton	W + HF CR	-	-	Yield	Yield	
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}	

Add ttbar (+single top) and W+HF control regions

Reduce impact of backgrounds

VH(bb) Run 2 Results

Best fit $\mu = 1.20^{+0.42}_{-0.36}$

- → compatible with SM
- → High channel compatibility

Obs (exp) Significance: $3.5 (3.0) \sigma$

H \rightarrow bb mass peak emerges clearly from backgrounds! Fitting m_{bb} yields compatible results: $\rightarrow \mu = 1.30^{+0.28}_{-0.27}$ (stat) $^{+0.37}_{-0.29}$ (syst)

VH(bb) Run 1 + Run 2 Results

Evidence of H→bb decay!

Best fit $\mu = 0.90^{+0.28}_{-0.26}$

 \rightarrow compatible with SM

Obs (exp) Significance: 3.6 (4.0) σ

$H \rightarrow cc$ in VH(cc)

ATLAS-CONF-2017-078

ZH(cc): A VH(bb) "Spin Off" Target c-jets!

Focus on ZH(cc) in the 2-lep channel:

c-tagging

Flight path lengths: b-hadron > c-hadron > light-hadron

c-jet identification:

- → Same input variables as standard b-tagging
- \rightarrow 2 BDT: c- VS light- and c- VS b- jets
- → Working point efficiencies: 41% c-jets, 25% b-jet, 5% light-jets

c-jet calibration:

- → Same methods as standard b-tagging
- \rightarrow b-jets in t \rightarrow Wb events
- \rightarrow c-jets in W \rightarrow cs, cd events

ZH(cc): A VH(bb) "Spin Off" Target c-jets!

Focus on **ZH**(cc) in the 2-lep channel:

Fit m_{cc} in all categories

Best fit: $\mu = -69 \pm 100$

→ Mostly limited by flavor tagging uncertainties (73%)

Upper limit: 2.7pb (110 x SM)

 \rightarrow Expected 3.9pb (150 x SM)

Conclusions

A Good Timing For An ATLAS Higgs Talk

• Evidence of ttH production in ATLAS 13 TeV data

• Evidence of H→bb decay in VH(bb) analysis with ATLAS 13 TeV data

Some More Conclusions Though

Uncertainty on $\mu_{VH(bb)}$ improved by factor 1.5 compared to Run 1

Coupling	$\kappa_{ m Z}$	$\kappa_{ m W}$	$\kappa_{ au}$	κ_t (ttH+ggH)	κ_{t} (ttH)	κ_{b}
Exp Unc.	10%	10%	15%	15%	38%	25%
		~15%	~17%			
			Personal opti	mistic computation		

And There Are Also CMS Results

Most ttH channels at 36 fb⁻¹

CMS also has **H**→**bb** evidence

From VH(bb) : <u>arXiv:1709.07497</u>

Coupling	H	E 4	κ _t (ttH+ggH)	κ _t (ttH)	$\kappa_{ m b}$
Exp Unc.	1	Even more to gain!	15%	30%	25%

Thank you for you attention

backup

Intro

Couplings Measurements: Why κ_t

• Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$

Coupling	$\kappa_{ m Z}$	$\kappa_{ m W}$	$\kappa_{ au}$	$\kappa_{\rm t}$	κ_{b}
Exp Unc.	10%	10%	15%	15%	25%

Why κ_t ?

Top quark: largest Yukawa coupling

 \rightarrow Higgs potential sensitive to small changes in κ_t

→ Investigate stability of the Higgs field

arXiv: 1411.1923

Couplings Measurements: Why κ_h

• Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$

Coupling	$\kappa_{ m Z}$	$\kappa_{ m W}$	$\kappa_{ au}$	$\kappa_{\rm t}$	κ_{b}
Exp Unc.	10%	10%	15%	15%	25%

Why κ_b ?

b quark has highest branching ration

⇒ crucial to characterize Higgs boson width.

ttH(bb)

- After selection mostly tt+jets:
 - > 92% of the background
 - > 350 times bigger than signal
- Divided in 3 components:
 - > Depending on additional jet flavor

Component	tt+lights	tt+≥1c	tt+≥1b
Phase space	Low N(b-tags): → negligible in signal regions	Medium N(b-tags): → not significant in signal regions	High N(b-tags) → leading contribution in signal regions
Modelling	Relatively well known: → Generator tuned 7 TeV data → Parton Shower tuned 8&13 TeV data	No alternative measurement → Hard to identify c-jets	Not well known: → Hard to model theoretically → Large uncertainties (~ 25 to 35%)

- After selection mostly tt+jets
- Divided in 3 components

1% in best signal region

tt+≥1c

Component	tt+lights
Phase space	Low N(b-tags): → negligible in signal regions
Modelling	Relatively well known: → Generator tuned 7 TeV data → Parton Shower tuned 8&13 TeV data

Particle level, absolute cross-section

- After selection mostly tt+jets
- Divided in 3 components

Component	tt+lights	tt+≥1c	tt+≥1b
Phase space	Low N(b-tags): → negligible in signal regions	Medium N(b-tags): → not significant in signal regions	High N(b-tags) → leading contribution in signal regions
Modelling	Relatively well known: → Generator tuned 7 TeV data → Parton Shower tuned 8&13 TeV data	No alternative measurement → Hard to identify c-jets	Not well known: → Hard to model theoretically → Large uncertainties (~ 25 to 35%)

- After selection mostly tt+jets
- Divided in 3 components

83% of the events in best signal regions

tt+≥1b

High N(b-tags)

→ leading contribution in signal regions

Not well known:

- → Hard to model theoretically
- → Large uncertainties (~ 25 to 35%)

Further split in sub-components

tt+bb: +2 b-jets

tt+b: +1 b-jets

tt+B: +1 bb-jets

tt+>3b: the rest

How To Deal With tt+jets

- Separate signal and tt+jets components:
 - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b
 - ➤ MVA technics to separate tt+≥1b and ttH(bb)
- Fit all components to data simultaneously

Categorization:

Use N(jets) and N(b-tags) at multiple working points

In reality, for each channel, N(jet)

19 categories defined

Single Lepton Categories

BDT Input Variables: Dilepton

	Definition	$SR_1^{\geq 4j}$	$SR_2^{\geq 4j}$	$SR_3^{\geq 4j}$
General kinema		2201		3
$m_{bb}^{ m min}$	Minimum invariant mass of a b-tagged jet pair	√	√	_
$m_{bb}^{ m max}$	Maximum invariant mass of a b-tagged jet pair	_	_	\checkmark
$m_{bb}^{\min \ \Delta R}$	Invariant mass of the b-tagged jet pair with minimum ΔR	√	_	\checkmark
$m_{ m jj}^{ m max}$ $p_{ m T}$	Invariant mass of the jet pair with maximum $p_{\rm T}$	√	-	-
$m_{bb}^{ ext{max}}$ p_{T}	Invariant mass of the b-tagged jet pair with maximum $p_{\rm T}$	✓	_	\checkmark
$\Delta \eta_{bb}^{ m avg}$	Average $\Delta \eta$ for all b-tagged jet pairs	√	\checkmark	\checkmark
$\Delta \eta_{\ell, \mathrm{j}}^{\mathrm{max}}$	Maximum $\Delta \eta$ between a jet and a lepton	-	\checkmark	\checkmark
$\Delta R_{bb}^{ ext{max }p_{ ext{T}}}$	ΔR between the b-tagged jet pair with maximum p_{T}	-	\checkmark	\checkmark
$N_{bb}^{ m Higgs~30}$	Number of b-tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	√	\checkmark	-
$n_{ m jets}^{p_{ m T}>40}$	Number of jets with $p_{\rm T} > 40~{\rm GeV}$	-	\checkmark	\checkmark
${\bf Aplanarity}_{b\text{-jet}}$	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [100] built with all <i>b</i> -tagged jets	-	\checkmark	-
$H_{ m T}^{ m all}$	Scalar sum of $p_{\rm T}$ of all jets and leptons	-	-	\checkmark
Variables from	reconstruction BDT			
BDT output	Output of the reconstruction BDT	✓ **	✓**	✓
$m_{bb}^{ m Higgs}$	Higgs candidate mass	√	-	\checkmark
$\Delta R_{H,tar{t}}$	ΔR between Higgs candidate and $tar{t}$ candidate system	✓ *	-	-
$\Delta R_{H,\ell}^{ m min}$	Minimum ΔR between Higgs candidate and lepton	✓	\checkmark	\checkmark
$\Delta R_{H,b}^{\min}$	Minimum ΔR between Higgs candidate and b -jet from top	✓	\checkmark	-
$\Delta R_{H,b}^{ m max}$	Maximum ΔR between Higgs candidate and b -jet from top	-	\checkmark	-
$\Delta R_{bb}^{\rm Higgs}$	ΔR between the two jets matched to the Higgs candidate	_	\checkmark	-
Variables from				
$w_{b ext{-} ext{tag}}^{ m Higgs}$	Sum of b -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	-	✓	-

BDT Input Variables: Single-Lepton

Variable	Definition	$SR_{1,2,3}^{\geq 6j}$	$SR_{1,2}^{5j}$
General kinem	atic variables		
$\Delta R_{bb}^{\text{avg}}$	Average ΔR for all b-tagged jet pairs	✓	√
$\Delta R_{bb}^{ ext{max }p_{ ext{T}}}$	ΔR between the two b-tagged jets with the largest vector sum $p_{ m T}$	✓	_
$\Delta \eta_{ m ij}^{ m max}$	Maximum $\Delta \eta$ between any two jets	✓	✓
$m_{bb}^{\min \ \Delta R}$	Mass of the combination of two b-tagged jets with the smallest ΔR	✓	-
$m_{ m ij}^{ m min}$ ΔR	Mass of the combination of any two jets with the smallest ΔR	_	\checkmark
$N_{bb}^{ m Higgs~30}$	Number of b -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	✓	✓
$H_{ m T}^{ m had}$	Scalar sum of jet $p_{\rm T}$	_	✓
$\Delta R_{\ell,bb}^{\rm min}$	ΔR between the lepton and the combination of the two b -tagged jets with the smallest ΔR	_	✓
Aplanarity	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [100] built with all jets	✓	✓
H_1	Second Fox–Wolfram moment computed using all jets and the lepton	✓	\checkmark
Variables from	reconstruction BDT		
BDT output	Output of the reconstruction BDT	✓*	√ *
$m_{bb}^{ m Higgs}$	Higgs candidate mass	✓	✓
$m_{H,b_{\mathrm{lep}}}$ top	Mass of Higgs candidate and b-jet from leptonic top candidate	✓	_
$\Delta R_{bb}^{ m Higgs}$	ΔR between b-jets from the Higgs candidate	✓	✓
$\Delta R_{H,tar{t}}$	ΔR between Higgs candidate and $tar{t}$ candidate system	✓*	√ *
$\Delta R_{H, \mathrm{lep~top}}$	ΔR between Higgs candidate and leptonic top candidate	✓	_
$\Delta R_{H,b_{ m had~top}}$	ΔR between Higgs candidate and b -jet from hadronic top candidate	_	✓*
Variables from	likelihood and matrix element method calculations		
LHD	Likelihood discriminant	✓	\checkmark
MEM_{D1}	Matrix element discriminant (in $SR_1^{\geq 6j}$ only)	✓	_
Variables from	b -tagging (not in $SR_1^{\geq 6j}$)		
$w_{b ext{-}\mathrm{tag}}^{\mathrm{Higgs}}$	Sum of b -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	✓	✓
$B_{ m jet}^3$	$3^{\rm rd}$ largest jet b-tagging discriminant	✓	\checkmark
$B_{ m jet}^4$	4 th largest jet b-tagging discriminant	✓	\checkmark
$B_{ m jet}^5$	$5^{ m th}$ largest jet b-tagging discriminant	✓	√

And What About The Modelin

tt+≥1b modeling uncertainties ⇔ main limitation

Build a complex model:

→ Aim: test in data all unknowns in tt+≥1b modeling

In best ttbar MC: Powheg+Pythia8

 \rightarrow g -> bb from Parton Shower

Generated Sherpa+OpenLoops:

- → Massive b-quarks (4 flavor PDF, 4F)
- \rightarrow g -> bb from Matrix Element at NLO

Split in several components:

Best modeling can differ:

- \rightarrow tt+bb, tt+b: best model by ME?
- \rightarrow tt+B: gluon splitting at low angles PS?
- → tt+≥3b anyway combination ME and PS

And What About The Modelin

tt+≥1b modeling uncertainties ⇔ main limitation

Build a complex model:

→ Aim: test in data all unknowns in tt+≥1b modeling

In best ttbar MC: Powheg+Pythia8

 \rightarrow g -> bb from Parton Shower

Generated Sherpa+OpenLoops:

- → Massive b-quarks (4 flavor PDF, 4F)
- → g -> bb from Matrix Element at NLO

→ No recipe to mix 4F and 5F

Various model tested:

- → Different 4F/5F mix
- → Different MC samples

Pre-fit impact on μ : $\theta = \theta + \Delta \theta \quad \theta = \theta - \Delta \theta$

Post-fit impact on μ :

— Nuis. Param. Pull

tt̄+≥1b: SHERPA5F vs. nominal

tt̄+≥1b: SHERPA4F vs. nominal

tt̃+≥1b: PS & hadronization tt̄+≥1b: ISR / FSR tt̄H: PS & hadronization

b-tagging: mis-tag (light) NP I k(tt+≥1b) = 1.24 ± 0.10

Jet energy resolution: NP I tTH: cross section (QCD scale)

tt+≥1b: tt+≥3b normalization tt+≥1c: SHERPA5F vs. nominal tt+≥1b: shower recoil scheme tt+≥1c: ISR / FSR

Jet energy resolution: NP II

tī+light: PS & hadronization Wt: diagram subtr. vs. nominal

b-tagging: efficiency NP I

b-tagging: mis-tag (c) NP I E_{τ}^{miss} : soft-term resolution

b-tagging: efficiency NP II

ATLAS

 \sqrt{s} = 13 TeV, 36.1 fb⁻¹

-2 -1.5 -1 -0.5 0 0.5

 $(\hat{\theta} - \theta_0)/\Delta \theta$

All giving the same results

→ Confidence in signal extraction

tt+jets uncertainties

- Philosophy: cover and test all modelling unknowns
- tt+jets modelling uncertainties:
 - > 6% ttbar cross-section uncertainty
 - > tt+≥1c and tt+≥1b normalizations un-constrained
 - > Known offset: Run 1 + 50% tt+ $\geq 1b$
 - > Also in Run 2 data/MC
 - Consider all relevant MC variations
 - ➤ Uncorrelated across tt+light, tt+≥1c, tt+≥1b
 - ➤ tt+light, tt+≥1c, tt+≥1b fractions fixed to PP8

Variation: Generator		PS and hadronisation	Radiation
MC sample:	Sherpa 2.2.1 (incl ttbar)	Powheg+Herwig7	Up/Dow radiation samples
Reference:	Powheg+Pythia8	Powheg+Pythia8	Powheg+Pythia8

tt+HF additional uncertainties

tt+≥1b additional uncertainties

- Also account differences between tt+bb (Sherpa+OpenLoops 4F) and ttbar generators (PP8):
 - ➤ Uncertainties on tt+b, bb, B, \geq 3b fractions:
 - Use 8 variations of the Sherpa+OpenLoops sample
 - ➤ Add 50% prior unc. on tt+≥3b
 - Kinematic difference: Sherpa4F vs Nominal
 - > Compare BDT shape in Sherpa+OpenLoops and PP8

tt+>1c additional uncertainties

- Similarly to tt+bb, exist tt+cc generator
 - > No hint from data which is the best
 - > tt+cc subdominant compared to tt+bb
- Use difference 5F and 3F as a systematic

$\operatorname{Sample} \qquad \operatorname{CR}^{3\mathrm{j}}_{tar{t}+\mathrm{light}}$		$\mathrm{CR}_{tar{t}}^{3\mathrm{j}}$	$+\geq 1b$	$\operatorname{CR}_{t\bar{t}}^{\geq 4}$	lj ⊢light	$\operatorname{CR}^{\geq_d}_{t\bar{t}}$	4j +≥1 <i>c</i>	
	Pre-fit	Post-fit	Pre-fit	Post-fit	Pre-fit	Post-fit	Pre-fit	Post-fit
$t\bar{t}H$	32.2 ± 3.8	27 ± 20	8.7 ± 1.1	7.3 ± 5.4	114 ± 11	95 ± 70	35.3 ± 3.6	29 ± 22
$t\bar{t} + ext{light}$	$63100\ \pm\ 5500$	59100 ± 1400	290 ± 110	$255~\pm~44$	42500 ± 9700	37100 ± 1300	1730 ± 730	$1410~\pm~180$
$t\bar{t} + \geq 1c$	4800 ± 2100	7700 ± 1100	360 ± 160	536 ± 89	6300 ± 2800	10300 ± 1400	1410 ± 590	$2160~\pm~290$
$t\bar{t} + \geq 1b$	2130 ± 230	2620 ± 240	710 ± 140	848 ± 75	2510 ± 280	$2850~\pm~290$	1080 ± 120	$1240\ \pm\ 110$
$t\bar{t} + V$	113 ± 31	112 ± 29	7 ± 27	7 ± 30	350 ± 180	330 ± 170	52 ± 41	50 ± 39
Non- $t\bar{t}$	6300 ± 1500	6500 ± 1200	110 ± 29	112 ± 23	4700 ± 1100	4930 ± 910	420 ± 120	$460~\pm~100$
Total	$76400~\pm~6500$	$76010\ \pm\ 390$	1500 ± 260	1765 ± 60	56000 ± 11000	55650 ± 420	4700 ± 1100	5350 ± 120
Data	76 025		17-	44	55 6	527	538	89

C1-	$SR_{\overline{q}}$	≥4j	SR	≥4j	$\mathrm{SR}_1^{\geq 4\mathrm{j}}$		
Sample	Pre-fit	Post-fit	Pre-fit	Post-fit	Pre-fit	Post-fit	
$-t \bar{t} H$	21.9 ± 2.5	18 ± 13	29.1 ± 4.2	25 ± 18	15.6 ± 2.5	12.9 ± 9.5	
$t\bar{t} + ext{light}$	83 ± 41	95 ± 30	250 ± 110	$215~\pm~43$	6.4 ± 9.9	11.1 ± 9.3	
$t\bar{t} + \geq 1c$	235 ± 61	313 ± 53	340 ± 210	427 ± 89	12.6 ± 9.4	25.8 ± 7.8	
$t\bar{t} + \geq 1b$	819 ± 85	917 ± 71	590 ± 96	669 ± 59	247 ± 61	263 ± 20	
$t\bar{t} + V$	15 ± 35	15 ± 34	22 ± 38	22 ± 39	7 ± 56	7 ± 57	
Non- $tar{t}$	75 ± 17	78 ± 16	115 ± 36	121 ± 29	13.6 ± 3.8	$14.6~\pm~3.8$	
Total	1250 ± 140	1436 ± 55	1350 ± 320	1479 ± 66	302 ± 85	334 ± 59	
Data	140	57	144	14	319		

Sample	$\mathrm{CR}^{5\mathrm{j}}_{tar{t}+}$	-light	$\mathrm{CR}_{tar{t}}^{5\mathrm{j}}$	+>1 <i>c</i>	$\mathrm{CR}^{5\mathrm{j}}_{tar{t}+b}$		
	Pre-fit Post-fit		Pre-fit Post-fit		Pre-fit	Post-fit	
$-tar{t}H$	224 ± 22	190 ± 140	18.7 ± 2.5	15 ± 12	68.0 ± 7.6	57 ± 42	
$t\bar{t} + ext{light}$	197000 ± 26000	179900 ± 4900	2580 ± 720	$2300~\pm~210$	4250 ± 920	$3560~\pm~240$	
$t\bar{t} + \geq 1c$	27500 ± 4300	$44100~\pm~5500$	1280 ± 500	$1840~\pm~250$	1770 ± 270	2590 ± 390	
$t\bar{t}$ + $\geq 1b$	11300 ± 1100	13500 ± 1300	790 ± 130	944 ± 94	3400 ± 440	4030 ± 320	
$t\bar{t} + V$	589 ± 55	584 ± 54	23.2 ± 4.1	21.3 ± 2.9	48.1 ± 5.9	46.6 ± 5.4	
Non- $tar{t}$	21300 ± 4100	20900 ± 3200	520 ± 180	440 ± 100	960 ± 190	860 ± 160	
Total	258000 ± 29000	259320 ± 910	5200 ± 1100	5560 ± 160	10400 ± 1300	11140 ± 290	
Data	2593	320	540	65	11 095		

	SF	ζ_2^{5j}	SF	$\{^{5j}_1$	$\mathrm{SR}^{\mathrm{boosted}}$		
Sample ————	Pre-fit	Post-fit	Pre-fit	Post-fit	Pre-fit	Post-fit	
$\overline{t}\overline{t}H$	40.1 ± 5.1	34 ± 25	15.9 ± 2.1	13.3 ± 9.8	16.9 ± 1.9	14 ± 10	
$t\bar{t}$ + light	500 ± 210	393 ± 67	15 ± 33	12.5 ± 9.3	180 ± 120	112 ± 32	
$t\bar{t} + \geq 1c$	436 ± 92	610 ± 100	30 ± 17	28 ± 14	168 ± 70	235 ± 39	
$t\bar{t} + \geq 1b$	1230 ± 200	$1450~\pm~110$	273 ± 53	335 ± 25	236 ± 89	229 ± 33	
$t\bar{t} + V$	19.9 ± 2.9	19.7 ± 2.4	6.4 ± 1.3	6.4 ± 1.2	16.1 ± 2.9	16.6 ± 2.4	
Non- $tar{t}$	269 ± 64	$220~\pm~52$	54 ± 11	$28.1 ~\pm~ 8.4$	104 ± 30	$101~\pm~26$	
Total	2440 ± 390	2724 ± 70	371 ± 68	423 ± 23	710 ± 200	708 ± 40	
Data	27	98	4:	26	740		

Sample	$CR_{t\bar{t}+}^{\geq 6}$	j -light	$\operatorname{CR}_{tar{t}}^{\geq \epsilon}$	3j +>1 <i>c</i>	$CR_{t\bar{t}+b}^{\geq 6j}$		
	Pre-fit Post-fit		Pre-fit	Post-fit	Pre-fit	Post-fit	
$-tar{t}H$	450 ± 48	370 ± 280	102 ± 13	87 ± 64	100 ± 12	83 ± 61	
$t\bar{t} + ext{light}$	125000 ± 34000	$108200~\pm~4300$	4300 ± 2000	3350 ± 430	2220 ± 520	1820 ± 170	
$t\bar{t} + \geq 1c$	28400 ± 7200	$45700~\pm~5100$	3600 ± 1300	5300 ± 680	1460 ± 330	2080 ± 300	
$t\bar{t} + \geq 1b$	13100 ± 1800	14600 ± 1400	2660 ± 540	2950 ± 280	3670 ± 500	4080 ± 320	
$t\bar{t} + V$	1010 ± 120	996 ± 91	118 ± 21	118 ± 14	70.5 ± 8.5	67.9 ± 7.2	
Non- $tar{t}$	$12600~\pm~3000$	11800 ± 2000	1060 ± 340	1000 ± 210	710 ± 160	600 ± 110	
Total	181000 ± 39000	181690 ± 860	11800 ± 3200	$12810~\pm~260$	8200 ± 1100	8730 ± 230	
Data	181 7	706	127	778	8576		

C1-	SR	≥6j	SR	≥6j	$\mathrm{SR}^{\geq 6\mathrm{j}}_{1}$		
Sample	Pre-fit	Post-fit	Pre-fit	Post-fit	Pre-fit	Post-fit	
$t\bar{t}H$	85 ± 10	71 ± 52	81 ± 10	68 ± 50	62 ± 11	51 ± 38	
$t\bar{t} + ext{light}$	750 ± 370	586 ± 98	210 ± 210	96 ± 33	14 ± 10	12.1 ± 5.8	
$t\bar{t} + \geq 1c$	880 ± 350	1330 ± 190	350 ± 100	473 ± 99	53 ± 33	44 ± 20	
$t\bar{t}$ + $\geq 1b$	2100 ± 420	$2290~\pm~170$	1750 ± 370	$1850~\pm~130$	1010 ± 240	1032 ± 59	
$t\bar{t} + V$	51.2 ± 7.4	50.8 ± 5.9	40.8 ± 5.7	40.3 ± 4.8	25.8 ± 3.7	$25.3~\pm~3.2$	
Non- $tar{t}$	303 ± 82	$267~\pm~63$	$155~\pm~52$	134 ± 46	75 ± 20	58 ± 17	
Total	4140 ± 850	4590 ± 110	2550 ± 510	2657 ± 82	1220 ± 250	1223 ± 42	
Data	4698		26	41	1222		

ttH(multi-leptons)

Selections

Channel	Selection criteria
Common	$N_{\rm jets} \ge 2$ and $N_{b ext{-jets}} \ge 1$
$2\ell SS$	Two very tight light leptons with $p_{\rm T} > 20~{\rm GeV}$
	Same-charge light leptons
	Zero medium $\tau_{\rm had}$ candidates
	$N_{\rm jets} \ge 4$ and $N_{b ext{-jets}} < 3$
-3ℓ	Three light leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges ± 1
	Two same-charge leptons must be very tight and have $p_{\rm T} > 15~{\rm GeV}$
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT
	Zero medium $\tau_{\rm had}$ candidates
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
4ℓ	Four light leptons; sum of light-lepton charges 0
	Third and fourth leading leptons must be tight
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)
$1\ell + 2\tau_{\rm had}$	One tight light lepton with $p_{\rm T} > 27~{\rm GeV}$
	Two medium $\tau_{\rm had}$ candidates of opposite charge, at least one being tight
	$N_{ m jets} \geq 3$
$2\ell SS + 1\tau_{had}$	Two very tight light leptons with $p_{\rm T} > 15~{\rm GeV}$
	Same-charge light leptons
	One medium $\tau_{\rm had}$ candidate, with charge opposite to that of the light leptons
	$N_{ m jets} \geq 4$
	m(ee) - 91.2 GeV > 10 GeV for ee events
$2\ell OS + 1\tau_{had}$	Two loose and isolated light leptons with $p_T > 25$, 15 GeV
	One medium $\tau_{\rm had}$ candidate
	Opposite-charge light leptons
	One medium $\tau_{\rm had}$ candidate
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for the SFOC pair
	$N_{ m jets} \ge 3$
$3\ell + 1\tau_{\rm had}$	3ℓ selection, except:
	One medium $\tau_{\rm had}$ candidate, with charge opposite to the total charge of the light leptons
	The two same-charge light leptons must be tight and have $p_T > 10 \text{ GeV}$
	The opposite-charge light lepton must be loose and isolated

Fake And Non-Prompt Leptons

	$2\ell \mathrm{SS}$	3ℓ	4ℓ	$1\ell + 2\tau_{\rm had}$	$2\ell SS + 1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell+1\tau_{\rm had}$
Non-prompt lepton strategy	DD	DD	semi-DD	MC	DD	MC	MC
	(MM)	(MM)	(SF)		(FF)		
Fake $\tau_{\rm had}$ strategy		_	_	DD	semi-DD	DD	$\operatorname{semi-DD}$
				(SS data)	(SF)	(FF)	(SF)
		С	ontrol Region S	election			
Light lepton	1T*	, 1L	3L	1T	1T*, 1L	$2\mathrm{L}^\dagger$	_
$ au_{ m had}$		$0\dot{\mathrm{M}}$]	1T, 1M	$\leq 1 \mathrm{M}$	1L	_
$N_{ m jets}$	$2 \leq N_{\rm j}$	$_{\rm ets} \leq 3$	$1 \le N_{\rm jets} \le 2$	≥ 3	$2 \le N_{\rm jets} \le 3$	≥ 3	_
$N_{h ext{-iets}}$		'	> 1		·	=0	_

Mostly data-driven estimates:

- → Matrix Method (MM): derives real and fake efficiencies from control regions
- → Fake Factor (FF): derives fake efficiencies from control regions
- → Semi-data driven: correction factors for MC from control regions

Uncertainties:

- → Closure test
- → Control region choice
- → Prompt subtraction and modeling

BDT Input Variables

	Variable	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{\rm had}$	$2\ell SS+1\tau_{had}$	$2\ell \text{OS} + 1\tau_{\text{had}}$
	Leading lepton $p_{\rm T}$		×				
	Second leading lepton $p_{\rm T}$	×	\times			×	
	Third lepton $p_{\rm T}$		×				
es	Dilepton invariant mass (all combinations)	×	$\times *$				×
Lepton properties	Three-lepton invariant mass		×				
obe	Four-lepton invariant mass			×			
pro	Best Z -candidate dilepton invariant mass			×			
uo On	Other Z-candidate dilepton invariant mass			×			
ptc	Scalar sum of all leptons $p_{\rm T}$			×			×
Ľ	Second leading lepton track isolation					×	
	Maximum $ \eta $ (lepton 0, lepton 1)	×				$\times *$	
	Lepton flavor	$\times *$	$\times *$				
	Lepton charge		×				
	Number of jets	X*	××		×	×	×
	Number of b-tagged jets	$\times *$	$\times *$		×	×	×
	Leading jet $p_{\rm T}$						×
S	Second leading jet $p_{\rm T}$		×			$\times *$	
tie	Leading b-tagged jet $p_{\rm T}$		×				
per	Scalar sum of all jets $p_{\rm T}$		×		×	×	×
[o]	Scalar sum of all b -tagged jets p_T						×
Jet properties	Has leading jet highest b-tagging weight?		×				
Je	b-tagging weight of leading jet		X				
	b-tagging weight of second leading jet		×			×	
	b-tagging weight of third leading jet					×	
	Pseudorapidity of fourth leading jet					×	
	Leading $\tau_{\rm had} \ p_{\rm T}$				×		×
ъ	Second leading $\tau_{\rm had} p_{\rm T}$				×		
$7\mathrm{had}$	$Di-\tau_{had}$ invariant mass				×		
	Invariant mass $\tau_{\rm had}$ -furthest lepton					×	
	$\Delta R(\text{lepton } 0, \text{ lepton } 1)$		X				
	$\Delta R(\text{lepton } 0, \text{ lepton } 2)$		×				
	$\Delta R(\text{lepton 0, closest jet})$	×	X				
	$\Delta R(\text{lepton 0, leading jet})$		×			×	
ces	$\Delta R(\text{lepton 0, closest } b\text{-jet})$		X				
an	$\Delta R(\text{lepton 1, closest jet})$	×	×				
list	$\Delta R(\text{lepton 2, closest jet})$		X				
r c	Smallest $\Delta R(\text{lepton, jet})$		×				×
alle	Smallest $\Delta R(\text{lepton}, b\text{-tagged jet})$						×
Angular distances	Smallest ΔR (non-tagged jet, b-tagged jet)						×
A	$\Delta R({ m lepton} \ 0, \ au_{ m had})$						×
	$\Delta R(\text{lepton } 1, \tau_{\text{had}})$						×
	Minimum ΔR between all jets				×		
	ΔR between two leading jets					×	
	Missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$	×		×			
m.	Azimuthal separation $\Delta \phi$ (leading jet, $\overrightarrow{p_{\mathrm{T}}}^{\mathrm{miss}}$)		×				
$\not\vdash_{\mathrm{T}} d$	Transverse mass leptons $(H/Z \text{ decay}) - \overrightarrow{p_T}^{\text{miss}}$			×			
	Pseudo-Matrix-Element			×			
	A COURSE ALACOMA AND AND AND AND AND AND AND AND AND AN						

ttH(multi-lepton): Post-Fit Systematics

Category	Non-prompt	Fake $\tau_{\rm had}$	q mis-id	$t \bar{t} W$	$tar{t}Z$	Diboson	Other	Total Bkgd.	t₹H	Observed
	Pre-fit yields									
2ℓSS	233 ± 39	_	33 ± 11	123 ± 18	41.4 ± 5.6	25 ± 15	28.4 ± 5.9	484 ± 38	42.6 ± 4.2	514
3ℓ SR	14.5 ± 4.3	_	_	5.5 ± 1.2	12.0 ± 1.8	1.2 ± 1.2	5.8 ± 1.4	39.1 ± 5.2	11.2 ± 1.6	61
$3\ell t\bar{t}W$ CR	13.3 ± 4.3	_	_	19.9 ± 3.1	8.7 ± 1.1	< 0.2	4.53 ± 0.92	46.5 ± 5.4	4.18 ± 0.46	56
$3\ell t\bar{t}Z$ CR	3.9 ± 2.5	_	_	2.71 ± 0.56	66 ± 11	8.4 ± 5.3	12.9 ± 4.2	93 ± 13	3.17 ± 0.41	107
3ℓ VV CR	27.7 ± 8.7	_	_	4.9 ± 1.0	21.3 ± 3.4	51 ± 30	17.9 ± 6.1	123 ± 32	1.67 ± 0.25	109
$3\ell t\bar{t}$ CR	70 ± 17	_	_	10.5 ± 1.5	7.9 ± 1.1	7.2 ± 4.8	7.3 ± 1.9	103 ± 17	4.00 ± 0.49	85
4ℓ Z-enr.	0.11 ± 0.07	_	_	< 0.01	1.52 ± 0.23	0.43 ± 0.23	0.21 ± 0.09	2.26 ± 0.34	1.06 ± 0.14	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.06 ± 0.03	0.11 ± 0.03	0.20 ± 0.03	0
1ℓ + $2\tau_{ m had}$	_	65 ± 21	_	0.09 ± 0.09	3.3 ± 1.0	1.3 ± 1.0	0.98 ± 0.35	71 ± 21	4.3 ± 1.0	67
2ℓ SS+ $1\tau_{had}$	2.4 ± 1.4	1.80 ± 0.30	0.05 ± 0.02	0.88 ± 0.24	1.83 ± 0.37	0.12 ± 0.18	1.06 ± 0.24	8.2 ± 1.6	3.09 ± 0.46	18
2ℓ OS+ $1\tau_{\rm had}$	_	756 ± 80	_	6.5 ± 1.3	11.4 ± 1.9	2.0 ± 1.3	5.8 ± 1.5	782 ± 81	14.2 ± 2.0	807
3ℓ + $1\tau_{\rm had}$	_	0.75 ± 0.15	_	0.04 ± 0.04	1.38 ± 0.24	0.002 ± 0.002	0.38 ± 0.10	2.55 ± 0.32	1.51 ± 0.23	5
					Post-fit yields	}				
2ℓSS	211 ± 26	_	28.3 ± 9.4	127 ± 18	42.9 ± 5.4	20.0 ± 6.3	28.5 ± 5.7	459 ± 24	67 ± 18	514
3ℓ SR	13.2 ± 3.1	_	_	5.8 ± 1.2	12.9 ± 1.6	1.2 ± 1.1	5.9 ± 1.3	39.0 ± 4.0	17.7 ± 4.9	61
$3\ell t\bar{t}W$ CR	11.7 ± 3.0	_	_	20.4 ± 3.0	8.9 ± 1.0	< 0.2	4.54 ± 0.88	45.6 ± 4.0	6.6 ± 1.9	56
$3\ell t\bar{t}Z$ CR	3.5 ± 2.1	_	_	2.82 ± 0.56	70.4 ± 8.6	7.1 ± 3.0	13.6 ± 4.2	97.4 ± 8.6	5.1 ± 1.4	107
3ℓ VV CR	22.4 ± 5.7	_	_	5.05 ± 0.94	22.0 ± 3.0	39 ± 11	18.1 ± 5.9	106.8 ± 9.4	2.61 ± 0.82	109
$3\ell t\bar{t}$ CR	56.0 ± 8.1	_	_	10.7 ± 1.4	8.1 ± 1.0	5.9 ± 2.7	7.1 ± 1.8	87.8 ± 7.9	6.3 ± 1.8	85
4ℓ Z-enr.	0.10 ± 0.07	_	_	< 0.01	1.60 ± 0.22	0.37 ± 0.15	0.22 ± 0.10	2.29 ± 0.28	1.65 ± 0.47	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.07 ± 0.03	0.11 ± 0.03	0.32 ± 0.09	0
1ℓ + $2\tau_{\rm had}$	_	58.0 ± 6.8	_	0.11 ± 0.11	3.31 ± 0.90	0.98 ± 0.75	0.98 ± 0.33	63.4 ± 6.7	6.5 ± 2.0	67
2ℓ SS+ $1\tau_{had}$	1.86 ± 0.91	1.86 ± 0.27	0.05 ± 0.02	0.97 ± 0.26	1.96 ± 0.37	0.15 ± 0.20	1.09 ± 0.24	7.9 ± 1.2	5.1 ± 1.3	18
2ℓ OS+ $1\tau_{\rm had}$	_	756 ± 28	_	6.6 ± 1.3	11.5 ± 1.7	1.64 ± 0.92	6.1 ± 1.5	782 ± 27	21.7 ± 5.9	807
$3\ell+1\tau_{\rm had}$	_	0.75 ± 0.14	_	0.04 ± 0.04	1.42 ± 0.22	0.002 ± 0.002	0.40 ± 0.10	2.61 ± 0.30	2.41 ± 0.68	5

tH in ttH($\gamma\gamma$)

$ttH(\gamma\gamma)$

- Included in main $H \rightarrow \gamma \gamma$ analysis
- Rely on excellent M(γγ) resolution over a continuous background

Strategy:

- \triangleright Use H $\rightarrow \gamma \gamma$ selections
- "Enriched ttH category"
- Consider categories enriched in tH

Interference in WtH production:

- \Rightarrow sensitivity to κ_t sign
- ⇒ anomalous top Yukawa couplings

Signal as double sided crystal ball around 125 GeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of Signal Process / Category

Thomas CALVET, SantaFe, Jan 31tl

ttH summary

Combination Of ttH Analyses: Summary

– ttH analysis divided in 4 channels:

- $H \rightarrow bb: arXiv:1712.08895$
- $H \rightarrow \text{multi-leptons: } \underline{\text{arXiv:} 1712.08891}$

- c) $H \rightarrow \gamma \gamma$: ATLAS-CONF-2017-045
- d) $H \to ZZ^* \to 41$: arXiv:1712.02304

- 4 different challenges:

Excellent $M(\gamma \gamma)$ resolution over continuous background Small syst uncertainties

ML and bb

Similar strategy: categorisation + MVA

→ Different backgrounds

ttH(multi-leptons)

- \rightarrow ttV + fakes and non-prompt
- → Stat and Syst error similar

ttH(bb)

- \rightarrow tt+>1b
- \rightarrow Syst limited

$ttH(ZZ^*\rightarrow 4l)$:

- ✓ Excellent S/B
- Small: 0.3 ttH events

Expect important improvement from combination

VH(bb)

$Z/W \rightarrow II$, lvv, vv related $H \rightarrow bb$ related

Selection	0-lepton		1-1	epton	2-lepton		
	_		e sub-channel	μ sub-channel			
Trigger		$E_{ m T}^{ m miss}$	Single lepton	$E_{ m T}^{ m miss}$	Single lepton		
Leptons		0 loose leptons	1 tight electron	1 medium muon	2 loose leptons with $p_{\rm T} > 7~{\rm GeV}$	7	
		with $p_{\rm T} > 7~{\rm GeV}$	$p_{\rm T} > 27~{ m GeV}$	$p_{\rm T} > 25~{ m GeV}$	≥ 1 lepton with $p_{\rm T} > 27~{ m GeV}$		
$E_{ m T}^{ m miss}$		$> 150 \mathrm{GeV}$	> 30 GeV	_	_		
$m_{\ell\ell}$		_	_		$81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$		
Jets		Exactl	y 2 or 3 jets		Exactly 2 or ≥ 3 jets		
Jet p_{T}				> 20 GeV			
b-jets			Exactly	2 b-tagged jets			
Leading b -tagged jet $p_{\rm T}$			>	> 45 GeV			
$H_{ m T}$	> 120 (2 jets), > 150 GeV (3 jets)		_		_		
$\min[\Delta\phi(ec{E}_{ m T}^{ m miss}, ec{ m pets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_		_		
$\Delta\phi(ec{E}_{ ext{T}}^{ ext{miss}}, ec{bb})$	> 120°		_		_		
$\Delta\phi(ec{b}_1,ec{b}_2)$	< 140°		_		_		
$\Delta\phi(ec{E}_{ m T}^{ m miss},ec{E}_{ m T,trk}^{ m miss})$	< 90°		_		-		
p_{T}^{V} regions	> 15		0 GeV		(75, 150] GeV, > 150 GeV		
Signal regions			$m_{bb} \geq 75 \text{ GeV or } m_{\text{top}} \leq 225 \text{ GeV}$		Same-flavour leptons		
				-	Opposite-sign charge ($\mu\mu$ sub-cham	nel)	
Control regions –		$m_{bb} < 75 \text{ GeV a}$	$m_{\rm top} > 225 \; {\rm GeV}$	Different-flavour leptons			

The Multi-Jet Background

- Negligible in 0-lep and 2-lep
- Data driven in 1-lep:
 - > Define "multij-jet CR": invert lepton isolation cut "anti-tight"
 - > Extract background shape from CR (both m_t^W and BDT variables)
 - > Fit m_T^W in SR to extract normalization

Systematic Uncertainty: List

Z + jets					
Z + ll normalisation	18%				
Z+cl normalisation	23%				
Z + bb normalisation	Floating (2-jet, 3-jet)				
Z + bc-to- $Z + bb$ ratio	30-40%				
Z + cc-to- $Z + bb$ ratio	13-15%				
Z + bl-to- $Z + bb$ ratio	20-25%				
0-to-2 lepton ratio	7%				
$m_{bb},p_{ m T}^V$	S				
	W + jets				
W + ll normalisation	32%				
W+cl normalisation	37%				
W + bb normalisation	Floating (2-jet, 3-jet)				
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)				
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)				
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)				
0-to-1 lepton ratio	5%				
W + HF CR to $SR $ ratio	$10\% \; (1\text{-lepton})$				
$m_{bb},p_{ m T}^V$	S				
$t\bar{t}$ (all are uncorrel	ated between the 0+1 and 2-lepton channels)				
$t\bar{t}$ normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)				
0-to-1 lepton ratio	8%				
2-to-3-jet ratio	9% (0+1 lepton only)				
$W + \mathrm{HF} \; \mathrm{CR} \; \mathrm{to} \; \mathrm{SR} \; \mathrm{ratio}$	25%				
$m_{bb},p_{ m T}^V$	S				
Single top quark					
Cross-section	4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt)				
Acceptance 2-jet	17% (t-channel), 35% (Wt)				
Acceptance 3-jet	20% (t-channel), $41%$ (Wt)				
$m_{bb},p_{ m T}^V$	S (t-channel, Wt)				
Multi-jet (1-lepton)					
Normalisation	60 - 100% (2-jet), 100 - 400% (3-jet)				
BDT template	S				

7 un-constrained normalizations!

Systematic Uncertainties: List

	ZZ				
Normalisation	20%				
0-to-2 lepton ratio	6%				
Acceptance from scale variations (var.)	10 – 18% (Stewart–Tackmann jet binning method)				
Acceptance from PS/UE var. for 2 or more jets	5.6% (0-lepton), 5.8% (2-lepton)				
Acceptance from PS/UE var. for 3 jets	7.3% (0-lepton), 3.1% (2-lepton)				
$m_{bb}, p_{\mathrm{T}}^{V}$, from scale var.	S (correlated with WZ uncertainties)				
$m_{bb}, p_{\mathrm{T}}^{V}, \text{ from PS/UE var.}$	S (correlated with WZ uncertainties)				
m_{bb} , from matrix-element var.	S (correlated with WZ uncertainties)				
\overline{WZ}					
Normalisation	26%				
0-to-1 lepton ratio	11%				
Acceptance from scale var.	13 – 21% (Stewart–Tackmann jet binning method)				
Acceptance from PS/UE var. for 2 or more jets	3.9%				
Acceptance from PS/UE var. for 3 jets	11%				
$m_{bb}, p_{\mathrm{T}}^{V}$, from scale var.	S (correlated with ZZ uncertainties)				
$m_{bb}, p_{\mathrm{T}}^{V}, \text{ from PS/UE var.}$	S (correlated with ZZ uncertainties)				
m_{bb} , from matrix-element var.	S (correlated with ZZ uncertainties)				
WW					
Normalisation	25%				

Systematic Uncertai

Process	Normalisation factor
$t\bar{t}$ 0- and 1-lepton	0.90 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	0.97 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	1.04 ± 0.06
W + HF 2-jet	1.22 ± 0.14
W + HF 3-jet	1.27 ± 0.14
Z + HF 2-jet	1.30 ± 0.10
Z + HF 3-jet	1.22 ± 0.09

The di-boson Validation

- Analysis repeated to fit VZ:
 - ➤ Lower p_T^{bb} and m_{bb}
 - > Change BDT signal: VZ instead of VH

5.8σ obs (5.3σ exp) ✓ Compatible with SM ✓

