New results on Higgs boson coupling to heavy flavor **Thomas CALVET for the ATLAS collaboration** Stony Brook University Santa Fe Jets and Heavy Flavor Jan 31st, 2018 ## **A Short Outline** - Some words of context - ttH analyses: - $> ttH(ZZ*\rightarrow 4l)$ - $> ttH(\gamma\gamma)$ - > ttH(bb) - $\gt ttH(WW^*, \tau\tau, ZZ^*)$ - H→bb: - $\gt VBF+\gamma, H\rightarrow bb$ - > *VH*(*bb*) - H→cc - Conclusions ## **Context** # A Bit Of History - Higgs boson discovery 2012: - > ATLAS and CMS experiments - > 48 years after its prediction - > Nobel Prize in 2013 - Measure observed particle properties: - > Rich area of physics. ## Mass measurements (high precision): | Run 1 | ATLAS + CMS | $125.09 \pm 0.24 \text{ GeV}$ | | | |-------|-------------|-------------------------------|--|--| | Run 2 | ATLAS | $124.98 \pm 0.28 \text{ GeV}$ | | | | | CMS | $125.26 \pm 0.21 \text{ GeV}$ | | | ## **Spin and Parity:** \rightarrow Compatible with SM 0+ Combined results: the excess N-The fue-ex-en- The New Hork Times GITAL SUBSCRIPTION: 4 WEEKS FOR 9 N-TW GRANANT Fe, Jan 31th 2018 ## Higgs Boson Searches at LHC ## Searches in various production modes and final states. ## Higgs boson production at LHC ## Higgs boson decay modes | Prod | ggH | VBF | VH | | ttH | |-----------------|---------------------|--------------|--------------|--|-------| | σ (pb) (13 TeV) | 48.5 | 3.78 | 2.25 | | 0.507 | | Yukawa Coupling | Top, b,, BSM | Vector Boson | Vector Boson | | Top | # Couplings Measurements: Overview • Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$ | Coupling | κ_{Z} | $\kappa_{ m W}$ | $\kappa_{ au}$ | κ_{t} | κ_{b} | | |----------|-----------------------|-----------------|----------------|--------------|-----------------------|--| | Exp Unc. | 10% | 10% | 15% | 15% | 25% | | **Couplings to vector bosons** ## **Coupling to fermions** - dataset - Best constraints on Higgs boson couplings - From ATLAS+CMS Run 1 combination: - > JHEP 08 (2016) 045 # Couplings Measurements: Overview • Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$ | Coupling | κ_{Z} | $\kappa_{ m W}$ | $\kappa_{ au}$ | | |----------|-----------------------|-----------------|----------------|--| | Exp Unc. | 10% | 10% | 15% | | - High precision: - ➤ All 3 decay modes observed in Run 1 data **Today's interest** # We Have Run 1 Couplings Measurements • Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$ | Coupling | $\kappa_{ m Z}$ | $\kappa_{ m W}$ | $\kappa_{ au}$ | $\kappa_{\rm t}$ | κ_{b} | |----------|-----------------|-----------------|----------------|------------------|-----------------------| | Exp Unc. | 10% | 10% | 15% | 15% | 25% | - ➤ Largest Yukawa coupling in the SM - > Good constraint on top Yukawa coupling with respect to other couplings - > Combines indirect and direct measurements top quark contribution to the loop is fixed in SM. But, what if there is BSM? # We Have Run 1 Couplings Measurements • Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$ | • Coupling m | ieasurements: | Kappa Frame | work K _j = 1 ³ | / I | SM | | | |--------------|-----------------|-----------------|--------------------------------------|------------|--|---------------------|------------------| | Coupling | $\kappa_{ m Z}$ | $\kappa_{ m W}$ | $\kappa_{ au}$ | | $\kappa_{\rm t}$ | | $\kappa_{\rm b}$ | | Exp Unc. | 10% | 10% | 15% | | | | 25% | | | | | | | 30% | 4 | | | | | | | ACTI | | 1 D 1 | | | | | | | | LAS+CMS
2.3 ^{+0.7} _{-0.6} | S Kun I | | | _ | | | | | $(2.3) \sigma ob$ | s. (exp) | | | | | scenario | | | | ,000000 B | t/b | | | ⇒ 100p cont | tent unknown | | | _ | -000 | 000 | | Н | | t/b | | H | T | | Н | | | γ | g Q00000 | | | | g ω 000000 | $ar{t}/ar{b}$ | # We Have Run 1 Couplings Measurements • Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$ | Coupling | $\kappa_{ m Z}$ | $\kappa_{ m W}$ | $\mathbf{K}_{\mathbf{ au}}$ | $\kappa_{\rm t}$ | $\kappa_{ m b}$ | | |----------|-----------------|-----------------|-----------------------------|------------------|-----------------|--| | Exp Unc. | 10% | 10% | 15% | 15% | 25% | | b quark has highest branching ration ⇒ crucial to constrain Higgs boson width. Coupling to b: involved in indirect and direct measurements Similar to top, but sub-leading contribution in loops => most of the sensitivity from Run 1 H \rightarrow bb searches # ttH analysis ## ttH Channels - ttH: direct access to κ_t - ➤ Constrain BSM in loops - Small cross section + complex final state - \triangleright Divided in 4 analyses ttH(bb), ttH(multi-leptons), ttH($\gamma\gamma$), ttH($ZZ*\rightarrow 41$) # ttH(bb) arXiv:1712.08895 ## ttH(bb) A Complex Final State • The ttH(bb) search is a complex analysis candidate candidate ## **Strategy:** - Separate signal and each tt+jets components - Fit all components to data simultaneously - Separate signal and tt+jets components: - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b - ➤ MVA technics to separate tt+≥1b and ttH(bb) - Fit all components to data simultaneously ## **Categorization:** Use N(jets) and N(b-tags) at multiple working points ## 19 categories defined - Separate signal and tt+jets components: - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b - ➤ MVA technics to separate tt+≥1b and ttH(bb) - Fit all components to data simultaneously ## **Categorization:** Use N(jets) and N(b-tags) at multiple working points b-tagging can't separate ttH(bb) and tt+bb (4 b-quarks) **⇒ Maximum purity 5.4%** ## 19 categories defined - Separate signal and tt+jets components: - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b - ➤ MVA technics to separate tt+≥1b and ttH(bb) - Fit all components to data simultaneously ## **Step 1: reconstruction** - → Exploit final state properties - \rightarrow BDT to find best matching reco objets \leftrightarrow final state particles # Reconstructed Higgs mass | Solution Solut ## **Step 2: Final BDT for ttH(bb) VS tt+bb separation:** → combines step 1 output with b-tag and general variables - Separate signal and tt+jets components: - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b - > MVA technics to separate tt+≥1b and ttH(bb) - Fit all components to data simultaneously # ttH(bb) result - Separate signal and tt+jets components: - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b - ➤ MVA technics to separate tt+≥1b and ttH(bb) - Fit all components to data simultaneously Observed $\mu = 0.84^{+0.64}_{-0.61}$ $\Rightarrow 1.1\sigma$ significance (1.4 exp) In terms of upper limit: $\Rightarrow \mu < 2 \times SM \text{ at } 95\% \text{ CL}$ # And What About The Modeling? Impact of and corrections applied to the 20 most important uncertainties # And What About The Modeling? Impact of and corrections applied to the 20 most important uncertainties # And What About The Modeling? Impact of and corrections applied to the 20 most important uncertainties Very little guidance how to model additional g→bb → Different predictions (g→bb from PS, ME, mix) All giving the same results (within uncertainties) → Confidence in signal extraction $ttH(WW*, \tau\tau, ZZ*)$ arXiv:1712.08891 # ttH(multi-leptons) # The needs of the many (leptons) outweigh the needs of the few Primarily targeting $H\rightarrow WW^*$, $\tau\tau$, ZZ^* # ttH(multi-leptons): Associated Backgrounds ## Selection leads to 2 main background types # ttH(multi-leptons): Associated Backgrounds ## Non-prompt leptons, τ and charge misassignment: - → Data driven estimate in control regions - → Reduced by applying cuts on dedicated BDTs Prompt e and µ identification efficiencies for the chosen BDT working point - Further reduce background contributions with BDTs - Fit all components to data simultaneously - Further reduce background contributions with BDTs - Fit all components to data simultaneously ## Similar strategy as ttH(bb), but: - → several backgrounds to isolate - → independent MVAs for each categories (with enough statistic) | | $2\ell { m SS}$ | -3ℓ | 4ℓ | $1\ell + 2\tau_{\mathrm{had}}$ | $2\ell SS + 1\tau_{had}$ | $2\ell \text{OS} + 1\tau_{\text{had}}$ | $3\ell{+}1 au_{ m had}$ | |---------------------|------------------------------------|--|------------------------|--------------------------------|--------------------------|--|-------------------------| | BDT trained against | Fakes and $t\bar{t}V$ | $t\bar{t},t\bar{t}W,t\bar{t}Z,\mathrm{VV}$ | $t \overline{t} Z$ / - | $t \bar t$ | all | $\overline{t}\overline{t}$ | - | | Discriminant | $2\times1\mathrm{D}\ \mathrm{BDT}$ | 5D BDT | Event count | BDT | BDT | BDT | Event count | | Number of bins | 6 | 5 | 1 / 1 | 2 | 2 | 10 | 1 | | Control regions | - | 4 | -
- | - | - | _ | - | - Further reduce background contributions with BDTs - Fit all components to data simultaneously ## Similar strategy as ttH(bb), but: - → several backgrounds to isolate - → independent MVAs for each categories (with enough statistic) - Further reduce background contributions with BDTs - Fit all components to data simultaneously | | ATLAS | | | √s=13 TeV, 36.1 fb ⁻¹ | | | | |----------------------------|-------------|----------------|-----|--------------------------------------|------------------------|-----------------------------------|--| | | ─Tot. | ···· Sta | at. | Tot. | (Stat., | Syst.) | | | 2ℓ OS + $1\tau_{had}$ | | • | Н | 1.7 ^{+2.1} _{-1.9} | $\binom{+1.6}{-1.5}$, | ^{+1.4} _{-1.1}) | | | $1\ell + 2\tau_{had}$ | | 4 | | -0.6 ^{+1.6} _{-1.5} | | | | | 4ℓ |
 | | -0.5 ^{+1.3} _{-0.9} | $\binom{+1.3}{-0.8}$, | ^{+0.2} _{-0.3}) | | | $3\ell + 1\tau_{had}$ | | ••••• | 4 | 1.6 ^{+1.8} _{-1.3} | $\binom{+1.7}{-1.3}$, | ^{+0.6} _{-0.2}) | | | 2ℓ SS + $1\tau_{had}$ | | B | •+ | ı 3.5 ^{+1.7}
−1.3 | | ^{+0.9} _{-0.5}) | | | 3ℓ | | + • • + | | 1.8 ^{+0.9}
-0.7 | (_0.6, | $^{+0.6}_{-0.5}$) | | | 2ℓSS | ı | ₩ | | 1.5 $^{+0.7}_{-0.6}$ | (_0.4, | $^{+0.5}_{-0.4})$ | | | combined | | HOH! | | 1.6 $^{+0.5}_{-0.4}$ | | ^{+0.4} _{-0.3}) | | | | -2 0 | 2 | 4 | 6 8 | 10 | 12 | | | | | | Ве | est-fit $\mu_{t\overline{t}H}$ for | or m _H =12 | 25 GeV | | | Channel | Significance | | | | | |---------------------------|--------------|-------------|--|--|--| | | Observed | Expected | | | | | $2\ell OS + 1\tau_{had}$ | 0.9σ | 0.5σ | | | | | $1\ell + 2\tau_{\rm had}$ | _ | 0.6σ | | | | | 4ℓ | _ | 0.8σ | | | | | $3\ell + 1\tau_{\rm had}$ | 1.3σ | 0.9σ | | | | | $2\ell SS+1\tau_{had}$ | 3.4σ | 1.1σ | | | | | 3ℓ | 2.4σ | 1.5σ | | | | | $2\ell { m SS}$ | 2.7σ | 1.9σ | | | | | Combined | 4.1σ | 2.8σ | | | | Observed signal strength: $\mu = 1.6^{+0.5}_{-0.4}$ Corresponding to a 4.1 σ observed significance (for 2.8 σ expected) $ttH(ZZ^*\rightarrow 41)$ arXiv:1712.02304 # $ttH(ZZ^* \rightarrow 41)$: A New Player - Included in main H→ZZ*→4l analysis: - "ttH enriched category": 1 b-tag + (≥4 jets or 1 lepton and ≥2 jets) - Very pure channel - Very low stat: 0.39 ttH events expected 0 observed **Expected Composition** | Reconstructed | Signal | ZZ^* | Other | Total | Observed | |----------------|-----------------|-----------------|-----------------|-----------------|----------| | event category | | background | backgrounds | expected | | | ttH-enriched | 0.39 ± 0.04 | 0.014 ± 0.006 | 0.07 ± 0.04 | 0.47 ± 0.05 | 0 | Setting upper limits at 120 fb at the 95% CL (8 times SM) # $ttH(\gamma\gamma)$ ATLAS-CONF-2017-045 # $ttH(\gamma\gamma)$ - Included in main $H \rightarrow \gamma \gamma$ analysis - Rely on excellent M(γγ) resolution over a continuous background ## Strategy: - \triangleright Use H $\rightarrow \gamma \gamma$ selections - "Enriched ttH category": - ➤ high N(jets), N(b-tags) - \triangleright 0 or 1 lepton \Rightarrow hadronic or semi-lep categories - ➤ In hadronic categories: - > BDT to discriminate ggH and ttH - Used to refine categorisation Fraction of Signal Process / Category # $ttH(\gamma\gamma)$ - Included in main $H \rightarrow \gamma \gamma$ analysis - Rely on excellent M(γγ) resolution over a continuous background ## Strategy: - \triangleright Use H $\rightarrow \gamma \gamma$ selections - "Enriched ttH category" - Consider categories enriched in tH # Combined fit with other $H \rightarrow \gamma \gamma$ channels $\mu(ttH) = 0.5 \pm 0.6$ Signal as double sided crystal ball around 125 GeV Fraction of Signal Process / Category ### ttH combination arXiv:1712.08891 ## Combination Of ttH Analyses: Result #### Best fit value: $\mu = 1.2 \pm 0.3$ - \rightarrow Compatible with SM - \rightarrow Syst limited: - → Channel specific modeling unc. - → Signal uncertainties | Channel | Best | -fit μ | Signif | Significance | | | |-----------------------|---------------------|-------------------------|-------------|--------------|--|--| | | Observed Expected | | Observed | Expected | | | | Multilepton | $1.6_{-0.4}^{+0.5}$ | $1.0_{-0.4}^{+0.4}$ | 4.1σ | 2.8σ | | | | $H o b ar{b}$ | $0.8_{-0.6}^{+0.6}$ | $1.0^{+0.6}_{-0.6}$ | 1.4σ | 1.6σ | | | | $H \to \gamma \gamma$ | $0.6_{-0.6}^{+0.7}$ | $1.0^{+0.8}_{-0.6}$ | 0.9σ | 1.7σ | | | | $H \to 4\ell$ | < 1.9 | $1.0^{+3.2}_{-1.0}$ | | 0.6σ | | | | Combined | $1.2_{-0.3}^{+0.3}$ | $1.0^{\ +0.3}_{\ -0.3}$ | 4.2σ | 3.8σ | | | #### **Evidence of ttH production:** 4.2σ (exp: 3.8σ) **Measured Cross section:** 790⁺²³⁰₋₂₁₀ fb (SM: 507⁺³⁵₋₅₀ fb) #### Kappa coupling: fermions against bosons # H→bb analysis ### Where To Search For H→bb? 4 production modes are available: ### Where To Search For H→bb? • 4 production modes are available: ### Where To Search For H→bb? 4 production modes are available: ### Where To Search For $H\rightarrow bb$? 4 production modes are available: 43 VBF+γ, H→bb ATLAS-CONF-2016-063 ### **VBF**+ γ With H \rightarrow bb #### ATLAS-CONF-2016-063 #### Trigger additional photon: - \Rightarrow large loss in cross section - ⇒ drastic multi-jet reduction + background destructive interference Step1: Signal VS background BDT to define 3 regions (avoid variables correlated to m_{bb}) Step 2: Fit m_{bb} in each regions #### Low sensitivity: $0.4\sigma \exp$ $\mu = -3.9^{+2.8}_{-2.7}$ Done at 12.6 fb⁻¹ will need stat # VH(bb) JHEP 12 (2017) 024 ### VH(bb) The Savior ### ATLAS Simulation Preliminary $\sqrt{s} = 13 \text{ TeV}, \text{ tt} \quad \text{b jets}$ --- Light-flavour jets 10^{-2} 10^{-3} -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 MV2c10 BDT Output #### **High performance b-tag** | Flavor | Efficiency | | |-----------|------------|--| | b-jet | 70% | | | c-jet | 8.2% | | | light-jet | 0.3% | | #### Reconstruction of the 2 b is a key ingredient #### Precise $p_T(b)$ measurements #### "Re-calibrate" b-jets: → Muon in jet corrections Use response from MC (PtReco) → 21 channel: fit llbb transverse kinematic Improves m_{bb} resolution by up to 40% ## VH(bb) Channels Analysis split in channels depending on N(lep) 0-lepton and MET 1-lepton (and MET) 2-lepton ### VH(bb) Final Categories #### **Further categorize events:** - \rightarrow Sensitive to relatively high $p_T(V)$ - \rightarrow Also split in 2 or 3 jets | | | Categories | | | | | |----------|---------------------|------------|--|--|----------|--| | Channel | SR/CR | 75 GeV | $V < p_{\mathrm{T}}^{V} < 150 \; \mathrm{GeV}$ | $p_{\mathrm{T}}^{V} > 150 \; \mathrm{GeV}$ | | | | | Sit/Oit | 2 jets | 3 jets | 2 jets | 3 jets | | | 0-lepton | SR | - | - | ✓ | √ | | | 1-lepton | SR | _ | _ | \checkmark | ✓ | | | 2-lepton | SR | ✓ | ✓ | \checkmark | ✓ | | #### Main backgrounds: ### **VH(bb)** Final Categories #### **Further categorize events:** - \rightarrow Sensitive to relatively high $p_T(V)$ - \rightarrow Also split in 2 or 3 jets | | | Categories | | | | | |----------|---------------------|------------|--|--------------------------|----------|--| | Channel | SR/CR | 75 GeV | $V < p_{\mathrm{T}}^{V} < 150 \; \mathrm{GeV}$ | $p_{\mathrm{T}}^{V} > 1$ | .50 GeV | | | | SIL/ OIL | 2 jets | 3 jets | 2 jets | 3 jets | | | 0-lepton | SR | _ | _ | BDT | BDT | | | 1-lepton | SR | - | - | BDT | BDT | | | 2-lepton | SR | BDT | BDT | BDT | BDT | | | 1-lepton | W + HF CR | - | - | Yield | Yield | | | 2-lepton | $e\mu$ CR | m_{bb} | m_{bb} | Yield | m_{bb} | | Add ttbar (+single top) and W+HF control regions # Reduce impact of backgrounds ## VH(bb) Run 2 Results Best fit $\mu = 1.20^{+0.42}_{-0.36}$ - → compatible with SM - → High channel compatibility Obs (exp) Significance: $3.5 (3.0) \sigma$ H \rightarrow bb mass peak emerges clearly from backgrounds! Fitting m_{bb} yields compatible results: $\rightarrow \mu = 1.30^{+0.28}_{-0.27}$ (stat) $^{+0.37}_{-0.29}$ (syst) ### VH(bb) Run 1 + Run 2 Results **Evidence of H→bb decay!** Best fit $\mu = 0.90^{+0.28}_{-0.26}$ \rightarrow compatible with SM Obs (exp) Significance: 3.6 (4.0) σ # $H \rightarrow cc$ in VH(cc) ATLAS-CONF-2017-078 ## ZH(cc): A VH(bb) "Spin Off" Target c-jets! #### Focus on ZH(cc) in the 2-lep channel: ### c-tagging Flight path lengths: b-hadron > c-hadron > light-hadron #### c-jet identification: - → Same input variables as standard b-tagging - \rightarrow 2 BDT: c- VS light- and c- VS b- jets - → Working point efficiencies: 41% c-jets, 25% b-jet, 5% light-jets #### c-jet calibration: - → Same methods as standard b-tagging - \rightarrow b-jets in t \rightarrow Wb events - \rightarrow c-jets in W \rightarrow cs, cd events ## ZH(cc): A VH(bb) "Spin Off" Target c-jets! #### Focus on **ZH**(cc) in the 2-lep channel: #### Fit m_{cc} in all categories **Best fit:** $\mu = -69 \pm 100$ → Mostly limited by flavor tagging uncertainties (73%) **Upper limit: 2.7pb (110 x SM)** \rightarrow Expected 3.9pb (150 x SM) ### **Conclusions** ## A Good Timing For An ATLAS Higgs Talk • Evidence of ttH production in ATLAS 13 TeV data • Evidence of H→bb decay in VH(bb) analysis with ATLAS 13 TeV data ### Some More Conclusions Though Uncertainty on $\mu_{VH(bb)}$ improved by factor 1.5 compared to Run 1 | Coupling | $\kappa_{ m Z}$ | $\kappa_{ m W}$ | $\kappa_{ au}$ | κ_t (ttH+ggH) | κ_{t} (ttH) | κ_{b} | |----------|-----------------|-----------------|----------------|----------------------|--------------------|-----------------------| | Exp Unc. | 10% | 10% | 15% | 15% | 38% | 25% | | | | ~15% | ~17% | | | | | | | | Personal opti | mistic computation | | | ### And There Are Also CMS Results #### Most ttH channels at 36 fb⁻¹ **CMS** also has **H**→**bb** evidence From VH(bb) : <u>arXiv:1709.07497</u> | Coupling | H | E 4 | κ _t (ttH+ggH) | κ _t (ttH) | $\kappa_{ m b}$ | |----------|---|--------------------|--------------------------|----------------------|-----------------| | Exp Unc. | 1 | Even more to gain! | 15% | 30% | 25% | # Thank you for you attention # backup ### Intro # Couplings Measurements: Why κ_t • Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$ | Coupling | $\kappa_{ m Z}$ | $\kappa_{ m W}$ | $\kappa_{ au}$ | $\kappa_{\rm t}$ | κ_{b} | |----------|-----------------|-----------------|----------------|------------------|-----------------------| | Exp Unc. | 10%
| 10% | 15% | 15% | 25% | Why κ_t ? Top quark: largest Yukawa coupling \rightarrow Higgs potential sensitive to small changes in κ_t → Investigate stability of the Higgs field arXiv: 1411.1923 # Couplings Measurements: Why κ_h • Coupling measurements: Kappa Framework $\kappa_j^2 = \Gamma^j / \Gamma^j_{SM}$ | Coupling | $\kappa_{ m Z}$ | $\kappa_{ m W}$ | $\kappa_{ au}$ | $\kappa_{\rm t}$ | κ_{b} | |----------|-----------------|-----------------|----------------|------------------|-----------------------| | Exp Unc. | 10% | 10% | 15% | 15% | 25% | Why κ_b ? b quark has highest branching ration ⇒ crucial to characterize Higgs boson width. # ttH(bb) - After selection mostly tt+jets: - > 92% of the background - > 350 times bigger than signal - Divided in 3 components: - > Depending on additional jet flavor | Component | tt+lights | tt+≥1c | tt+≥1b | |-------------|--|--|--| | Phase space | Low N(b-tags): → negligible in signal regions | Medium N(b-tags): → not significant in signal regions | High N(b-tags) → leading contribution in signal regions | | Modelling | Relatively well known: → Generator tuned 7 TeV data → Parton Shower tuned 8&13 TeV data | No alternative measurement → Hard to identify c-jets | Not well known: → Hard to model theoretically → Large uncertainties (~ 25 to 35%) | - After selection mostly tt+jets - Divided in 3 components 1% in best signal region tt+≥1c | Component | tt+lights | |-------------|--| | Phase space | Low N(b-tags): → negligible in signal regions | | Modelling | Relatively well known: → Generator tuned 7 TeV data → Parton Shower tuned 8&13 TeV data | Particle level, absolute cross-section - After selection mostly tt+jets - Divided in 3 components | Component | tt+lights | tt+≥1c | tt+≥1b | |-------------|--|--|--| | Phase space | Low N(b-tags): → negligible in signal regions | Medium N(b-tags): → not significant in signal regions | High N(b-tags) → leading contribution in signal regions | | Modelling | Relatively well known: → Generator tuned 7 TeV data → Parton Shower tuned 8&13 TeV data | No alternative measurement → Hard to identify c-jets | Not well known: → Hard to model theoretically → Large uncertainties (~ 25 to 35%) | - After selection mostly tt+jets - Divided in 3 components 83% of the events in best signal regions #### tt+≥1b #### High N(b-tags) → leading contribution in signal regions #### Not well known: - → Hard to model theoretically - → Large uncertainties (~ 25 to 35%) #### **Further split in sub-components** tt+bb: +2 b-jets tt+b: +1 b-jets tt+B: +1 bb-jets tt+>3b: the rest ### How To Deal With tt+jets - Separate signal and tt+jets components: - ➤ Advanced categorization to define control regions enriched in tt+light, tt+≥1c and tt+≥1b - ➤ MVA technics to separate tt+≥1b and ttH(bb) - Fit all components to data simultaneously #### **Categorization:** Use N(jets) and N(b-tags) at multiple working points #### In reality, for each channel, N(jet) #### 19 categories defined ### Single Lepton Categories ### **BDT Input Variables: Dilepton** | | Definition | $SR_1^{\geq 4j}$ | $SR_2^{\geq 4j}$ | $SR_3^{\geq 4j}$ | |---|---|------------------|------------------|------------------| | General kinema | | 2201 | | 3 | | $m_{bb}^{ m min}$ | Minimum invariant mass of a b-tagged jet pair | √ | √ | _ | | $m_{bb}^{ m max}$ | Maximum invariant mass of a b-tagged jet pair | _ | _ | \checkmark | | $m_{bb}^{\min \ \Delta R}$ | Invariant mass of the b-tagged jet pair with minimum ΔR | √ | _ | \checkmark | | $m_{ m jj}^{ m max}$ $p_{ m T}$ | Invariant mass of the jet pair with maximum $p_{\rm T}$ | √ | - | - | | $m_{bb}^{ ext{max}}$ p_{T} | Invariant mass of the b-tagged jet pair with maximum $p_{\rm T}$ | ✓ | _ | \checkmark | | $\Delta \eta_{bb}^{ m avg}$ | Average $\Delta \eta$ for all b-tagged jet pairs | √ | \checkmark | \checkmark | | $\Delta \eta_{\ell, \mathrm{j}}^{\mathrm{max}}$ | Maximum $\Delta \eta$ between a jet and a lepton | - | \checkmark | \checkmark | | $\Delta R_{bb}^{ ext{max }p_{ ext{T}}}$ | ΔR between the b-tagged jet pair with maximum p_{T} | - | \checkmark | \checkmark | | $N_{bb}^{ m Higgs~30}$ | Number of b-tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass | √ | \checkmark | - | | $n_{ m jets}^{p_{ m T}>40}$ | Number of jets with $p_{\rm T} > 40~{\rm GeV}$ | - | \checkmark | \checkmark | | ${\bf Aplanarity}_{b\text{-jet}}$ | $1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [100] built with all <i>b</i> -tagged jets | - | \checkmark | - | | $H_{ m T}^{ m all}$ | Scalar sum of $p_{\rm T}$ of all jets and leptons | - | - | \checkmark | | Variables from | reconstruction BDT | | | | | BDT output | Output of the reconstruction BDT | ✓ ** | ✓** | ✓ | | $m_{bb}^{ m Higgs}$ | Higgs candidate mass | √ | - | \checkmark | | $\Delta R_{H,tar{t}}$ | ΔR between Higgs candidate and $tar{t}$ candidate system | ✓ * | - | - | | $\Delta R_{H,\ell}^{ m min}$ | Minimum ΔR between Higgs candidate and lepton | ✓ | \checkmark | \checkmark | | $\Delta R_{H,b}^{\min}$ | Minimum ΔR between Higgs candidate and b -jet from top | ✓ | \checkmark | - | | $\Delta R_{H,b}^{ m max}$ | Maximum ΔR between Higgs candidate and b -jet from top | - | \checkmark | - | | $\Delta R_{bb}^{\rm Higgs}$ | ΔR between the two jets matched to the Higgs candidate | _ | \checkmark | - | | Variables from | | | | | | $w_{b ext{-} ext{tag}}^{ m Higgs}$ | Sum of b -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT | - | ✓ | - | ### **BDT Input Variables: Single-Lepton** | Variable | Definition | $SR_{1,2,3}^{\geq 6j}$ | $SR_{1,2}^{5j}$ | |---|--|------------------------|-----------------| | General kinem | atic variables | | | | $\Delta R_{bb}^{\text{avg}}$ | Average ΔR for all b-tagged jet pairs | ✓ | √ | | $\Delta R_{bb}^{ ext{max }p_{ ext{T}}}$ | ΔR between the two b-tagged jets with the largest vector sum $p_{ m T}$ | ✓ | _ | | $\Delta \eta_{ m ij}^{ m max}$ | Maximum $\Delta \eta$ between any two jets | ✓ | ✓ | | $m_{bb}^{\min \ \Delta R}$ | Mass of the combination of two b-tagged jets with the smallest ΔR | ✓ | - | | $m_{ m ij}^{ m min}$ ΔR | Mass of the combination of any two jets with the smallest ΔR | _ | \checkmark | | $N_{bb}^{ m Higgs~30}$ | Number of b -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass | ✓ | ✓ | | $H_{ m T}^{ m had}$ | Scalar sum of jet $p_{\rm T}$ | _ | ✓ | | $\Delta R_{\ell,bb}^{\rm min}$ | ΔR between the lepton and the combination of the two b -tagged jets with the smallest ΔR | _ | ✓ | | Aplanarity | $1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [100] built with all jets | ✓ | ✓ | | H_1 | Second Fox–Wolfram moment computed using all jets and the lepton | ✓ | \checkmark | | Variables from | reconstruction BDT | | | | BDT output | Output of the reconstruction BDT | ✓* | √ * | | $m_{bb}^{ m Higgs}$ | Higgs candidate mass | ✓ | ✓ | | $m_{H,b_{\mathrm{lep}}}$ top | Mass of Higgs candidate and b-jet from leptonic top candidate | ✓ | _ | | $\Delta R_{bb}^{ m Higgs}$ | ΔR between b-jets from the Higgs candidate | ✓ | ✓ | | $\Delta R_{H,tar{t}}$ | ΔR between Higgs candidate and $tar{t}$ candidate system | ✓* | √ * | | $\Delta R_{H, \mathrm{lep~top}}$ | ΔR between Higgs candidate and leptonic top candidate | ✓ | _ | | $\Delta R_{H,b_{ m had~top}}$ | ΔR between Higgs candidate and b -jet from hadronic top candidate | _ | ✓* | | Variables from | likelihood and matrix element method calculations | | | | LHD | Likelihood discriminant | ✓ | \checkmark | | MEM_{D1} | Matrix element discriminant (in $SR_1^{\geq 6j}$ only) | ✓ | _ | | Variables from | b -tagging (not in $SR_1^{\geq 6j}$) | | | | $w_{b ext{-}\mathrm{tag}}^{\mathrm{Higgs}}$ | Sum of b -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT | ✓ | ✓ | | $B_{ m jet}^3$ | $3^{\rm rd}$ largest jet b-tagging discriminant | ✓ | \checkmark | | $B_{ m jet}^4$ | 4 th largest jet b-tagging discriminant | ✓ | \checkmark | | $B_{ m jet}^5$ | $5^{ m th}$ largest jet b-tagging discriminant | ✓ | √ | ### And What About The Modelin tt+≥1b modeling uncertainties ⇔ main limitation #### Build a complex model: → Aim: test in data all unknowns in tt+≥1b modeling #### In best ttbar MC: Powheg+Pythia8 \rightarrow g -> bb from Parton Shower #### Generated Sherpa+OpenLoops: - → Massive b-quarks (4 flavor PDF, 4F) - \rightarrow g -> bb from Matrix Element at NLO #### **Split in several components:** #### **Best modeling can differ:** - \rightarrow tt+bb, tt+b: best model by ME? - \rightarrow tt+B: gluon splitting at low angles PS? - → tt+≥3b anyway combination ME and PS ### And What About The Modelin tt+≥1b modeling uncertainties ⇔ main limitation
Build a complex model: → Aim: test in data all unknowns in tt+≥1b modeling #### In best ttbar MC: Powheg+Pythia8 \rightarrow g -> bb from Parton Shower #### Generated Sherpa+OpenLoops: - → Massive b-quarks (4 flavor PDF, 4F) - → g -> bb from Matrix Element at NLO → No recipe to mix 4F and 5F #### Various model tested: - → Different 4F/5F mix - → Different MC samples Pre-fit impact on μ : $\theta = \theta + \Delta \theta \quad \theta = \theta - \Delta \theta$ Post-fit impact on μ : — Nuis. Param. Pull tt̄+≥1b: SHERPA5F vs. nominal tt̄+≥1b: SHERPA4F vs. nominal tt̃+≥1b: PS & hadronization tt̄+≥1b: ISR / FSR tt̄H: PS & hadronization b-tagging: mis-tag (light) NP I k(tt+≥1b) = 1.24 ± 0.10 Jet energy resolution: NP I tTH: cross section (QCD scale) tt+≥1b: tt+≥3b normalization tt+≥1c: SHERPA5F vs. nominal tt+≥1b: shower recoil scheme tt+≥1c: ISR / FSR Jet energy resolution: NP II tī+light: PS & hadronization Wt: diagram subtr. vs. nominal b-tagging: efficiency NP I b-tagging: mis-tag (c) NP I E_{τ}^{miss} : soft-term resolution b-tagging: efficiency NP II ATLAS \sqrt{s} = 13 TeV, 36.1 fb⁻¹ -2 -1.5 -1 -0.5 0 0.5 $(\hat{\theta} - \theta_0)/\Delta \theta$ ### All giving the same results → Confidence in signal extraction ### tt+jets uncertainties - Philosophy: cover and test all modelling unknowns - tt+jets modelling uncertainties: - > 6% ttbar cross-section uncertainty - > tt+≥1c and tt+≥1b normalizations un-constrained - > Known offset: Run 1 + 50% tt+ $\geq 1b$ - > Also in Run 2 data/MC - Consider all relevant MC variations - ➤ Uncorrelated across tt+light, tt+≥1c, tt+≥1b - ➤ tt+light, tt+≥1c, tt+≥1b fractions fixed to PP8 | Variation: Generator | | PS and hadronisation | Radiation | |----------------------|---------------------------|----------------------|--------------------------| | MC sample: | Sherpa 2.2.1 (incl ttbar) | Powheg+Herwig7 | Up/Dow radiation samples | | Reference: | Powheg+Pythia8 | Powheg+Pythia8 | Powheg+Pythia8 | ### tt+HF additional uncertainties #### tt+≥1b additional uncertainties - Also account differences between tt+bb (Sherpa+OpenLoops 4F) and ttbar generators (PP8): - ➤ Uncertainties on tt+b, bb, B, \geq 3b fractions: - Use 8 variations of the Sherpa+OpenLoops sample - ➤ Add 50% prior unc. on tt+≥3b - Kinematic difference: Sherpa4F vs Nominal - > Compare BDT shape in Sherpa+OpenLoops and PP8 #### tt+>1c additional uncertainties - Similarly to tt+bb, exist tt+cc generator - > No hint from data which is the best - > tt+cc subdominant compared to tt+bb - Use difference 5F and 3F as a systematic | $\operatorname{Sample} \qquad \operatorname{CR}^{3\mathrm{j}}_{tar{t}+\mathrm{light}}$ | | $\mathrm{CR}_{tar{t}}^{3\mathrm{j}}$ | $+\geq 1b$ | $\operatorname{CR}_{t\bar{t}}^{\geq 4}$ | lj
⊢light | $\operatorname{CR}^{\geq_d}_{t\bar{t}}$ | 4j
+≥1 <i>c</i> | | |--|--------------------|--------------------------------------|----------------|---|-----------------|---|--------------------|------------------| | | Pre-fit | Post-fit | Pre-fit | Post-fit | Pre-fit | Post-fit | Pre-fit | Post-fit | | $t\bar{t}H$ | 32.2 ± 3.8 | 27 ± 20 | 8.7 ± 1.1 | 7.3 ± 5.4 | 114 ± 11 | 95 ± 70 | 35.3 ± 3.6 | 29 ± 22 | | $t\bar{t} + ext{light}$ | $63100\ \pm\ 5500$ | 59100 ± 1400 | 290 ± 110 | $255~\pm~44$ | 42500 ± 9700 | 37100 ± 1300 | 1730 ± 730 | $1410~\pm~180$ | | $t\bar{t} + \geq 1c$ | 4800 ± 2100 | 7700 ± 1100 | 360 ± 160 | 536 ± 89 | 6300 ± 2800 | 10300 ± 1400 | 1410 ± 590 | $2160~\pm~290$ | | $t\bar{t} + \geq 1b$ | 2130 ± 230 | 2620 ± 240 | 710 ± 140 | 848 ± 75 | 2510 ± 280 | $2850~\pm~290$ | 1080 ± 120 | $1240\ \pm\ 110$ | | $t\bar{t} + V$ | 113 ± 31 | 112 ± 29 | 7 ± 27 | 7 ± 30 | 350 ± 180 | 330 ± 170 | 52 ± 41 | 50 ± 39 | | Non- $t\bar{t}$ | 6300 ± 1500 | 6500 ± 1200 | 110 ± 29 | 112 ± 23 | 4700 ± 1100 | 4930 ± 910 | 420 ± 120 | $460~\pm~100$ | | Total | $76400~\pm~6500$ | $76010\ \pm\ 390$ | 1500 ± 260 | 1765 ± 60 | 56000 ± 11000 | 55650 ± 420 | 4700 ± 1100 | 5350 ± 120 | | Data | 76 025 | | 17- | 44 | 55 6 | 527 | 538 | 89 | | C1- | $SR_{\overline{q}}$ | ≥4j | SR | ≥4j | $\mathrm{SR}_1^{\geq 4\mathrm{j}}$ | | | |--------------------------|---------------------|---------------|----------------|---------------|------------------------------------|----------------|--| | Sample | Pre-fit | Post-fit | Pre-fit | Post-fit | Pre-fit | Post-fit | | | $-t \bar{t} H$ | 21.9 ± 2.5 | 18 ± 13 | 29.1 ± 4.2 | 25 ± 18 | 15.6 ± 2.5 | 12.9 ± 9.5 | | | $t\bar{t} + ext{light}$ | 83 ± 41 | 95 ± 30 | 250 ± 110 | $215~\pm~43$ | 6.4 ± 9.9 | 11.1 ± 9.3 | | | $t\bar{t} + \geq 1c$ | 235 ± 61 | 313 ± 53 | 340 ± 210 | 427 ± 89 | 12.6 ± 9.4 | 25.8 ± 7.8 | | | $t\bar{t} + \geq 1b$ | 819 ± 85 | 917 ± 71 | 590 ± 96 | 669 ± 59 | 247 ± 61 | 263 ± 20 | | | $t\bar{t} + V$ | 15 ± 35 | 15 ± 34 | 22 ± 38 | 22 ± 39 | 7 ± 56 | 7 ± 57 | | | Non- $tar{t}$ | 75 ± 17 | 78 ± 16 | 115 ± 36 | 121 ± 29 | 13.6 ± 3.8 | $14.6~\pm~3.8$ | | | Total | 1250 ± 140 | 1436 ± 55 | 1350 ± 320 | 1479 ± 66 | 302 ± 85 | 334 ± 59 | | | Data | 140 | 57 | 144 | 14 | 319 | | | | Sample | $\mathrm{CR}^{5\mathrm{j}}_{tar{t}+}$ | -light | $\mathrm{CR}_{tar{t}}^{5\mathrm{j}}$ | +>1 <i>c</i> | $\mathrm{CR}^{5\mathrm{j}}_{tar{t}+b}$ | | | |--------------------------|---------------------------------------|-------------------|--------------------------------------|----------------|--|----------------|--| | | Pre-fit Post-fit | | Pre-fit Post-fit | | Pre-fit | Post-fit | | | $-tar{t}H$ | 224 ± 22 | 190 ± 140 | 18.7 ± 2.5 | 15 ± 12 | 68.0 ± 7.6 | 57 ± 42 | | | $t\bar{t} + ext{light}$ | 197000 ± 26000 | 179900 ± 4900 | 2580 ± 720 | $2300~\pm~210$ | 4250 ± 920 | $3560~\pm~240$ | | | $t\bar{t} + \geq 1c$ | 27500 ± 4300 | $44100~\pm~5500$ | 1280 ± 500 | $1840~\pm~250$ | 1770 ± 270 | 2590 ± 390 | | | $t\bar{t}$ + $\geq 1b$ | 11300 ± 1100 | 13500 ± 1300 | 790 ± 130 | 944 ± 94 | 3400 ± 440 | 4030 ± 320 | | | $t\bar{t} + V$ | 589 ± 55 | 584 ± 54 | 23.2 ± 4.1 | 21.3 ± 2.9 | 48.1 ± 5.9 | 46.6 ± 5.4 | | | Non- $tar{t}$ | 21300 ± 4100 | 20900 ± 3200 | 520 ± 180 | 440 ± 100 | 960 ± 190 | 860 ± 160 | | | Total | 258000 ± 29000 | 259320 ± 910 | 5200 ± 1100 | 5560 ± 160 | 10400 ± 1300 | 11140 ± 290 | | | Data | 2593 | 320 | 540 | 65 | 11 095 | | | | | SF | ζ_2^{5j} | SF | $\{^{5j}_1$ | $\mathrm{SR}^{\mathrm{boosted}}$ | | | |-----------------------------|----------------|----------------|----------------|------------------|----------------------------------|----------------|--| | Sample
———— | Pre-fit | Post-fit | Pre-fit | Post-fit | Pre-fit | Post-fit | | | $\overline{t}\overline{t}H$ | 40.1 ± 5.1 | 34 ± 25 | 15.9 ± 2.1 | 13.3 ± 9.8 | 16.9 ± 1.9 | 14 ± 10 | | | $t\bar{t}$ + light | 500 ± 210 | 393 ± 67 | 15 ± 33 | 12.5 ± 9.3 | 180 ± 120 | 112 ± 32 | | | $t\bar{t} + \geq 1c$ | 436 ± 92 | 610 ± 100 | 30 ± 17 | 28 ± 14 | 168 ± 70 | 235 ± 39 | | | $t\bar{t} + \geq 1b$ | 1230 ± 200 | $1450~\pm~110$ | 273 ± 53 | 335 ± 25 | 236 ± 89 | 229 ± 33 | | | $t\bar{t} + V$ | 19.9 ± 2.9 | 19.7 ± 2.4 | 6.4 ± 1.3 | 6.4 ± 1.2 | 16.1 ± 2.9 | 16.6 ± 2.4 | | | Non- $tar{t}$ | 269 ± 64 | $220~\pm~52$ | 54 ± 11 | $28.1 ~\pm~ 8.4$ | 104 ± 30 | $101~\pm~26$ | | | Total | 2440 ± 390 | 2724 ± 70 | 371 ± 68 | 423 ± 23 | 710 ± 200 | 708 ± 40 | | | Data | 27 | 98 | 4: | 26 | 740 | | | | Sample | $CR_{t\bar{t}+}^{\geq 6}$ | j
-light | $\operatorname{CR}_{tar{t}}^{\geq \epsilon}$ | 3j
+>1 <i>c</i> | $CR_{t\bar{t}+b}^{\geq 6j}$ | | | |--------------------------|---------------------------|-------------------|--|--------------------|-----------------------------|----------------|--| | | Pre-fit Post-fit | | Pre-fit | Post-fit | Pre-fit | Post-fit | | | $-tar{t}H$ | 450 ± 48 | 370 ± 280 | 102 ± 13 | 87 ± 64 | 100 ± 12 | 83 ± 61 | | | $t\bar{t} + ext{light}$ | 125000 ± 34000 | $108200~\pm~4300$ | 4300 ± 2000 | 3350 ± 430 | 2220 ± 520 | 1820 ± 170 | | | $t\bar{t} + \geq 1c$ | 28400 ± 7200 | $45700~\pm~5100$ | 3600 ± 1300 | 5300 ± 680 | 1460 ± 330 | 2080 ± 300 | | | $t\bar{t} + \geq 1b$ | 13100 ± 1800 | 14600 ± 1400 | 2660 ± 540 | 2950 ± 280 | 3670 ± 500 | 4080 ± 320 | | | $t\bar{t} + V$ | 1010 ± 120 | 996 ± 91 | 118 ± 21 | 118 ± 14 | 70.5 ± 8.5 | 67.9 ± 7.2 | | | Non- $tar{t}$ | $12600~\pm~3000$ | 11800 ± 2000 | 1060 ± 340 | 1000 ± 210 | 710 ± 160 | 600 ± 110 | | | Total | 181000 ± 39000 | 181690 ± 860 | 11800 ± 3200 | $12810~\pm~260$ | 8200 ± 1100 | 8730 ± 230 | | | Data | 181 7 | 706 | 127 | 778 | 8576 | | | | C1- | SR | ≥6j | SR | ≥6j | $\mathrm{SR}^{\geq 6\mathrm{j}}_{1}$ | | | |--------------------------|----------------|----------------|----------------|----------------|--------------------------------------|----------------|--| | Sample | Pre-fit | Post-fit | Pre-fit | Post-fit | Pre-fit | Post-fit | | | $t\bar{t}H$ | 85 ± 10 | 71 ± 52 | 81 ± 10 | 68 ± 50 | 62 ± 11 | 51 ± 38 | | | $t\bar{t} + ext{light}$ | 750 ± 370 | 586 ± 98 | 210 ± 210 | 96 ± 33 | 14 ± 10 | 12.1 ± 5.8 | | | $t\bar{t} + \geq 1c$ | 880 ± 350 | 1330 ± 190 | $350 \pm
100$ | 473 ± 99 | 53 ± 33 | 44 ± 20 | | | $t\bar{t}$ + $\geq 1b$ | 2100 ± 420 | $2290~\pm~170$ | 1750 ± 370 | $1850~\pm~130$ | 1010 ± 240 | 1032 ± 59 | | | $t\bar{t} + V$ | 51.2 ± 7.4 | 50.8 ± 5.9 | 40.8 ± 5.7 | 40.3 ± 4.8 | 25.8 ± 3.7 | $25.3~\pm~3.2$ | | | Non- $tar{t}$ | 303 ± 82 | $267~\pm~63$ | $155~\pm~52$ | 134 ± 46 | 75 ± 20 | 58 ± 17 | | | Total | 4140 ± 850 | 4590 ± 110 | 2550 ± 510 | 2657 ± 82 | 1220 ± 250 | 1223 ± 42 | | | Data | 4698 | | 26 | 41 | 1222 | | | # ttH(multi-leptons) ### Selections | Channel | Selection criteria | |---------------------------|---| | Common | $N_{\rm jets} \ge 2$ and $N_{b ext{-jets}} \ge 1$ | | $2\ell SS$ | Two very tight light leptons with $p_{\rm T} > 20~{\rm GeV}$ | | | Same-charge light leptons | | | Zero medium $\tau_{\rm had}$ candidates | | | $N_{\rm jets} \ge 4$ and $N_{b ext{-jets}} < 3$ | | -3ℓ | Three light leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges ± 1 | | | Two same-charge leptons must be very tight and have $p_{\rm T} > 15~{\rm GeV}$ | | | The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT | | | Zero medium $\tau_{\rm had}$ candidates | | | $m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs | | | $ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$ | | 4ℓ | Four light leptons; sum of light-lepton charges 0 | | | Third and fourth leading leptons must be tight | | | $m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs | | | $ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$ | | | Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs) | | $1\ell + 2\tau_{\rm had}$ | One tight light lepton with $p_{\rm T} > 27~{\rm GeV}$ | | | Two medium $\tau_{\rm had}$ candidates of opposite charge, at least one being tight | | | $N_{ m jets} \geq 3$ | | $2\ell SS + 1\tau_{had}$ | Two very tight light leptons with $p_{\rm T} > 15~{\rm GeV}$ | | | Same-charge light leptons | | | One medium $\tau_{\rm had}$ candidate, with charge opposite to that of the light leptons | | | $N_{ m jets} \geq 4$ | | | m(ee) - 91.2 GeV > 10 GeV for ee events | | $2\ell OS + 1\tau_{had}$ | Two loose and isolated light leptons with $p_T > 25$, 15 GeV | | | One medium $\tau_{\rm had}$ candidate | | | Opposite-charge light leptons | | | One medium $\tau_{\rm had}$ candidate | | | $m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for the SFOC pair | | | $N_{ m jets} \ge 3$ | | $3\ell + 1\tau_{\rm had}$ | 3ℓ selection, except: | | | One medium $\tau_{\rm had}$ candidate, with charge opposite to the total charge of the light leptons | | | The two same-charge light leptons must be tight and have $p_T > 10 \text{ GeV}$ | | | The opposite-charge light lepton must be loose and isolated | ### Fake And Non-Prompt Leptons | | $2\ell \mathrm{SS}$ | 3ℓ | 4ℓ | $1\ell + 2\tau_{\rm had}$ | $2\ell SS + 1\tau_{had}$ | $2\ell OS + 1\tau_{had}$ | $3\ell+1\tau_{\rm had}$ | |--------------------------------|---------------------|---------------------|----------------------------|---------------------------|----------------------------|--------------------------|--------------------------| | Non-prompt lepton strategy | DD | DD | semi-DD | MC | DD | MC | MC | | | (MM) | (MM) | (SF) | | (FF) | | | | Fake $\tau_{\rm had}$ strategy | | _ | _ | DD | semi-DD | DD | $\operatorname{semi-DD}$ | | | | | | (SS data) | (SF) | (FF) | (SF) | | | | С | ontrol Region S | election | | | | | Light lepton | 1T* | , 1L | 3L | 1T | 1T*, 1L | $2\mathrm{L}^\dagger$ | _ | | $ au_{ m had}$ | | $0\dot{\mathrm{M}}$ |] | 1T, 1M | $\leq 1 \mathrm{M}$ | 1L | _ | | $N_{ m jets}$ | $2 \leq N_{\rm j}$ | $_{\rm ets} \leq 3$ | $1 \le N_{\rm jets} \le 2$ | ≥ 3 | $2 \le N_{\rm jets} \le 3$ | ≥ 3 | _ | | $N_{h ext{-iets}}$ | | ' | > 1 | | · | =0 | _ | #### **Mostly data-driven estimates:** - → Matrix Method (MM): derives real and fake efficiencies from control regions - → Fake Factor (FF): derives fake efficiencies from control regions - → Semi-data driven: correction factors for MC from control regions #### **Uncertainties:** - → Closure test - → Control region choice - → Prompt subtraction and modeling ### **BDT Input Variables** | | Variable | $2\ell SS$ | 3ℓ | 4ℓ | $1\ell + 2\tau_{\rm had}$ | $2\ell SS+1\tau_{had}$ | $2\ell \text{OS} + 1\tau_{\text{had}}$ | |-----------------------------|--|------------|------------|---------|---------------------------|------------------------|--| | | Leading lepton $p_{\rm T}$ | | × | | | | | | | Second leading lepton $p_{\rm T}$ | × | \times | | | × | | | | Third lepton $p_{\rm T}$ | | × | | | | | | es | Dilepton invariant mass (all combinations) | × | $\times *$ | | | | × | | Lepton properties | Three-lepton invariant mass | | × | | | | | | obe | Four-lepton invariant mass | | | × | | | | | pro | Best Z -candidate dilepton invariant mass | | | × | | | | | uo
On | Other Z-candidate dilepton invariant mass | | | × | | | | | ptc | Scalar sum of all leptons $p_{\rm T}$ | | | × | | | × | | Ľ | Second leading lepton track isolation | | | | | × | | | | Maximum $ \eta $ (lepton 0, lepton 1) | × | | | | $\times *$ | | | | Lepton flavor | $\times *$ | $\times *$ | | | | | | | Lepton charge | | × | | | | | | | Number of jets | X* | ×× | | × | × | × | | | Number of b-tagged jets | $\times *$ | $\times *$ | | × | × | × | | | Leading jet $p_{\rm T}$ | | | | | | × | | S | Second leading jet $p_{\rm T}$ | | × | | | $\times *$ | | | tie | Leading b-tagged jet $p_{\rm T}$ | | × | | | | | | per | Scalar sum of all jets $p_{\rm T}$ | | × | | × | × | × | | [o] | Scalar sum of all b -tagged jets p_T | | | | | | × | | Jet properties | Has leading jet highest b-tagging weight? | | × | | | | | | Je | b-tagging weight of leading jet | | X | | | | | | | b-tagging weight of second leading jet | | × | | | × | | | | b-tagging weight of third leading jet | | | | | × | | | | Pseudorapidity of fourth leading jet | | | | | × | | | | Leading $\tau_{\rm had} \ p_{\rm T}$ | | | | × | | × | | ъ | Second leading $\tau_{\rm had} p_{\rm T}$ | | | | × | | | | $7\mathrm{had}$ | $Di-\tau_{had}$ invariant mass | | | | × | | | | | Invariant mass $\tau_{\rm had}$ -furthest lepton | | | | | × | | | | $\Delta R(\text{lepton } 0, \text{ lepton } 1)$ | | X | | | | | | | $\Delta R(\text{lepton } 0, \text{ lepton } 2)$ | | × | | | | | | | $\Delta R(\text{lepton 0, closest jet})$ | × | X | | | | | | | $\Delta R(\text{lepton 0, leading jet})$ | | × | | | × | | | ces | $\Delta R(\text{lepton 0, closest } b\text{-jet})$ | | X | | | | | | an | $\Delta R(\text{lepton 1, closest jet})$ | × | × | | | | | | list | $\Delta R(\text{lepton 2, closest jet})$ | | X | | | | | | r c | Smallest $\Delta R(\text{lepton, jet})$ | | × | | | | × | | alle | Smallest $\Delta R(\text{lepton}, b\text{-tagged jet})$ | | | | | | × | | Angular distances | Smallest ΔR (non-tagged jet, b-tagged jet) | | | | | | × | | A | $\Delta R({ m lepton} \ 0, \ au_{ m had})$ | | | | | | × | | | $\Delta R(\text{lepton } 1, \tau_{\text{had}})$ | | | | | | × | | | Minimum ΔR between all jets | | | | × | | | | | ΔR between two leading jets | | | | | × | | | | Missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$ | × | | × | | | | | m. | Azimuthal separation $\Delta \phi$ (leading jet, $\overrightarrow{p_{\mathrm{T}}}^{\mathrm{miss}}$) | | × | | | | | | $\not\vdash_{\mathrm{T}} d$ | Transverse mass leptons $(H/Z \text{ decay}) - \overrightarrow{p_T}^{\text{miss}}$ | | | × | | | | | | Pseudo-Matrix-Element | | | × | | | | | | A COURSE ALACOMA AND AND AND AND AND AND AND AND AND AN | | | | | | | ### ttH(multi-lepton): Post-Fit Systematics | Category | Non-prompt | Fake $\tau_{\rm had}$ | q mis-id | $t \bar{t} W$ | $tar{t}Z$ | Diboson | Other | Total Bkgd. | t₹H | Observed | |-------------------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-------------------|-----------------|-----------------|-----------------|----------| | | Pre-fit yields | | | | | | | | | | | 2ℓSS | 233 ± 39 | _ | 33 ± 11 | 123 ± 18 | 41.4 ± 5.6 | 25 ± 15 | 28.4 ± 5.9 | 484 ± 38 | 42.6 ± 4.2 | 514 | | 3ℓ SR | 14.5 ± 4.3 | _ | _ | 5.5 ± 1.2 | 12.0 ± 1.8 | 1.2 ± 1.2 | 5.8 ± 1.4 | 39.1 ± 5.2 | 11.2 ± 1.6 | 61 | | $3\ell t\bar{t}W$ CR | 13.3 ± 4.3 | _ | _ | 19.9 ± 3.1 | 8.7 ± 1.1 | < 0.2 | 4.53 ± 0.92 | 46.5 ± 5.4 | 4.18 ± 0.46 | 56 | | $3\ell t\bar{t}Z$ CR | 3.9 ± 2.5 | _ | _ | 2.71 ± 0.56 | 66 ± 11 | 8.4 ± 5.3 | 12.9 ± 4.2 | 93 ± 13 | 3.17 ± 0.41 | 107 | | 3ℓ VV CR | 27.7 ± 8.7 | _ | _ | 4.9 ± 1.0 | 21.3 ± 3.4 | 51 ± 30 | 17.9 ± 6.1 | 123 ± 32 | 1.67 ± 0.25 | 109 | | $3\ell t\bar{t}$ CR | 70 ± 17 | _ | _ | 10.5 ± 1.5 | 7.9 ± 1.1 | 7.2 ± 4.8 | 7.3 ± 1.9 | 103 ± 17 | 4.00 ± 0.49 | 85 | | 4ℓ Z-enr. | 0.11 ± 0.07 | _ | _ | < 0.01 | 1.52 ± 0.23 | 0.43 ± 0.23 | 0.21 ± 0.09 | 2.26 ± 0.34 | 1.06 ± 0.14 | 2 | | 4ℓ Z-dep. | 0.01 ± 0.01 | _ | _ | < 0.01 | 0.04 ± 0.02 | < 0.01 | 0.06 ± 0.03 | 0.11 ± 0.03 | 0.20 ± 0.03 | 0 | | 1ℓ + $2\tau_{ m had}$ | _ | 65 ± 21 | _ | 0.09 ± 0.09 | 3.3 ± 1.0 | 1.3 ± 1.0 | 0.98 ± 0.35 | 71 ± 21 | 4.3 ± 1.0 | 67 | | 2ℓ SS+ $1\tau_{had}$ | 2.4 ± 1.4 | 1.80 ± 0.30 | 0.05 ± 0.02 | 0.88 ± 0.24 | 1.83 ± 0.37 | 0.12 ± 0.18 | 1.06 ± 0.24 | $8.2 \pm
1.6$ | 3.09 ± 0.46 | 18 | | 2ℓ OS+ $1\tau_{\rm had}$ | _ | 756 ± 80 | _ | 6.5 ± 1.3 | 11.4 ± 1.9 | 2.0 ± 1.3 | 5.8 ± 1.5 | 782 ± 81 | 14.2 ± 2.0 | 807 | | 3ℓ + $1\tau_{\rm had}$ | _ | 0.75 ± 0.15 | _ | 0.04 ± 0.04 | 1.38 ± 0.24 | 0.002 ± 0.002 | 0.38 ± 0.10 | 2.55 ± 0.32 | 1.51 ± 0.23 | 5 | | | | | | | Post-fit yields | } | | | | | | 2ℓSS | 211 ± 26 | _ | 28.3 ± 9.4 | 127 ± 18 | 42.9 ± 5.4 | 20.0 ± 6.3 | 28.5 ± 5.7 | 459 ± 24 | 67 ± 18 | 514 | | 3ℓ SR | 13.2 ± 3.1 | _ | _ | 5.8 ± 1.2 | 12.9 ± 1.6 | 1.2 ± 1.1 | 5.9 ± 1.3 | 39.0 ± 4.0 | 17.7 ± 4.9 | 61 | | $3\ell t\bar{t}W$ CR | 11.7 ± 3.0 | _ | _ | 20.4 ± 3.0 | 8.9 ± 1.0 | < 0.2 | 4.54 ± 0.88 | 45.6 ± 4.0 | 6.6 ± 1.9 | 56 | | $3\ell t\bar{t}Z$ CR | 3.5 ± 2.1 | _ | _ | 2.82 ± 0.56 | 70.4 ± 8.6 | 7.1 ± 3.0 | 13.6 ± 4.2 | 97.4 ± 8.6 | 5.1 ± 1.4 | 107 | | 3ℓ VV CR | 22.4 ± 5.7 | _ | _ | 5.05 ± 0.94 | 22.0 ± 3.0 | 39 ± 11 | 18.1 ± 5.9 | 106.8 ± 9.4 | 2.61 ± 0.82 | 109 | | $3\ell t\bar{t}$ CR | 56.0 ± 8.1 | _ | _ | 10.7 ± 1.4 | 8.1 ± 1.0 | 5.9 ± 2.7 | 7.1 ± 1.8 | 87.8 ± 7.9 | 6.3 ± 1.8 | 85 | | 4ℓ Z-enr. | 0.10 ± 0.07 | _ | _ | < 0.01 | 1.60 ± 0.22 | 0.37 ± 0.15 | 0.22 ± 0.10 | 2.29 ± 0.28 | 1.65 ± 0.47 | 2 | | 4ℓ Z-dep. | 0.01 ± 0.01 | _ | _ | < 0.01 | 0.04 ± 0.02 | < 0.01 | 0.07 ± 0.03 | 0.11 ± 0.03 | 0.32 ± 0.09 | 0 | | 1ℓ + $2\tau_{\rm had}$ | _ | 58.0 ± 6.8 | _ | 0.11 ± 0.11 | 3.31 ± 0.90 | 0.98 ± 0.75 | 0.98 ± 0.33 | 63.4 ± 6.7 | 6.5 ± 2.0 | 67 | | 2ℓ SS+ $1\tau_{had}$ | 1.86 ± 0.91 | 1.86 ± 0.27 | 0.05 ± 0.02 | 0.97 ± 0.26 | 1.96 ± 0.37 | 0.15 ± 0.20 | 1.09 ± 0.24 | 7.9 ± 1.2 | 5.1 ± 1.3 | 18 | | 2ℓ OS+ $1\tau_{\rm had}$ | _ | 756 ± 28 | _ | 6.6 ± 1.3 | 11.5 ± 1.7 | 1.64 ± 0.92 | 6.1 ± 1.5 | 782 ± 27 | 21.7 ± 5.9 | 807 | | $3\ell+1\tau_{\rm had}$ | _ | 0.75 ± 0.14 | _ | 0.04 ± 0.04 | 1.42 ± 0.22 | 0.002 ± 0.002 | 0.40 ± 0.10 | 2.61 ± 0.30 | 2.41 ± 0.68 | 5 | # tH in ttH($\gamma\gamma$) # $ttH(\gamma\gamma)$ - Included in main $H \rightarrow \gamma \gamma$ analysis - Rely on excellent M(γγ) resolution over a continuous background #### Strategy: - \triangleright Use H $\rightarrow \gamma \gamma$ selections - "Enriched ttH category" - Consider categories enriched in tH ### **Interference in WtH production:** - \Rightarrow sensitivity to κ_t sign - ⇒ anomalous top Yukawa couplings # Signal as double sided crystal ball around 125 GeV 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Fraction of Signal Process / Category Thomas CALVET, SantaFe, Jan 31tl # ttH summary ## Combination Of ttH Analyses: Summary #### – ttH analysis divided in 4 channels: - $H \rightarrow bb: arXiv:1712.08895$ - $H \rightarrow \text{multi-leptons: } \underline{\text{arXiv:} 1712.08891}$ - c) $H \rightarrow \gamma \gamma$: ATLAS-CONF-2017-045 - d) $H \to ZZ^* \to 41$: arXiv:1712.02304 #### - 4 different challenges: Excellent $M(\gamma \gamma)$ resolution over continuous background Small syst uncertainties ML and bb Similar strategy: categorisation + MVA → Different backgrounds #### ttH(multi-leptons) - \rightarrow ttV + fakes and non-prompt - → Stat and Syst error similar #### ttH(bb) - \rightarrow tt+>1b - \rightarrow Syst limited #### $ttH(ZZ^*\rightarrow 4l)$: - ✓ Excellent S/B - Small: 0.3 ttH events **Expect important improvement from combination** # VH(bb) # $Z/W \rightarrow II$, lvv, vv related $H \rightarrow bb$ related | Selection | 0-lepton | | 1-1 | epton | 2-lepton | | | |---|--|--------------------------------|--|---------------------------|---|------|--| | | _ | | e sub-channel | μ sub-channel | | | | | Trigger | | $E_{ m T}^{ m miss}$ | Single lepton | $E_{ m T}^{ m miss}$ | Single lepton | | | | Leptons | | 0 loose leptons | 1 tight electron | 1 medium muon | 2 loose leptons with $p_{\rm T} > 7~{\rm GeV}$ | 7 | | | | | with $p_{\rm T} > 7~{\rm GeV}$ | $p_{\rm T} > 27~{ m GeV}$ | $p_{\rm T} > 25~{ m GeV}$ | ≥ 1 lepton with $p_{\rm T} > 27~{ m GeV}$ | | | | $E_{ m T}^{ m miss}$ | | $> 150 \mathrm{GeV}$ | > 30 GeV | _ | _ | | | | $m_{\ell\ell}$ | | _ | _ | | $81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$ | | | | Jets | | Exactl | y 2 or 3 jets | | Exactly 2 or ≥ 3 jets | | | | Jet p_{T} | | | | > 20 GeV | | | | | b-jets | | | Exactly | 2 b-tagged jets | | | | | Leading b -tagged jet $p_{\rm T}$ | | | > | > 45 GeV | | | | | $H_{ m T}$ | > 120 (2 jets), > 150 GeV (3 jets) | | _ | | _ | | | | $\min[\Delta\phi(ec{E}_{ m T}^{ m miss}, ec{ m pets})]$ | $> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$ | | _ | | _ | | | | $\Delta\phi(ec{E}_{ ext{T}}^{ ext{miss}}, ec{bb})$ | > 120° | | _ | | _ | | | | $\Delta\phi(ec{b}_1,ec{b}_2)$ | < 140° | | _ | | _ | | | | $\Delta\phi(ec{E}_{ m T}^{ m miss},ec{E}_{ m T,trk}^{ m miss})$ | < 90° | | _ | | - | | | | p_{T}^{V} regions | > 15 | | 0 GeV | | (75, 150] GeV, > 150 GeV | | | | Signal regions | | | $m_{bb} \geq 75 \text{ GeV or } m_{\text{top}} \leq 225 \text{ GeV}$ | | Same-flavour leptons | | | | | | | | - | Opposite-sign charge ($\mu\mu$ sub-cham | nel) | | | Control regions – | | $m_{bb} < 75 \text{ GeV a}$ | $m_{\rm top} > 225 \; {\rm GeV}$ | Different-flavour leptons | | | | ### The Multi-Jet Background - Negligible in 0-lep and 2-lep - Data driven in 1-lep: - > Define "multij-jet CR": invert lepton isolation cut "anti-tight" - > Extract background shape from CR (both m_t^W and BDT variables) - > Fit m_T^W in SR to extract normalization ## Systematic Uncertainty: List | Z + jets | | | | | | |--|---|--|--|--|--| | Z + ll normalisation | 18% | | | | | | Z+cl normalisation | 23% | | | | | | Z + bb normalisation | Floating (2-jet, 3-jet) | | | | | | Z + bc-to- $Z + bb$ ratio | 30-40% | | | | | | Z + cc-to- $Z + bb$ ratio | 13-15% | | | | | | Z + bl-to- $Z + bb$ ratio | 20-25% | | | | | | 0-to-2 lepton ratio | 7% | | | | | | $m_{bb},p_{ m T}^V$ | S | | | | | | | W + jets | | | | | | W + ll normalisation | 32% | | | | | | W+cl normalisation | 37% | | | | | | W + bb normalisation | Floating (2-jet, 3-jet) | | | | | | W + bl-to- $W + bb$ ratio | 26% (0-lepton) and $23%$ (1-lepton) | | | | | | W + bc-to- $W + bb$ ratio | 15% (0-lepton) and $30%$ (1-lepton) | | | | | | W + cc-to- $W + bb$ ratio | 10% (0-lepton) and $30%$ (1-lepton) | | | | | | 0-to-1 lepton ratio | 5% | | | | | | W + HF CR to $SR $ ratio | $10\% \; (1\text{-lepton})$ | | | | | | $m_{bb},p_{ m T}^V$ | S | | | | | | $t\bar{t}$ (all are uncorrel | ated between the 0+1 and 2-lepton channels) | | | | | | $t\bar{t}$ normalisation | Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet) | | | | | | 0-to-1 lepton ratio | 8% | | | | | | 2-to-3-jet ratio | 9% (0+1 lepton only) | | | | | | $W + \mathrm{HF} \; \mathrm{CR} \; \mathrm{to} \; \mathrm{SR} \; \mathrm{ratio}$ | 25% | | | | | | $m_{bb},p_{ m T}^V$ | S | | | | | | Single top quark | | | | | | | Cross-section | 4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt) | | | | | | Acceptance 2-jet | 17% (t-channel), 35% (Wt) | | | | | | Acceptance 3-jet | 20% (t-channel), $41%$ (Wt) | | | | | | $m_{bb},p_{ m T}^V$ | S (t-channel, Wt) | | | | | | Multi-jet (1-lepton) | | | | | | | Normalisation | 60 - 100% (2-jet), 100 - 400% (3-jet) | | | | | | BDT template | S | | | | | 7 un-constrained normalizations! # Systematic Uncertainties: List | | ZZ | | | | | |---|--|--|--|--|--| | Normalisation | 20% | | | | | | 0-to-2 lepton ratio | 6% | | | | | | Acceptance from scale variations (var.) | 10 – 18% (Stewart–Tackmann jet binning method) | | | | | | Acceptance from PS/UE var. for 2 or more jets | 5.6% (0-lepton), 5.8% (2-lepton) | | | | | | Acceptance from PS/UE var. for 3 jets | 7.3% (0-lepton), 3.1% (2-lepton) | | | | | | $m_{bb}, p_{\mathrm{T}}^{V}$, from scale var. | S (correlated with WZ uncertainties) | | | | | | $m_{bb}, p_{\mathrm{T}}^{V}, \text{ from PS/UE var.}$ | S (correlated with WZ uncertainties) | | | | | | m_{bb} , from matrix-element var. | S (correlated with WZ uncertainties) | | | | | | \overline{WZ} | | | | | | | Normalisation | 26% | | | | | | 0-to-1 lepton ratio | 11% | | | | | | Acceptance from scale var. | 13 – 21% (Stewart–Tackmann jet binning method) | | | | | | Acceptance from PS/UE var. for 2 or more jets | 3.9% | | | | | | Acceptance from PS/UE var. for 3 jets | 11% | | | | | | $m_{bb}, p_{\mathrm{T}}^{V}$, from scale var. | S (correlated with ZZ uncertainties) | | | | | | $m_{bb}, p_{\mathrm{T}}^{V}, \text{ from PS/UE var.}$ | S (correlated with ZZ uncertainties) | | | | | | m_{bb} , from matrix-element var. | S (correlated with ZZ uncertainties) | | | | | | WW | | | | | | | Normalisation | 25% | | | | | ### Systematic Uncertai | Process | Normalisation factor | |----------------------------|----------------------| | $t\bar{t}$ 0- and 1-lepton | 0.90 ± 0.08 | | $t\bar{t}$ 2-lepton 2-jet | 0.97 ± 0.09 | | $t\bar{t}$ 2-lepton 3-jet | 1.04 ± 0.06 | | W + HF 2-jet | 1.22 ± 0.14 | | W + HF 3-jet | 1.27 ± 0.14 | | Z + HF 2-jet | 1.30 ± 0.10 | | Z + HF 3-jet | 1.22 ± 0.09 | ### The di-boson Validation - Analysis repeated to fit VZ: - ➤ Lower p_T^{bb} and m_{bb} - > Change BDT signal: VZ instead of VH 5.8σ obs (5.3σ exp) ✓ Compatible with SM ✓