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Emergent phenomena in QCD

* QCD is a rich, fascinating theory: from a simple Lagrangian emerges

numerous complex phenomena, such as confinement of quarks/gluons into
hadrons, and jet production at high energies
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The proton spin

® Even after four decades of study, aspects of QCD still surprise us today.
How is the proton spin formed from its
microscopic constituents?
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The proton spin

® Even after four decades of study, aspects of QCD still surprise us today.
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The proton spin

® Even after four decades of study, aspects of QCD still surprise us today.
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Proton structure at high energies

® Understanding proton structure is not only important for our understanding of
QCD; it is critical to our pursuit of physics beyond the Standard Model.

Breakdown of residual theory errors on
Higgs production cross section in %
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Proton structure as encoded by parton
distribution functions (PDFs) form one

of the largest uncertainties on the
Higgs production cross section!




Proton structure at high energies

® Understanding proton structure is not only important for our understanding of
QCD; it is critical to our pursuit of physics beyond the Standard Model.
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Reducing the uncertainty on the Higgs
production cross section at the LHC
Breakdown of residual theory errors on requires an improved understanding of

Higgs production cross section in %
86> P ’ the proton’s gluon content!




Imaging the proton

®* How do we study the structure of the proton!? We rely upon QCD
factorization. In the typical high-energy case collinear factorization applies:

factorization scale
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Imaging the proton

®* How do we study the structure of the proton!? We rely upon QCD
factorization. In the typical high-energy case collinear factorization applies:
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longitudinal imaging in Bjorken-x of
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Imaging the proton

® A critical aspect of this is the perturbative order of the partonic cross section
used! A recent example using the TMDPDFs at low qr:

do 2br
H ZQT.bT b . b .
1z~ (@) [ e (o TaTM)f(:vz, -
80f1(19b)

r= 10—2
transverse-momentum

I dependent PDFs (TMDPDFs)
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from A.Viladimirov, INT 2017
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Imaging the proton

® A critical aspect of this is the perturbative order of the partonic cross section
used! A recent example using the TMDPDFs at low gr:

do 2br
~/ H /LQT.bT b . b .
i ~ 0 H@m [ e sio, pesn
80f1(l'.b)

r= 10—2
transverse-momentum

dependent PDFs (TMDPDFs)

NLL

N Accuracy and precision for
pd proton structure requires

perturbative QCD at next-
to-next-to-leading order!

from A.Viladimirov, INT 2017



Anatomy of a NNLO calculation

®* What are the difficulties in achieving NNLO precision in perturbative QCD.>
Let’s study an example contribution to see what can occur during a calculation.

Higgs+jet: What kind of singularities can
DO0000000EP0000000000C occur at NNLO?
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+many more!

Deriving an organizing principle to extract and cancel

singularities for arbitrary observables was the major
obstacle in obtaining NNLO predictions




N-jettiness subtraction

®* We can simplify such calculations using a global event shape variable first
introduced in soft-collinear effective theory (SCET)!
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N-jettiness, an event shape
variable (similar to thrust); light-like directions of initial momenta of final-

introduced by Stewart, beams and final-state jets state partons
Tackmann, Waalewijn (2009)

Intuition: TN ~0: all radiation is either soft, or collinear to a beam/jet

TNn>0: at least one additional jet beyond Born level is resolved



N-jettiness subtraction

Boughezal, Focke, Liu, FP, PRL 115 (2015)

a simpler effective have one more resolved jet
theory description is than at Born level; only
available for the region need NLO in this region!

Stewart, Tackmann,Waalewijn (2009)

do

— (WK Q)~HRB, B, ®5 ®
dTN

hard scales in the process
(e.g., transverse momenta of

jets) describes hard describes radiation  describes soft
radiation collinear to initial- radiation; describes radiation
state beams; universal universal collinear to final-state

jets; universal



N-jettiness subtraction

Boughezal, Focke, Liu, FP, PRL 115 (2015)

a simolereffective ) [ have one more resolved jet

Major advantages of N-jettiness subtraction:

* Universal, process independence objects clearly identified
* Recycle known NLO results for above-cut contributions
* Applicable to problems in both particle and nuclear physics

jets) describes hard describes radiation  describes soft
radiation collinear to initial- radiation; describes radiation
iatio : . i
state beams; universal universal collinear to final-state

jets; universal



The Z-boson transverse momentum

* The Z-boson transverse momentum spectrum measurement has reached a
remarkable precision at the LHC, with errors below |% over a large range
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The Z-boson transverse momentum

* The Z-boson transverse momentum spectrum measurement has reached a
remarkable precision at the LHC, with errors below |% over a large range

>  AVAVAVAVAVAVIY 4

Can learn about the gluon distribution
entering Higgs production from this data!




Comparison with NLO theory

* NLO theory errors more than an order of magnitude larger

than experimental ones; can’t use this data to measure the
gluon without NNLO!
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Comparison with NNLO theory

* We have performed an NNLO QCD

calculation using N-jettiness subtraction and
extensively compared with ATLAS and CMS

* We have combined NNLO QCD and NLO
electroweak corrections for this prediction

Note the importance of

as compared to just
NNLO QCD in the off-peak data

No current PDF set describes this

<€+“—well; feed this information back into
the PDF fit!

Boughezal, Guffanti, FP, Ubsiali JHEP 1707 (2017)



do/dp,Z [GeV]

Ratio th/exp

Ratio over NNPDF3.0

—
()
I8

—
o
w

b
o
N

—
o
—

-mb
()
o

103
12

1.1

09
1.3

12

Comparison with NNLO theory

00<ly,l<04
66 GeV <M, <116 GeV -

n CMS, 8 TeV LHC .

- NNPDF3.0 -

- NLO - —

I NNLO w1

i NNLO+EW === |
‘ Data ety

— CMS on Z-peak —

1 1 1 1 1 o 1 1

| M =y

NNPDF3.0

NNPDF3.0 =——

- CT14 .
MMHT14 - -

90 130 185
P [GeV]

* We have performed an NNLO QCD

calculation using N-jettiness subtraction and
extensively compared with ATLAS and CMS
data.

* We have combined NNLO QCD and NLO
electroweak corrections for this prediction

as not as important on-
peak; NNLO QCD leads to a much
improved description

Better than off-peak, but still no current
PDF set describes this well; feed this
information back into the PDF fit!

Boughezal, Guffanti, FP, Ubsiali JHEP 1707 (2017)



Impact on PDFs

Gluon-Gluon, luminosity ~foxf, Quark-Gluon, luminosity ~qufg
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Gluon-gluon and quark-gluon luminosity errors
reduced right near Mx~mn=125 GeV!

Before pr_?w dat After pr_?w dat
0gg—H [Pb] | 48.22 £ 0.89A1.8% \| 48.61 £ 0.6

over [pb] | 3.92+0.06\(1.5%) J| 3.96 £ 0.04

PDF error on Higgs cross sections reduced!
Boughezal, Guffanti, FP, Ubiali JHEP 1707 (2017)



Impact on PDFs

P5 report:

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

“The full discovery potential of the Higgs will be
unleashed by percent-level precision studies of the
Higgs properties.”

We’re getting to our goal!

Before pr_,Zj data

0g9—H [Pb] | 48.22 £ 0.89/1.8%

ovBF |pb] 3.92 £ 0.06\(1.5%)

PDF error on Higgs cross sections reduced!
Boughezal, Guffanti, FP, Ubiali JHEP 1707 (2017)



Jet physics at an Electron-lon Collider

* Proton structure studies will be a central aspect of a future EIC. Jets will play
an important role these probes, just as at the LHC.

d®c/dn,dp,, [pb/GeV]

Hinderer, Schlegel,Vogelsang (2015)
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EIC jet production at NNLO

* N-jettiness subtraction allows for a NNLO calculation of EIC jet production!
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EIC jet production at NNLO

* Jet distributions at the EIC are an excellent probe of PDFs; no single channel
dominates over all of phase space, indicating that different kinematic regions

provide access to different partonic luminosities.
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Polarized jet production

* We are also interested in polarized collisions at the EIC.

Luminosity:
- 10%-10%em?s? o B Mueller, POETIC 2016

80% polarized electrons:t ’ —»%4— .1 70% polarized protons

3—-18 GeV 25 —275 GeV

Need to formulate N-jettiness

subtraction to handle polarized collisions!




Extending to polarized collisions

® Schematic form of factorization theorem for unpolarized and

longitudinally polarized collisions (A denotes the different between
right-handed and left-handed polarizations):

unpolarized: d/dT~ H®B®J®S jet and soft functions

are unchanged

'\
polarized:  dAC/dT~AHRXABX|X®S

known helicity-dependent 2- two-loop helicity-dependent
loop virtual corrections beam function; we have

recently calculated this
All ingredients now known!

unknown quantity!

Boughezal, FP, Schubert, Xing PRD 96 (2017)



Polarized PDFs at the EIC

® Polarization asymmetries in EIC jet production are a powerful probe of
gluon and quark distributions!
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Polarized PDFs at the EIC

® Polarization asymmetries in EIC jet production are a powerful probe of
gluon and quark distributions!

EIC inclusive jet production
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Summary

eUnderstanding the gluon distribution in the proton is
central to pressing questions across energy scales

*New developments using SCET allow predictions that
match the experimental precision for the data sets need to
understand glue

®*The Z-boson transverse momentum spectrum greatly
improves our understanding of the unpolarized gluon in the
proton, and correspondingly the Higgs cross section

®Jet measurements at a future EIC will help determine the
gluon contribution to the proton spin

| ooking forward to more data!



