Production measurements in heavy ion and fixed target collisions at LHCb Matt Durham, Los Alamos National Lab for the LHCb Collaboration ## Outline - Studying the nuclear initial state - •The LHCb Detector a unique facility for forward physics in heavy ion collisions - •Open charm measurements in pPb: D⁰ mesons - •Charmonia measurements in pPb: $J/\psi, \psi'$ - A unique capability at LHC fixed target running - Summary Generic cross section for heavy quark production: $$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$ Generic cross section for heavy quark production: $$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$ Measurable at experiments Generic cross section for heavy quark production: $$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$ Measurable at experiments Calculable by pQCD Generic cross section for heavy quark production: Generic cross section for heavy quark production: $$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$ Measurable at experiments Well constrained HERA and other data Calculable by pQCD Generic cross section for heavy quark production: $$d\sigma(Q^2, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},o} f_i^p(x_1, Q^2) \otimes Af_i^A(x_2, Q^2) \otimes d\hat{\sigma}(Q^2, x_1, x_2)_{i,j \to a+X}$$ Measurable at experiments Well constrained **HERA** and other data # Calculable by pQCD #### Due to incredible effort, proton PDF is reasonably well known A sample of some recent work: NNPDF3.1: EPJ C77 663 (2017) CT14: Phys. Rev. D93 033006 (2016) MMHT 2014: EPJ C75 204 (2015) CJ15: Phys. Rev. D93, 114017 (2016) ABMP16: Phys. Rev. D96, 014011 (2017) Boughezal et al JHEP (2017) 130 Generic cross section for heavy quark production: $$d\sigma(Q^{2}, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_{i}^{p}(x_{1}, Q^{2}) \otimes A f_{i}^{A}(x_{2}, Q^{2}) \otimes d\hat{\sigma}(Q^{2}, x_{1}, x_{2})_{i,j \to a+X}$$ Measurable at experiments Well constrained **HERA** and other data Despite incredible effort, nuclear PDF is not well constrained, esp gluons at low x Calculable by pQCD Generic cross section for heavy quark production: $$d\sigma(Q^{2}, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_{i}^{p}(x_{1}, Q^{2}) \otimes A f_{i}^{A}(x_{2}, Q^{2}) \otimes d\hat{\sigma}(Q^{2}, x_{1}, x_{2})_{i,j \to a+X}$$ Measurable at experiments Well constrained **HERA** and other data Calculable by pQCD Despite incredible effort, nuclear PDF is not well constrained, esp gluons at low x Solution: constrain fits with data at low x with probes that are sensitive to gluon distribution ->Heavy quarks at forward rapidity Generic cross section for heavy quark production: $$d\sigma(Q^{2}, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_{i}^{p}(x_{1}, Q^{2}) \otimes A f_{i}^{A}(x_{2}, Q^{2}) \otimes d\hat{\sigma}(Q^{2}, x_{1}, x_{2})_{i,j \to a+X}$$ Measurable at experiments Well constrained Calculable by pQCD **HERA** and other data Despite incredible effort, nuclear PDF is not well constrained, esp gluons at low x NB: Global fits of data include all possible effects - Parton modification (e. g. shadowing, CGC, etc) - QCD energy loss - k_T broadening - charmonia "breakup" - Hydrodynamics - Any other effect Generic cross section for heavy quark production: $$d\sigma(Q^{2}, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\overline{q},g} f_{i}^{p}(x_{1}, Q^{2}) \otimes A f_{i}^{A}(x_{2}, Q^{2}) \otimes d\hat{\sigma}(Q^{2}, x_{1}, x_{2})_{i,j \to a+X}$$ Measurable at experiments Well constrained **HERA** and other data Calculable by pQCD Despite incredible effort, nuclear PDF is not well constrained, esp gluons at low x NB: Global fits of data include all possible effects - Parton modification (e.g. shadowing, CGC, etc) - **QCD** energy loss - **k**_⊤ broadening - charmonia "breakup" To evaluate late stage effects, we need to measure multiple probes - **Hydrodynamics** - Any other effect #### Outline - Studying the nuclear initial state - •The LHCb Detector a unique facility for forward physics in heavy ion collisions - •Open charm measurements in pPb: D⁰ mesons - •Charmonia measurements in pPb: $J/\psi, \psi'$ - A unique capability at LHC fixed target running - Summary #### The LHCb Detector JINST 3 (2008) S08005 Int. J. Mod. Phys. A 30, 1530022 (2015) #### The LHCb Detector JINST 3 (2008) S08005 Int. J. Mod. Phys. A 30, 1530022 (2015) - •Originally designed for precise heavy flavor measurements in pp collisions, LHCb brings unique capabilities to heavy ion physics: - -Forward (and backward) rapidity region completely instrumented allowing access to low-x region of nucleus - -Reconstruction of open heavy flavor mesons down to p_T=0 sensitive to gluon nPDF - -Complete reconstruction of multiple quarkonia states down to $p_T=0$ sensitive to possible late stage effects ("breakup") #### The LHCb Detector JINST 3 (2008) S08005 Int. J. Mod. Phys. A 30, 1530022 (2015) - •Originally designed for precise heavy flavor measurements in pp collisions, LHCb brings unique capabilities to heavy ion physics: - -Forward (and backward) rapidity region completely instrumented allowing access to low-x region of nucleus - -Reconstruction of open heavy flavor mesons down to $p_T=0$ sensitive to gluon nPDF - -Complete reconstruction of multiple quarkonia states down to $p_T=0$ sensitive to possible late stage effects ("breakup") Tracking detector granularity designed for *pp* collisions is not optimal for measurements in central PbPb collisions #### Outline - Studying the nuclear initial state - •The LHCb Detector a unique facility for forward physics in heavy ion collisions - •Open charm measurements in pPb: D⁰ mesons - •Charmonia measurements in pPb: $J/\psi, \psi'$ - A unique capability at LHC fixed target running - Summary Fully reconstructed through decay channel $D^0 o K^{\overline{+}}\pi^\pm$ $$\sqrt{s_{NN}}$$ = 5 TeV J. High Energ. Phys. 10 (2017) 90 Fully reconstructed through decay channel $D^0 o K^\mp\pi^\pm$ J. High Energ. Phys. 10 (2017) 90 Fully reconstructed through decay channel $D^0 o K^\mp\pi^\pm$ $$\sqrt{s_{NN}}$$ = 5 TeV J. High Energ. Phys. 10 (2017) 90 Error bars < calculation uncertainties This data is already being used to constrain the gluon nPDF down to x~5x10⁻⁶ Kusina, Lansberg, Schienbein, Shao, Gluon shadowing and antishadowing in heavyflavor production at the LHC arXiV: 1712.07024 #### Outline - Studying the nuclear initial state - •The LHCb Detector a unique facility for forward physics in heavy ion collisions - •Open charm measurements in pPb: D⁰ mesons - •Charmonia measurements in pPb: $J/\psi, \psi'$ - A unique capability at LHC fixed target running - Summary Fully reconstructed through decay channel $J/\psi o \mu^+\mu^-$ $$\sqrt{s_{NN}}$$ = 8.16 TeV Phys. Lett. B 774 (2017) Fully reconstructed through decay channel $J/\psi o \mu^+\mu^-$ $$\sqrt{s_{NN}}$$ = 8.16 TeV Phys. Lett. B 774 (2017) Fully reconstructed through decay channel $J/\psi o \mu^+\mu^-$ $$\sqrt{s_{NN}}$$ = 8.16 TeV Phys. Lett. B 774 (2017) Fully reconstructed through decay channel $\, m{\psi}' ightarrow \mu^+ \mu^- \,$ $$\sqrt{s_{NN}}$$ = 5 TeV J. High Energ. Phys. 03 133 (2016) Absolute suppression is comparable between forward/backward rapidity J. High Energ. Phys. 03 133 (2016) J. High Energ. Phys. 03 133 (2016) - -Sample very similar phase space of proton and nucleus PDF - -Energy loss of $c\overline{c}$ identical inside nucleus - -At LHC energies, $c\overline{c}$ pairs project onto final state outside the nucleus Suggests late stage effects that occur outside the nucleus are responsible for differences ->Plasma stage in pPb? Du, Rapp Nucl. Phys. A 943 (2015) ->Interactions with co-moving particles? Capella et al, PLB 393 (1997), Ferreiro, PLB 749 (2015), Ma et al 1707.07266 Absolute suppression is comparable between forward/backward rapidity # ψ' suppression via "comovers" # ψ' suppression via "comovers" $$\langle S_T \rangle = 4\pi \sqrt{\langle x^2 \rangle \langle y^2 \rangle - \langle xy \rangle^2}$$ # Comparison of open/hidden charm $$d\sigma(Q^{2}, \sqrt{s})_{pA \to a+X} = \sum_{i,j=q,\bar{q},g} f_{i}^{p}(x_{1}, Q^{2}) \otimes Af_{i}^{A}(x_{2}, Q^{2}) \otimes d\hat{\sigma}(Q^{2}, x_{1}, x_{2})_{i,j}$$ #### **Charmonia versus Open Charm** - -Underlying $c\overline{c}$ production is similar - -Sample very similar phase space of proton and nucleus PDF - -Energy loss of $c\overline{c}$ identical inside nucleus - -At LHC energies, $c\overline{c}$ pairs project onto final state outside the nucleus #### **Qualitative interpretation:** - -Breakup of J/ ψ seems relatively small - -Breakup of ψ' seems significant Satz, J. Phys. G32, R25 (2006) J. High Energ. Phys. 10 (2017) 90 LHCb has 40x (10x) more data on tape for backward (forward) pPb at 8 TeV, analysis ongoing. #### Outline - Studying the nuclear initial state - The LHCb Detector a unique facility for forward physics in heavy ion collisions - Open charm measurements in pPb: D⁰ mesons - •Charmonia measurements in pPb: $J/\psi, \psi'$ - A unique capability fixed target running - Summary # A unique capability at LHCb: inject noble gas into beampipe P ~10⁻⁷ mbar Reconstructed beam-gas vertices inside VELO CM energy ~ 100 GeV/n LHCB-CONF-2017-001 https://cds.cern.ch/record/2255650?ln=en Data recorded in ~18 hours Charmonia versus Open Charm at very different x-range than collider mode LHCB-CONF-2017-001 https://cds.cern.ch/record/2255650?ln=en # Summary - The LHCb Detector a unique facility for forward physics in heavy ion collisions - Impactful measurements already being used in newest nPDF analyses - Late stage effects on quarkonia (especially excited states) likely important - •We have only scratched the surface of LHCb capability in heavy ion physics # **BACKUPS** # 5 Tev vs 8 TeV comparison