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PDFs from global data analysis 

ò  Currently our best knowledge of  the PDFs comes from 
the global analysis of  high-energy scattering data 
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CT10 NNLO PDF, CTEQ-TEA group, 2014 

1. Extensive experimental analysis motivates a 
first principle calculation for comparison; 
 
2. First principle calculation might be able to 
shed light on kinematic regions and flavor 
structures where experiments cannot constrain so 
precisely; 
 
3. The cost of  improving calculations seems to be 
much smaller than building larger experiments. 
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FIG. 2: CT10NNLO parton distribution functions. These figures show the Hessian error PDFs
from the CT10NNLO analysis. Each graph shows xuvalence = x(u−u), x dvalence = x(d−d), 0.10x g
and 0.10x qsea as functions of x for a fixed value of Q. The values of Q are 2, 3.16, 8, 85 GeV.

The quark sea contribution is qsea = 2(d + u + s). The dashed curves are the central CT10 NLO
fit.

VI. COMPARISONS TO INDIVIDUAL EXPERIMENTS

As was already observed, the goodness of the NNLO fit to most experiments is about the
same as for CT10(W) NLO, and the changes in going to the NNLO analysis are comparable
to the experimental uncertainties. The differences in χ2

E rarely exceed the expected statistical
fluctuations of order

√

2Npt. Some improvement is observed in the fit to the HERA-1
combined data on DIS, the Tevatron Run-2 jet production data, and the CCFR and NuTeV
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Operator definition of  PDF 

ò  Definition of  PDFs in QCD factorization theorems: 

 

•  Gauge-invariant and boost-invariant light-cone correlation; 

•  In the light-cone gauge A+=0, has a clear interpretation as 
parton number density, 

5 

		
q(x ,µ)= dξ−

4π∫ e-ixP
+ξ−

Pψ (ξ− )γ +U(ξ− ,0)ψ (0) P

		
U(ξ− ,0)= Pexp −ig dη−A+(η− )

0

ξ−

∫⎡
⎣⎢

⎤
⎦⎥		ξ

± = (t ± z)/ 2

		
σ = fa(x1)⊗ fb(x2)⊗σ ab

a ,b
∑

		q(x)~ dk+d2k⊥∫ δ(k+ − xP+ ) P n̂(k+ ,k⊥ ) P
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Lattice QCD is the only practical method to 
solve QCD nonperturbatively so far 
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Parton model: 
•  Minkowski space, real time 
•  Emerges in the infinite momentum frame (IMF), or, 

the proton as seen by an observer moving at the 
speed of  light (on the light-cone) 

Lattice QCD: 
•  Euclidean space, imaginary time (t=iτ) 
•  Nucleon static or at finite momentum 
•  Cannot calculate time-dependent 

quantities generally due to difficulty in 
analytical continuation in time 

PDF not directly accessible 
from the lattice! 
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		ξ
+ = (t + z)/ 2 =0

		

eiS → e−S

O = DψDψDA	O(x)e−S∫



PDF from the Euclidean Lattice 

ò  Computation of  PDF moments: 

•  Moments are calculable as matrix elements of  local gauge-
invariant and frame-independent operators; 

•  Fitting the PDF from the moments; 

•  Operator mixing due to broken Lorentz symmetry limits 
computation for moments higher than 3. 
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		 dx∫ 	xn−1q(x ,µ)dx = an(µ)= nµ1nµ2!nµn Pψ (0)γ
µ1i
"
Dµ2!i

"
Dµnψ (0) P

n≤3, W. Detmold et al., EPJ 2001, PRD 2002; 
D. Dolgov et al. (LHPC, TXL), PRD 2002; 

		nµ = (1,0,0,−1)/ 2
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Proposals in recent years 

ò  Restoration of rotational symmetry to calculate higher moments 

ò  Fictitious heavy-to-light current-current correlator 

ò  OPE of the Compton amplitude 

ò  Direct computation of the physical hadronic tensor 
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K.F. Liu (et al.), 1994, 1999, 1998, 2000, 2017. 

D. Lin and W. Detmold, PRD 2006.

A. J. Chambers et al. (QCDSF), PRL 2017

n>3, Z. Davoudi and M. Savage, PRD 2012.
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Proposals in recent years 

ò  Large momentum effective theory (LaMET)  

Quasi-PDF (Large momentum factorization) 

Gradient flow method 

Pseudo-PDF (Small distance factorization) 

 

ò  Lattice cross section 

ò  Factorization of Euclidean correlations in coordinate 
space 

9 

X. Ji, PRL 2013; Sci.China Phys.Mech.Astron. 2014.

Y.-Q. Ma and J. Qiu, 2014, 2017.

A. Radyushkin, PRD 2017; 
K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, 2017.

V. M. Braun and D. Mueller,  EPJ C 2008;
G. S. Bali, V. M. Braun, A. Schaefer, et al., 2017.

C. Monahan and K. Orginos, JHEP 2017.
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Parton model and the IMF 

ò  Consider one starts from a static proton. The notion of  parton 
does not exist as quarks and gluons are not free; 

ò  Under a Lorentz boost along the z direction (dynamical 
transformation), the interacting quark or gluon can be 
transformed into an infinite number of  particles, thus a 
longitudinal momentum density depends on the reference 
frame and is not physically meaningful; 

ò  Nevertheless, when boosted to the IMF, all interaction effects 
are suppressed by powers of  the infinite momentum, and the 
parton model emerges as the leading order approximation. 
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Large momentum effective theory 

ò  If  one knows the nucleon wavefunction in the IMF, then all 
parton physics can be solved, but this is highly nontrivial and 
unknown in an interacting theory like QCD; 

ò  The good thing is that QCD has asymptotic freedom. If  there 
is a large scale, one can formulate an effective theory defined 
by that scale, and use this effective theory to match full QCD 
to physics below the scale; 

ò  For example, the heavy-quark effective theory where the 
heavy quark mass sets the scale. 

ò  In large-momentum effective theory, the nucleon 
momentum Pz sets the scale. 
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Large momentum effective theory 

Large momentum effective theory (LaMET) is a theory 
that expands in powers of  1/Pz, where Pz is the proton 
momentum (Ji, PRL 2013, Sci. China Phys. Mech. Astro., 2014): 

1.  Construct a Euclidean quasi-observable Õ which can be 
calculated in lattice QCD; 

2.  The IMF limit of  Õ is constructed to be a parton observable 
O at the operator level; 

13 

		 

P ≠0 =U(Λ(P)) P0 =0 ,						U(Λ(P =∞))−1 !OU(Λ(P =∞))=O
P =∞ !O P =∞ = P0 =0O P0 =0

Recall that one does not know the proton wavefunction in the IMF! 
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Large momentum effective theory 

3. At finite Pz, the matrix element of  Õ depends on the cut-off  Λ 
of  the theory (if  not renormalized) and generally Pz, i.e., Õ(Pz/Λ), 
while that of  O depends on the renormalization scale μ (if  in the 
MSbar scheme), i.e., O(μ); 

 

 

4. Taking the Pz—>∞ (Pz>>Λ) limit of  Õ(Pz/Λ) is generally ill-
defined due to the singularities in quantum field theory,  

14 

		 

!O(Pz /Λ)= P = Pz !O P = Pz ,
O(µ)= P = any O P = any

		 
lim
Pz≫Λ

"O(Pz /Λ)= ?
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Large momentum effective theory 

5. But it can be related to O(μ) through a factorization formula: 

 

 

ò  Pz is much larger than ΛQCD as well as the proton mass M to suppress 
the power corrections; 

ò  One can regard as the O(μ) effective theory observable, and Õ(Pz/Λ) 
as given by full QCD; 

ò  O(μ) and Õ(Pz/Λ) have the same infrared (IR) physics, and thus can 
be perturbatively matched to each other through the leading term. 

		 
!O(Pz /Λ)= Z(Pz /Λ,µ /Λ)⊗O(µ)+ c2

Pz
2 +

c4
Pz
4 +…
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Large momentum effective theory 

6. Õ(Pz/Λ) satisfies a “renormalization group equation”: 

 

 

ò  The parton observable O(μ) in the IMF is the “fixed point” of  
this RG equation; 

ò  Physics near the “fixed point”, i.e., Õ(Pz/Λ) with different large 
Pz, are related by the RG equation. 

		
γ (α S )=

1
Z

d 	Z
d lnPz
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How matching works 

17 

IR 

UV 
Perturbative QCD 

Non-perturbative QCD 

Matching 

Õ (full QCD) O (LaMET)
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Pz >> Λ >>M,ΛQCD



Large momentum effective theory 

ò  Quasi-PDF: 

18 

ξ− 

ξ3 = z l -l 

√2γl 

−√2γl 

ξ+ 
ξ0 = t •  Time-independent correlation along 

the z direction, calculable in lattice 
QCD when Pz<<Λ; 

•  Under an infinite Lorentz boost along 
the z direction (Pz>>Λ), the spatial 
gauge link approaches the light-cone 
direction, and the quasi-PDF reduces 
to the (light-cone) PDF. 

		 
!q(x ,Pz ,Λ = a−1)= dz

4π∫ eixP
zz Pψ (z)γ zU(z ,0)ψ (0) P

		
U(z ,0)= Pexp −ig dz 'Az(z ')

0

z

∫⎡
⎣⎢

⎤
⎦⎥

		z
µ = (0,0,0,z)

X. Ji, PRL 2013; Sci.China Phys.Mech.Astron. 2014.
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Large momentum effective theory 

ò  The (renormalized) quasi PDF is related to the PDF 
through a factorization formula: 

 

ò  They have the same IR divergences; 

ò  C factor matches their UV difference, and can be 
calculated in perturbative QCD; 

ò  Higher-twist corrections suppressed by powers of  Pz. 
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2

on the scheme). Fourier transforming to momentum space as in Eq. (3), the renormalization for the quasi-PDF
involves a convolution in the momentum fraction,

q̃
B
i (x, P z

, ✏) =
X

j

P
z

Z
+1

�1
dx

0
Z̃ij (x� x

0
, ✏, µ̃) q̃j(x

0
, P

z
, µ̃) . (5)

The structure of the renormalization of the quasi-PDF in Eqs. (4) and (5) is similar to that of the quark beam-
function [11, 12], which is a proton distribution with separations along both the plus and minus light-cone directions.
Ref. [12] gives an all orders proof of the position space multiplicative renormalization of the beam function, and this
proof also implied that there is never parton mixing in this case. Since this lack of mixing has not yet been explored
for the quasi-PDF’s renormalization, we included a

P
j in our Eqs. (4) and (5), where j sums over quarks and gluons.

For a nucleon moving with finite but large momentum P
z
� ⇤QCD, the quasi PDF can be matched onto the PDF

through a momentum space factorization formula [10, 13]:

q̃i(x, P
z
, µ̃) =

Z
+1

�1

dy

|y|
Cij

✓
x

y
,
µ̃

P z
,
µ

P z

◆
qj(y, µ) +O

✓
M

2

P 2
z

,
⇤2

QCD

P 2
z

◆
, (6)

where Cij is the matching coe�cient, and the O(M2
/P

2
z ,⇤

2

QCD
/P

2
z ) terms are higher-twist corrections suppressed

by the nucleon momentum (M is the nucleon mass). Here qj(y, µ) for negative y corresponds to the anti-quark
contribution. The power corrections are related to higher-twist contributions in the quasi PDF. Note that it is
important to distinguish between the renormalization of the PDF and quasi-PDF given by the Zijs and the matching
given by the Cijs. The renormalization constants occur in a relation between bare and renormalized matrix elements
for the same operators. On the other hand the matching coe�cients occur in a relation between renormalized matrix
elements of di↵erent operators. The q̃ and q have the same collinear and infrared (IR) divergences, so at perturbative
scales µ and µ̃ the Cijs can be calculated order by order in ↵s.

Based on Ji’s proposal, the procedure of calculating PDF from lattice QCD can be summarized as:

1. Lattice simulation of the quasi PDF;

2. Renormalization of the quasi PDF in a particular scheme on the lattice;

3. Subtraction of higher-twist corrections;

4. Matching quasi PDF in the particular scheme to PDF in the MS scheme.

E↵orts have been made to calculate the iso-vector quark distributions fu�d, including unpolarized, polarized, and
transversity distributions, from lattice QCD [14–17]. The one-loop matching coe�cients was first calculated in the
continuum theory [18] and confirmed in Refs. [15, 19]. The nucleon-mass corrections of O(M2

/P
2
z ) have already

been included in the lattice calculations [14–17], and the O(⇤2

QCD
/P

2
z ) correction was numerically fit in Ref. [16]. (A

direct lattice calculation of the O(⇤2

QCD
/P

2
z ) correction is still desired from the theoretical point of view). So far the

renormalization of the lattice matrix element of quasi PDF, i.e., Step 2, is absent in the analyses of Refs [14–17]. With
increasing nucleon momentum P

z, the latter will be the most important factor that limits the precision of lattice
calculation of PDFs.

One of the standard methods to renormalize operators in lattice QCD is the lattice perturbation theory [20]. In
practice, it requires a tedious amount of work to compute lattice Feynman diagrams for quasi PDF and limits our
ability to go to higher loop orders. An alternative is nonperturbative methods, such as the regularization-invariant
momentum subtraction (RI/MOM) scheme, that has been widely used to renormalize local operators on the lattice [21].
Work in progress to calculate the lattice quasi-PDFs in the RI/MOM scheme has been reported in [22], and appears
to be the most promising route for future higher precision quasi-PDF determinations.

In this paper we focus on the implementation of Step 4 when the lattice quasi PDF is defined in the RI/MOM
scheme. In particular we carry out a perturbative calculation of the matching coe�cient C that directly enables
this lattice quasi PDF to be directly matched onto the MS PDF. The renormalized matrix elements in the RI/MOM
scheme are independent of the UV regularization, so we carry out this matching perturbatively with dimensional
regularization.

An alternative to the approach we take here would be to convert the lattice quasi PDF defined with nonperturbative
renormalization in the RI/MOM scheme back to the MS scheme perturbatively. This would then allow the MS
matching result for C in Ref. [18] to be used. Our approach is simpler and more direct, with only a single step
involving a perturbative calculation. Nevertheless it would be interesting to compare both approaches. is

(I still need to edit this paragraph: –is) In Section II we elaborate on the procedure of implementing the
RI/MOM scheme for quasi PDF; In Section III we provide result of one-loop matching coe�cient between quasi PDF
in the RI/MOM scheme and PDF in the MS scheme; We conclude in Section V.
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Procedure of  Systematic Calculation 
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continuum theory [18] and confirmed in Refs. [15, 19]. The nucleon-mass corrections of O(M2

/P
2
z ) have already

been included in the lattice calculations [14–17], and the O(⇤2

QCD
/P

2
z ) correction was numerically fit in Ref. [16]. (A

direct lattice calculation of the O(⇤2
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z ) correction is still desired from the theoretical point of view). So far the

renormalization of the lattice matrix element of quasi PDF, i.e., Step 2, is absent in the analyses of Refs [14–17]. With
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practice, it requires a tedious amount of work to compute lattice Feynman diagrams for quasi PDF and limits our
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matching result for C in Ref. [18] to be used. Our approach is simpler and more direct, with only a single step
involving a perturbative calculation. Nevertheless it would be interesting to compare both approaches. is

(I still need to edit this paragraph: –is) In Section II we elaborate on the procedure of implementing the
RI/MOM scheme for quasi PDF; In Section III we provide result of one-loop matching coe�cient between quasi PDF
in the RI/MOM scheme and PDF in the MS scheme; We conclude in Section V.

1. Simulation of the quasi 
PDF in lattice QCD 

2. Renormalization of the 
lattice quasi PDF, and then 
taking the continuum limit 

3. Subtraction of higher 
twist corrections 

4. Matching to the MSbar PDF. 
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Current status 

Collaborations actively working with the LaMET approach: 

ò  LP3 Collaboration: 

J.W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. 
Zhang, R. Zhang, and Y.Z. 

ò  European Twisted Mass Collaboration (ETMC). 

C. Alexandrou, M. Constantinou, K.Cichy, V. Drach, E. Garcia-
Ramos, K. Hadjiyiannakou, K. Jansen, F. Steffens, C. Wiese et al. 

ò  χQCD Collaboration (Gluon polarization calculation): 

A. Alexandru, T. Drapper, M. Glatzmaier, K.F. Liu, R.S. Suffian, Y.-B. 
Yang, Y.Z., et al. 
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First complete analysis with 
nonperturbative lattice renormalization 
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Pz={2,3}*0.43GeV 

J.W. Chen, T. Ishikawa, L. Jin, 
H.-W. Lin, Y.-B. Yang, J.-H. 
Zhang, and Y.Z., (LP3), 2017 

This is just an exploratory study. Improved results will come soon! 

Gaussian-filter and derivative methods to reduce truncation error, by H.-W. Lin et al., 2017; 
A Gaussian re-weight method, by J.-H. Zhang et al. (LP3), 2017. 



First calculation of  gluon spin from 
lattice QCD 
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University of Maryland, College Park

Quasi gluon spin SG  in the continuum MSbar scheme 

34The glue helicity in the proton ΔG corresponds to the
glue longitudinal spin component SG in the IMF. The
LMET [14] shows a large finite correction at the one-loop
level:

SGðj~pj; μÞ ¼
!
1þ g2CA

16π2

"
7

3
log

ð~pÞ2

μ2
− 10.2098

#$
ΔGðμÞ

þ g2CF

16π2

"
4

3
log

ð~pÞ2

μ2
− 5.2627

#
ΔΣðμÞ

þOðg4Þ þO
"

1

ð~pÞ2

#
: ð10Þ

At μ2 ¼ 10 GeV2 and j~pj ¼ 1.5 GeV, the factor before
ΔG is 0.22, which is much smaller than unity and indicates
a convergence problem for the perturbative series even after
one resums the large logarithms. (The factor is 0.80 if the
finite piece 10.2098 is removed.) On the other hand, the
largest momentum we have on the lattice with acceptable
signal is comparable to the proton mass, so the power
corrections in Eq. (10) cannot be neglected and one cannot
simply apply this matching condition. Nevertheless, the
mild dependence of SG on the proton momentum as in
Fig. 4 leads us to suggest that it could be a small effect to
match to the IMF; i.e., SG ≈ ΔGþO(1=ð~pÞ2).
Therefore, we neglect the one-loop LMET matching and

use the following empirical form to fit our data:

SGðj~pjÞ ¼ SGð∞Þ þ C1

M2 þ ð~pÞ2
þ C2ðm2

π;vv −m2
π;physÞ

þ C3ðm2
π;ss −m2

π;physÞ þ C4a2; ð11Þ

where mπ;phys ¼ 0.139 GeV and M ¼ 0.939 GeV are the
physical pion and proton mass, respectively, and mπ;vv=ss

are the valence and sea pion masses, respectively. The

1=ð~pÞ2 correction in Eq. (10) is replaced by 1=½M2 þ ð~pÞ2&
to include all the data in the fitting. Since all the coefficients
other than SGð∞Þ are small, the cross terms and the higher-
order terms are ignored. The overall χ2=d.o.f. is 1.21 with
110 degrees of freedom. In Fig. 4, the band of the global fit
with the empirical form in Eq. (11) shows that the frame
dependence is mild and the central value is changed by less
than 10% from its value in the rest frame to that at
j~pj∼1.5 GeV; the change is smaller than the statistical
uncertainty.
Since the Coulomb gauge fixing on the lattice has a built-

in OðaÞ correction, we repeated the fit with a linear term in
a. The central value is changed by about 1%, while the
uncertainty is larger. We take the variance of the central
values from two fits as an estimate of this uncertainty.
Similarly, the uncertainty from the volume dependence
e−mπvvL is estimated in the same way and added to the
systematic uncertainties in quadrature. In addition, the
value of the quark spin ΔΣ is varied by 20% to cover
the value∼0.30 [1] and that from Ref. [3]. The final result is
SGð∞; μ2 ¼ 10 GeV2Þ ¼ 0.251ð47Þð16Þ with two errors
from the statistical and systematic uncertainties.
Summary and outlook.—In this work, we calculated the

glue spin in the proton for the first time based on ~E× ~A in
the Coulomb gauge [15,16], with various quark masses,
lattice spacings, volumes, and proton momenta. The results
showmild dependencies on these quantities. After one-loop
perturbative matching from the lattice theory to the con-
tinuum and neglecting the matching effect between the glue
spin and helicity, we conclude that the gluon helicity
ΔGðμ2¼10GeV2Þ≈SGð∞;μ2¼10GeV2Þ¼0.251ð47Þð16Þ,
which is 50(9)(3)% of the total proton spin. The cactus
improvement [28] we used in Eq. (9) indicates that
uncertainties can be considerable in perturbative QCD,
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FIG. 3. The valence pion mass dependence of SG at
μ2 ¼ 10 GeV2, in the rest frame of the proton. These depend-
encies are fairly mild and can be well described with a linear fit.
The gray band shows the result based on the global fit with the
empirical form in Eq. (11).
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FIG. 4. The results extrapolated to the physical pion mass as a
function of the absolute value of ~p ¼ ð0; 0; p3Þ, on all the five
ensembles. All the results have been converted to MS at
μ2 ¼ 10 GeV2. The data on several ensembles are shifted
horizontally to enhance the legibility. The green band shows
the frame dependence of the global fit [with the empirical form in
Eq. (11)] of the results.
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The glue helicity in the proton ΔG corresponds to the
glue longitudinal spin component SG in the IMF. The
LMET [14] shows a large finite correction at the one-loop
level:

SGðj~pj; μÞ ¼
!
1þ g2CA

16π2

"
7

3
log

ð~pÞ2

μ2
− 10.2098

#$
ΔGðμÞ

þ g2CF

16π2

"
4

3
log

ð~pÞ2

μ2
− 5.2627

#
ΔΣðμÞ

þOðg4Þ þO
"

1

ð~pÞ2

#
: ð10Þ

At μ2 ¼ 10 GeV2 and j~pj ¼ 1.5 GeV, the factor before
ΔG is 0.22, which is much smaller than unity and indicates
a convergence problem for the perturbative series even after
one resums the large logarithms. (The factor is 0.80 if the
finite piece 10.2098 is removed.) On the other hand, the
largest momentum we have on the lattice with acceptable
signal is comparable to the proton mass, so the power
corrections in Eq. (10) cannot be neglected and one cannot
simply apply this matching condition. Nevertheless, the
mild dependence of SG on the proton momentum as in
Fig. 4 leads us to suggest that it could be a small effect to
match to the IMF; i.e., SG ≈ ΔGþO(1=ð~pÞ2).
Therefore, we neglect the one-loop LMET matching and

use the following empirical form to fit our data:

SGðj~pjÞ ¼ SGð∞Þ þ C1

M2 þ ð~pÞ2
þ C2ðm2

π;vv −m2
π;physÞ

þ C3ðm2
π;ss −m2

π;physÞ þ C4a2; ð11Þ

where mπ;phys ¼ 0.139 GeV and M ¼ 0.939 GeV are the
physical pion and proton mass, respectively, and mπ;vv=ss

are the valence and sea pion masses, respectively. The

1=ð~pÞ2 correction in Eq. (10) is replaced by 1=½M2 þ ð~pÞ2&
to include all the data in the fitting. Since all the coefficients
other than SGð∞Þ are small, the cross terms and the higher-
order terms are ignored. The overall χ2=d.o.f. is 1.21 with
110 degrees of freedom. In Fig. 4, the band of the global fit
with the empirical form in Eq. (11) shows that the frame
dependence is mild and the central value is changed by less
than 10% from its value in the rest frame to that at
j~pj∼1.5 GeV; the change is smaller than the statistical
uncertainty.
Since the Coulomb gauge fixing on the lattice has a built-

in OðaÞ correction, we repeated the fit with a linear term in
a. The central value is changed by about 1%, while the
uncertainty is larger. We take the variance of the central
values from two fits as an estimate of this uncertainty.
Similarly, the uncertainty from the volume dependence
e−mπvvL is estimated in the same way and added to the
systematic uncertainties in quadrature. In addition, the
value of the quark spin ΔΣ is varied by 20% to cover
the value∼0.30 [1] and that from Ref. [3]. The final result is
SGð∞; μ2 ¼ 10 GeV2Þ ¼ 0.251ð47Þð16Þ with two errors
from the statistical and systematic uncertainties.
Summary and outlook.—In this work, we calculated the

glue spin in the proton for the first time based on ~E× ~A in
the Coulomb gauge [15,16], with various quark masses,
lattice spacings, volumes, and proton momenta. The results
showmild dependencies on these quantities. After one-loop
perturbative matching from the lattice theory to the con-
tinuum and neglecting the matching effect between the glue
spin and helicity, we conclude that the gluon helicity
ΔGðμ2¼10GeV2Þ≈SGð∞;μ2¼10GeV2Þ¼0.251ð47Þð16Þ,
which is 50(9)(3)% of the total proton spin. The cactus
improvement [28] we used in Eq. (9) indicates that
uncertainties can be considerable in perturbative QCD,
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the frame dependence of the global fit [with the empirical form in
Eq. (11)] of the results.
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P=0 for all configurations

• Not very sensitive to the pion mass 

• Dependence to the proton momentum is not obvious 
with current uncertainties

X. Ji, J.-H. Zhang, and Y.Z., PRL 2013, PLB 2015; Y. Hatta, X. Ji, and Y.Z., PRD 2014; 
Y.-B. Yang, R. S. Sufian, Y.Z., et al (χQCD collaboration)., PRL 2017 

University of Maryland, College Park

Final result of ΔG 

• Statistical uncertainties dominant; 

• Systematic uncertainties: fitting formula, lattice discretization 
effect, finite volume effect, quark spin input, strong coupling, 
perturbative matching. 

• ΔG contributes 50(9)(3)% to the proton spin!

36

d.o.f.=110, 
χ2/d.o.f. = 1.21

ΔG(µ2 = 10GeV2 ) ≈ SG (∞,µ
2 = 10GeV2 ) = 0.251(47)(16)
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Transverse-momentum dependent 
distributions (TMDs) 
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(z, zT) 

O

(L, zT) 

L z

O

(L, zT) 

L z

(-L, zT) 

-L

		 !q(x ,zT )

Unsubtracted 
quasi-TMD: 

Soft factor: 

		S(zT )

		 
!qsub(x ,zT )=

!q(x ,zT )
S(zT )

Subtracted quasi-TMD: 

LaMET matching: 

		 
!qsub(x ,zT ;ζ 2)= e

− dµ2

µ2
(−1)αS (µ )CF

2π
µb
2

ζ2

∫
qTMD
sub (x ,zT ;ζ 2) 1+α S(µ)CF

2π (−2)⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

X. Ji, L. Jin, F. Yuan, J. Zhang and Y.Z., 
arXiv: 1801.05930 



Jet quenching parameter ? 

ò  Definition: 

ò  Physical picture: leading-order Eikonal approximation 
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q̂≡

d2p⊥
(2π )2 	p⊥

2C(p⊥ )∫ , 				V(r)= d2p⊥
(2π )2 1−eip⊥⋅x⊥⎡

⎣
⎤
⎦∫ 	C(p⊥ )

O

(L, xT) 

L ξ-

(-L, xT) 

-L		
V(r)≡ − lim

L→∞

1
L
ln< > 
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Fig. 3. A multiple scattering eikonal trajectory

Consider the diagram of Fig. 3, where static centers of scattering are placed
at x1, x2, ... xn. Let us fix that the quark is moving in the positive x3

direction, i.e. the large component of the momentum is p+.
The contribution to the S-matrix of one scattering is

S1(p
′, p) =

∫

d4x ei(p′−p)·x ū(p′) igAa
µ(x)T aγµ u(p) (10)

Taking the eikonal limit, p ≃ p′, 1
2

∑

λ ūλ(p)γµuλ(p) = 2pµ and pµAa
µ ≃

2p+Aa
−. In order to proceed, we will assume that the fields have a small

dependence on the small coordinate x−: due to the Lorenz contraction, the
medium can be seen as a small sheet in this coordinate. Putting all together
one obtains 4

S1(p
′, p) ≃ 2πδ(p′+ − p+)2p+

∫

dx⊥e−ix⊥(p′
⊥−p⊥)

[

ig

∫

dx+A−(x+,x⊥)

]

,

(11)
where we have singled out with brackets the contribution of the field which
will exponentiate to give the Wilson line and the color matrix has been
omitted for clarity.

The contribution with two scatterings is given by

S2(p
′, p) =

∫

d4p1

(2π)4
d4x1d

4x2 ei(p1−p)·x1ei(p′−p1)·x2ū(p′) igAa1
µ1

(x1)T
a1γµ1 ×

× i
/p1

p2
1 + iϵ

igAa2
µ2

(x2)T
a2γµ2 u(p) (12)

4 Note that we neglect the p− component. In the eikonal approximation p′
− << |p⊥|,

however, the phase factor ip′
−x+ is potentially enhanced by the medium lenght. Thus,

we are implicitilly assuming that the medium is smaller than the coherence length
p−L ≈ µ2L/2p+ << 1. In the next section we will see how this assumption can be
relaxed.

		r =|x⊥ |



Jet quenching parameter ? 

ò  In reality, the parton is moving at a large finite momentum 
relative to the rest quark-gluon plasma (QGP). The Eikonal 
approximation is the IMF limit of  this picture; 

ò  The slightly-off-the-light-cone correlation in a rest thermal 
ensemble (QGP) is equal to the equal-time correlation in a 
boosted thermal ensemble; 

ò  The equal-time correlation has a non-trivial dependence on 
the QGP momentum (energy, or boost parameter), which can 
be related to the Eikonal dipole amplitude through LaMET. 
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	 (Slightly-off-the)	light-cone	correlation rest
= equal-time	correlation

boosted

		limP→∞
	off-the-light-cone	correlation	=	light-cone	correlation

M. Panero, K. Rummukainen, A. Schaefer, 2013 



Summary 

ò  LaMET allows us to calculate the PDF from a Euclidean 
quasi-PDF on the lattice; 

ò  A systematic procedure to calculate PDF from the lattice has 
been set up for precision calculations; 

ò  The LaMET approach can be used to calculate other parton 
physics such as TMD and jet quenching parameter. 
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