Bottomonium Production in Heavy-Ion Collisions

Xiaojian Du¹, Min He², Ralf Rapp¹ ¹Cyclotron Institute, Texas A&M University ²Nanjing University of Science and Technology

Santa Fe Jets and Heavy Flavor Workshop 2018.01.31

Outline

- Introduction
 - Heavy-Ion Collisions and Quarkonium as Probe
- Bottomonium Transport Approach
 - Boltzmann and Rate Equation
 - Transport Coefficients:
 - In-Medium Binding and Reaction Rates
 - Equilibrium Limit
- Comparison with Data: R_{AA} and v₂
 - Centrality Dependence and p_T-Dependence of R_{AA}
 - Excitation Function (Energy dependence)
- Conclusion

Heavy-ion Collisions and Quarkonium

Why quarkonium in HIC?

- Can survive in QGP with large binding energy
- Large mass makes nonrelativistic EFT suitable
- Not in equilibrium during medium evolution
- Quarkonia decay after medium evolution
- Various species enable fruitful phenomenology
- Help to study the in-medium heavy quark potential

Learn about the medium

Quarkonium Transport in Medium

- Initial quarkonium from hard production not in equilibrium
- Simulate quarkonium time evolution towards equilibrium limit

Need a transport model quantifying

How fast the evolution is \rightarrow reaction rate

Number of quarkonium in equilibrium \rightarrow equilibrium limit

Quarkonium distribution evolution: Boltzmann equation:

$$\frac{\partial f_Y(x, p, \tau)}{\partial \tau} + v \cdot \frac{\partial f_Y(x, p, \tau)}{\partial x} = -\alpha_Y(T, p) f_Y(x, p, \tau) + \beta_Y(T, p)$$

loss gain
primordial regeneration

Transport: Rate Equation

Transport Coefficient: Reaction Rates

In-medium binding energy: In-medium potential based T-matrix approach in strongly interacting medium (solid)

F. Riek, R. Rapp, PRC 82 (2010)

- In-medium binding energy severely enhance the reaction rates
- Excited state rates much larger than ground state because of smaller binding

Transport Coefficient: Equilibrium Limit

Heavy quark conservation

Fireball Model

From Transport to Observables

Nuclear Modification Factor R_{AA} : $R_{AA} = \frac{N_Y^{AA}}{N_{coll}N_Y^{pp}}$

Centrality-dependent R_{AA} at RHIC

UN

ΙVΕ

R

SI

Centrality-dependent R_{AA} at the LHC

- Sequential suppression
- Direct $\Upsilon(1S)$ suppression, small regeneration

A&M

S I

UN

IV

ER

• Regeneration significant for $\Upsilon(2S)$

Sensitivity to Binding Energy

Binding Energies \rightarrow Reaction Rates \rightarrow R_{AA} Observables

• Significant binding energy dependence of the $\Upsilon(1S)$ R_{AA}

UΝ

 \mathbf{V}

R

Æ

SI

Calculation of p_T-Spectra

Primordial component: Boltzmann Equation

p_T -dependent R_{AA} at RHIC and the LHC

 Coalescence from non-thermalized b-quarks induces small p_Tdependence for bottomonium

UN

S

v₂ at LHC

elliptic flow v_2 :

Anisotropy of production

$$\frac{\mathrm{d}^2 N}{\mathrm{d}^2 p_T} = \frac{1}{2\pi} \frac{\mathrm{d} N(p_T)}{p_T \mathrm{d} p_T} (1 + 2v_2(p_T)\cos(2\phi) + \dots)$$

UNIV

ER

S I

AM

Both destruction and coalescence occurs early for $\Upsilon(1S)$, later for $\Upsilon(2S)$

Excitation Function

S

Energy dependence of R_{AA}:

Suppression at higher energy for bottomonium

- -> Significant regeneration contribution for excited states Enhancement at higher energy for charmonium:
- -> Interplay of primordial and regeneration component

Conclusion

- Learn about in-medium heavy quark anti-quark QCD force using bottomonium in heavy-ion collision
 → Significance of in-medium binding energies
- Sequential suppression for bottomonium, regeneration essential for excited state excitation function
- More suppression for bottomonium at higher energy vs. enhancement for charmonium at higher energy (regeneration).
- Υv_2 as a probe of suppression/recombination temperature

