What can we learn from R_{AA} vs high p_T flow observables in heavy-ion collisions?

Rosi’s 1st generation "jets"+hydro

Jacquelyn Noronha-Hostler

Santa Fe Jets and Heavy Flavor Workshop
Jan 30th 2018
Modeling of Heavy-Ion Collisions

Initial Conditions
Quantum fluctuations in the position of nucleons/QCD fields

Hydrodynamics (for heavy-ions collisions) in a nutshell

Hydrodynamics viscosity and thermodynamics

Hard Probes
Produced early, lose energy in medium

τ₀ initial time to switch on hydro

T_{sw} temperature at which the Quark Gluon Plasma switches to hadrons

Hadron Gas: number of hadrons, decays, interactions etc

Pressure, energy, entropy

Initial Conditions
Quantum fluctuations in the position of nucleons/QCD fields
“Event-by-Event” Holding the number of partons (density) constant for the same types of collisions, different shapes can be formed.

For the same 5 participants

Ellipsoid = Large eccentricity (ε_2)

Circle = Small eccentricity (ε_2)

Triangles, squares etc can even appear...
Perfect fluidity leads to elliptical flow
Perfect fluidity leads to elliptical flow

Shape quantified by eccentricities ε_n where $n=2$ (ellipse), $n=3$ (triangle), $n=4$ (square) ...

Pressure gradients push outwards

Initial Condition

Final State

$V_n \propto \varepsilon_n$
Azimuthal anisotropies

The distribution of particles can be written as a Fourier series

\[
E \frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left[1 + \sum_n 2v_n \cos [n(\phi - \psi_n)] \right]
\]

- Flow Harmonics at mid-rapidity

\[
v_n(p_T) = \frac{\int_0^{2\pi} d\phi \frac{dN}{p_T dp_T d\phi} \cos [n(\phi - \psi_n)]}{\int_0^{2\pi} d\phi \frac{dN}{p_T dp_T d\phi}}
\]

where \(\psi_n = \frac{1}{n} \arctan \frac{\langle \sin[(n\phi)] \rangle}{\langle \cos[(n\phi)] \rangle} \)

\[\begin{align*}
 n = 2 & \quad \text{\textbf{}} & \\
 n = 3 & \quad \text{\textbf{}} & \\
 n = 4 & \quad \text{\textbf{}} & \\
 n = 5 & \quad \text{\textbf{}} & \\
 n = 6 & \quad \text{\textbf{}} &
\end{align*}\]
High p_T flow harmonics

Correlate 1 high p_T particle with 1(+) soft particles

- More high p_T particles are emitted aligned with the event plane
- High p_T particles sensitive to the path length (initial state)

First suggested in early 2000’s

Learn from soft to understand hard physics

\[v_2(2) \]

- **ALICE+CMS**
- **Hydrodynamics**
- **Intermediate \(p_T \)**
- **Hydrodynamics + energy loss**

PbPb 5.02 TeV
What properties do we want to learn?

- Initial Conditions
- Energy Loss
- Identified Particles (mass differences)
- Viscosity
- Hadronization
- Critical Point
- Chiral Magnetic Effect
- Vorticity

How do we disentangle them?
Life is complicated—guidance from the soft sector

Overview

Initial Conditions

Energy Loss

Heavy Flavor

SHEE

Outlook

Initial Conditions

Viscosity

Energy Loss

Overview

Initial Conditions

Energy Loss

Heavy Flavor

SHEE

Outlook

[Image of graph showing viscosity and energy loss with references]

- JNH et al, Phys.Rev. C95 (2017) no.4, 044901
Too many initial conditions on the market

- Wounded Nucleons
- Color Glass Condensate
- Hadronic Cascades
 + Glauber
 + MCKLN
 + Gluon Saturation
 + IP-Glasma
 + Partonic Strings
- NeXuS/EPOS
- UrQMD
- Initial Flow
- 3D (longitudinal)
- EKRT
- BAMPS
- DIPSY
- Trento, supersonic
Can we first eliminate certain initial conditions from the soft sector?

Goal

Search for observables where ε_n can be reasonable substitutes for ν_n while at the same time constraining initial state models

Stick to ν_2 and ν_3

- ν_4 and above have non-linear effects so extracting their initial eccentricities is complicated. Many works e.g. ATLAS, Teaney, Denicol, Niemi, Ollitrault, Gardim, Luzum, Grassi, JNH etc

- ν_1 also has many non-linear effects

Note: assumes initial flow/shear stress tensor etc is negligible.
Elliptical Flow distribution

\[v_2\{4\}/v_2\{2\} \text{ large for small fluctuations, small for large fluctuations} \]

- Generated from initial conditions
Elliptical flow fluctuations $\nu_n{4}/\nu_n{2}$

No η/s or EoS dependence Niemi, Eskola, Paatelainen PRC93(2016)no.2024907; Alba, Mantovani, Noronha, JNH, Parotto, Portillo, Ratti, arXiv:1711.08499
MCGLauber fails $v_2\{4\}/v_2\{2\}$ in PbPb

Differential flow harmonics

\[v_2^2 \]

ALICE+CMS

Hydrodynamics

Intermediate \(p_T \)

Hydrodynamics + energy loss

0–5%
Event-by-Event hydro+jet tomography [3]

v-USPhydro [1]

- **ATLAS**
 - $\eta/s = 0.11$
 - $\sqrt{s} = 2.76 \text{ TeV}$
- $v_2(2)$
- $v_3(2)$
- mckln

- **ALICE**
 - $\eta/s = 0.05$
 - $\eta/s = 0.12$
 - $\sqrt{s} = 5.02 \text{ TeV}$
- $v_2(2)$
- $v_3(2)$

BBMG [2]

- $dE/dL \sim L$ “pQCD-like”
 - (radiative energy loss)
- $dE/dL \sim L^2$ “AdS/CFT-like”
- Full hydrodynamical backgrounds incorporated on an event-by-event basis

References

R_{AA} of all charged particles for $p_T > 10$ GeV

$v_n\{SP\}(p_T) = \frac{\langle v_n^{soft} v_n^{hard}(p_T) \cos (n [\psi_n^{soft} - \psi_n^{hard}(p_T)]) \rangle}{\sqrt{\langle (v_n^{soft})^2 \rangle}}$

Global analysis needed to determine dE/dL, one centrality=misleading

$v_2(p_T)$ for $p_T > 10$ GeV

$v_3(p_T)$ for $p_T > 10$ GeV

Only using event-by-event fluctuations!

Does $v_n\{2\} \rightarrow v_n\{SP\}(p_T)$ for $p_T > 10$ GeV?

Soft v_n a very good predictor for $v_n(p_T > 10\text{GeV})^*$

Must first match $v_n\{2\}$ soft before studying dE/dL!!

mckln+v-USPhydro+BBMG Phys.Rev. C95 (2017) no.4, 044901

*Complications arise for $n > 2$ Jia PRC87,no. 6,061901(2013)
Differential multiparticle cumulants are complicated

Correlate 1 high p_T particles with n-1 soft particles.

$$\frac{v_n\{4\}(p_T)}{v_n\{2\}(p_T)} = \frac{v_n\{4\}}{v_n\{2\}} \left[1 + \left(\frac{v_n\{2\}}{v_n\{4\}} \right)^4 \left(\frac{\langle v_n^4 \rangle}{\langle v_n^2 \rangle^2} - \frac{\langle v_n^2 V_n V_n^*(p_T) \rangle}{\langle v_n^2 \rangle \langle V_n V_n^*(p_T) \rangle} \right) \right]$$

soft–hard fluctuations

(1)

If there’s no hard physics,

$$\frac{v_n\{4\}(p_T)}{v_n\{2\}(p_T)} = \frac{v_n\{4\}}{v_n\{2\}}$$

JNH et al Phys.Rev. C95 (2017) no.4, 044901
If $v_2^{\{4\}}(p_T)/v_2^{\{2\}}(p_T) \rightarrow 1$, there are still fluctuations!

p_T dependence of $v_2^{\{4\}}/v_2^{\{2\}}$ from soft vs. hard fluctuations
DABMOD- parameterized energy loss model

- Sample charm quarks inside medium with initial momentum distribution from pqcd fonll calculations
- Decoupling temperature $T_d = 120 - 160$ MeV
- Hadronization: Peterson fragmentation function
- Quark Coalescence being implemented (Roland Katz).

Caio Prado, JNH, Katz, Suaide, Noronha, Munhoz, Constantino, Phys.Rev. C96 (2017) no.6, 064903
Muon PbPb 5.02 TeV predictions: ATLAS-CONF-2015-053

Prado, Katz, JNH, Suaide, Noronha, Munhoz, Constantino to appear shortly
Common origin of v_2^{soft} and v_2^{hard}

Going from Theory to Experiment

- v_2^{soft} creates multiple v_2^{hard}

$\{v_2^{hard}\}(p_T)$ vs. v_2^{soft} differentiates dE/dL

Possible to measure experimentally

- Bin by $v_2^{soft}\{2\}$, calculate $v_2^{hard}\{SP\}$

Reference

Soft Hard/Heavy Event Engineering (SHEE)

Fluctuations measured to $p_T \sim 15\text{GeV}$

ALICE currently working on heavy flavor analog

References

Energy loss plays a larger role than fluctuations at PbPb run2

D^0 meson, 30–50% PbPb, \(\sqrt{s_{NN}} = 2.76 \) TeV

\[T_d = 120 \text{ MeV} \]

\[-\frac{dE}{dx} = \lambda \Gamma_{\text{flow}} \]
Rescaling SHEE

Universal consequence of linear response

Once SHEE is rescaled by $v_2 \{2\} \rightarrow$ universal scaling

If experimentalists measure something else, indication of different energy loss fluctuations by mass!
Limited statistics diminishes correlation between v_2^{soft} vs. v_2^{heavy}.
Stop removing non-flow?

Makes the theorist’s life complicated...

P. Tribedy Initial Stages 2017, Adamczyk et al (STAR Collaboration) 1701.06496
Jets coupled to the medium (see also Xin-Nian’s talk)

\[\partial_\mu T^{\mu\nu}_{\text{QGP}}(x) = J^\nu(x) \]

\[\rho_{\text{jet}} = \frac{1}{N_{\text{jet}}} \sum \left[\frac{1}{p_T^{\text{jet}}} \sum_{\text{trk} \in (r-\delta r/2, r+\delta r/2)} \frac{p_{T}^{\text{trk}}}{\delta r} \right] \]

"We call for an agreement between theorists and experimentalists on the appropriate treatment of the background, Monte Carlo generators that enable experimental algorithms to be applied to theoretical calculations, and a clear understanding of which observables are most sensitive to the properties of the medium, even in the presence of background. " Connors, Nattrass, Reed, and Salur arxiv:1705.01974, Accepted in Reviews of Modern Physics

References

Tachibana et al, Phys.Rev. C95 (2017) no.4, 044909 ; Pang et al, PRC86(2012)024911; HYDJET++ (many papers); LBT (many papers); Andrade et al, PRC90(2014)no.2,024914; Schule and Tomasik PRC90(2014)no.6,064910
Conclusions

- $v_2\{4\}/v_2\{2\}$ best observable for constraining initial condition model in large systems
- High p_T "flow" can tell about dE/dL but must get the soft sector right first!
- Heavy flavor SHEE sensitive to statistics
- Universal scaling between all flow harmonics at high p_T? Juries still out...
<table>
<thead>
<tr>
<th>Overview</th>
<th>Initial Conditions</th>
<th>Energy Loss</th>
<th>Heavy Flavor</th>
<th>SHEE</th>
<th>Outlook</th>
</tr>
</thead>
</table>

BACKUP
Multi-particle cumulants

Reconstructing the v_n distribution with cumulants

\[
\begin{align*}
v_n\{2\}^2 &= \langle v_n^2 \rangle, \\
v_n\{4\}^4 &= 2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle, \\
v_n\{6\}^6 &= \frac{1}{4} \left[\langle v_n^6 \rangle - 9\langle v_n^2 \rangle\langle v_n^4 \rangle + 12\langle v_n^2 \rangle^3 \right], \\
v_n\{8\}^8 &= \frac{1}{33} \left[144\langle v_n^2 \rangle^4 - 144\langle v_n^2 \rangle^2\langle v_n^4 \rangle + 18\langle v_n^4 \rangle^2 \\
&\quad + 16\langle v_n^2 \rangle\langle v_n^6 \rangle - \langle v_n^8 \rangle \right],
\end{align*}
\]

where collectivity $\rightarrow v_n\{2\} > v_n\{4\} \sim v_n\{6\} \sim v_n\{8\}$ but there are differences between higher order cumulants!
Constraining initial condition models

- Mean shape $\langle \varepsilon_n \rangle \rightarrow \eta/s$, EOS etc..

![Graph showing event-by-event fluctuations and correlation between harmonics]

- Size of event-by-event fluctuations $\varepsilon_n\{4\}/\varepsilon_n\{2\}$

- Correlation different harmonics $SC(3, 2)$
Constraining initial condition models

- Mean shape $\langle \varepsilon_n \rangle \rightarrow \eta/s, \text{ EOS etc.}.$

- Size of event-by-event fluctuations $\varepsilon_n\{4\}/\varepsilon_n\{2\}$

- Correlation different harmonics $\text{SC}(3, 2)$
Constraining initial condition models

- Mean shape $\langle \varepsilon_n \rangle \rightarrow \eta/s, \text{EOS etc.}$

- Size of event-by-event fluctuations $\varepsilon_n\{4\}/\varepsilon_n\{2\}$

- Correlation different harmonics $SC(3,2)$
Total initial entropy profile

\[S(p; S_A, S_B) = \left(\frac{S_A^p + S_B^p}{2} \right)^{\frac{1}{p}}, \]

where

\[S_{A,B} = w_{A,B} \frac{1}{2\pi\sigma^2} \exp \left[\frac{(x - x_{A,B})^2 + (y - y_{A,B})^2}{2\sigma^2} \right]. \]

normalization, \(w \), is a random number which is assigned to each participant nucleon, \(\Gamma \) probability distribution with the width \(k \).
Multiparticle cumulants at high p_T

Scalar product, $v_2\{2\}(p_T) \equiv v_2\{SP\}$

Avoids well-known problems with the event-plane method comparing between theory and experiments.

See Luzum and Ollitrault PRC87 (2013) no.4, 044907

$v_n\{2\}(p_T)$ Two particle correlation (one soft, one hard)

$$\frac{\langle v_n^{soft} v_n^{hard}(p_T) \cos \left(n \left[\psi_n^{soft} - \psi_n^{hard}(p_T) \right] \right) \rangle}{\sqrt{\langle \left(v_n^{soft} \right)^2 \rangle}}$$

$v_2\{4\}(p_T)$ Four particle correlation (three soft, one hard)

$$\frac{2 \langle |v_n^{soft}|^2 v_n^{soft} v_n^{hard}(p_T) \cos \left[n \left(\psi_n^{soft} - \psi_n^{hard}(p_T) \right) \right] \rangle - \langle (v_n^{soft})^3 v_n^{hard}(p_T) \cos \left[n \left(\psi_n^{soft} - \psi_n^{hard}(p_T) \right) \right] \rangle}{(v_n^{soft}\{4\})^{3/4}}$$