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Disease Heritability using Electronic Health 
Records

● Heritability estimates the amount of variation in a trait due to 
genetics (vs environment)
– Usually involves in-depth dedicated studies (twins, mice, etc)

– Limited sample sizes

By using emergency contact information at Columbia 
University Medical Center, we can infer 4.7 million familial 
relationships and use them to estimate disease 
heritabilities.



  

Calculating Heritability

● Traits are assigned in electronic health records via insurance 
billing codes (ICD-9/10)

● Able to compute heritability for traits not typically accessible 
with traditional studies (such as neurological)

● Each trait (thousands) was submitted as a job on OSG



  



  

Paper just accepted to Cell!



  

Data-Driven Drug Safety

● Objective: Mine the FDA Adverse Event Reporting System (FAERS) 
for statistically significant drug effects and interactions of multiple drugs
– Reports from 2004-2015

● Motivation: Clinical trials often lack statistics to find rare drug effects, 
drug interactions even more difficult

● Method: Machine learning techniques are used to match 
cases/controls to calculate statistical significances
– GPU turned out to not be that useful

● Result: Hypothesis generator for further investigation



  

nsides: Data-Driven Drug Effect Gateway

● Front-end: Public facing web gateway
● Middleware: Request drug interactions not already in database

– Impossible to prospectively mine all possible drug interactions

– Done via Agave with assistance from Science Gateways Community 
Institute (Choonhan Youn)

● Back-end: Each drug/interaction is setup as a DAG job
– Initial population of 4500 drugs

– Second population of prioritized drug interactions



  

Front-end



  



  

Looking Forward: Medical Imaging

● Starting July, transitioning to biomedical engineering/radiology
● Machine learning in medical imaging becoming very popular
● First ISMRM Machine Learning Workshop last week in California

– ~60 presentations, 85 posters, full house
– Vast majority used deep learning with GPU setups

● Variety of use cases:
– Reconstruction: Constructing high quality imaging from undersampled data
– Post-processing: Artifact correction
– Clinical application: Segmentation, disease outcome and progression prediction

● Interest from clinicians, scientists and engineers!
– Large diversity in computing abilities



  

Deep Learning

● Machine learning algorithms which uses multiple layers to extract and 
transform features

● Popular architectures: AlexNet, VGG Net, GoogleNet, ResNet, U-net, GAN

● Increase in performance, computing requirements and data

VGG-16
138M parameters!

source

https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/


  



  



  

Hype

...probably not...



  

Example Use Cases



  

Clinical

● Segmentation is essential task during radiotherapy planning
● Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks

● Hao Dong, Guang Yang, Fangde Liu, Yuanhan Mo, Yike Guo



  

Clinical

● Classification of clinical significance of MRI prostate findings 
using 3D convolutional neural networks

● Used Convolutional Neural Networks to differentiate clinically 
significant tumors as candidates for therapy vs clinically 
insignificant tumors for safety surveillance

source

https://doi.org/10.1117/12.2277123


  

Science

● Elucidation of biomarkers
● Tricky with the nature of deep learning since feature 

importances aren’t always clear
● Machine learning framework for early MRI-based Alzheimer's 

conversion prediction in MCI subjects
● Used shallow machine learning to help identify Mild Cognitive 

Impairment patients at high risk for conversion to Alzheimers

source

https://doi.org/10.1016/j.neuroimage.2014.10.002


  

Engineering

● Deep artifact learning for compressed sensing and parallel MRI
● Uses down-sampled data to reconstruct MR images
● Acquisition with lower scan time

source

https://arxiv.org/abs/1703.01120


  



  

Computing with Medical Imaging

● Training machine learning networks almost always done with 
GPUs

● Current model is to buy a GPU machine and run locally within 
institute or buy time on commercial clouds
– HIPAA compliance with clinical data available on AWS/MS

– Knowledge of OSG’s existence is limited



  

Network Pre-training

● Clinical medical imaging studies often lack sufficient statistics for 
deep learning
– Data augmentation helps: rotations, flipping, translation

● Overwhelming trend at workshop to use pre-trained networks
– Decent results starting with just ImageNet

● Discussion centered around using other large public radiology data
– Human Connectome Project

– The Cancer Imaging Archive



  

ImageNet

● Database containing 14 million images which are hand-
annotated



  

Open Science Grid

● Challenges:
– Data involved is Protected Health Information covered by HIPAA

– Datasets are large, especially ones typically used for pre-training

– Jobs can be very long and not easily segmented

– Accessibility to clinical researchers



  

Open Science Grid

● Pre-training can be done on OSG
– Repository for public imaging data similar to dbGap?

– Potential model is to pre-train on OSG and fine-tune at home institute

● Hyperparameter optimization during fine-tuning is very suitable for 
OSG resources

● Engineering projects could involve non-HIPAA data
● Analysis containers with Tensorflow and/or PyTorch
● Time to strike is now before trough of disillusionment 



  

Next Steps

● Wrap up nsides.io in the next few months, making sure it’s sustainable
● Develop public imaging deep learning analysis pipeline that can be 

deployed on OSG
– Pre-training on public radiology data

– Hyperparameter optimization

● Calculate value of adding other types of clinical data into classifiers
● Develop strategy for releasing networks and evaluation at other institutes
● Gracefully end fellowship in trough of disappointment
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