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Disease Heritability using Electronic Health
Records

* Heritability estimates the amount of variation in a trait due to
genetics (vs environment)

- Usually involves in-depth dedicated studies (twins, mice, etc)

- Limited sample sizes

By using emergency contact information at Columbia
University Medical Center, we can infer 4.7 million familial

relationships and use them to estimate disease
heritabilities.



Calculating Heritabllity

Traits are assigned in electronic health records via insurance
billing codes (ICD-9/10)

Able to compute heritability for traits not typically accessible
with traditional studies (such as neurological)

Each trait (thousands) was submitted as a job on OSG
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Paper just accepted to Cell!



Data-Driven Drug Safety

Objective: Mine the FDA Adverse Event Reporting System (FAERS)
for statistically significant drug effects and interactions of multiple drugs

- Reports from 2004-2015

Motivation: Clinical trials often lack statistics to find rare drug effects,
drug interactions even more difficult

Method: Machine learning techniques are used to match
cases/controls to calculate statistical significances

- GPU turned out to not be that useful
Result: Hypothesis generator for further investigation



nsides: Data-Driven Drug Effect Gateway

* Front-end: Public facing web gateway

« Middleware: Request drug interactions not already in database
- Impossible to prospectively mine all possible drug interactions

- Done via Agave with assistance from Science Gateways Community
Institute (Choonhan Youn)

« Back-end: Each drug/interaction is setup as a DAG job
- Initial population of 4500 drugs
— Second population of prioritized drug interactions
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Looking Forward: Medical Imaging

Starting July, transitioning to biomedical engineering/radiology
Machine learning in medical imaging becoming very popular

First ISMRM Machine Learning Workshop last week in California

- ~60 presentations, 85 posters, full house

- Vast majority used deep learning with GPU setups

Variety of use cases:

- Reconstruction: Constructing high quality imaging from undersampled data

- Post-processing: Artifact correction

— Clinical application: Segmentation, disease outcome and progression prediction
Interest from clinicians, scientists and engineers!

- Large diversity in computing abilities



Deep Learning

Machine learning algorithms which uses multiple layers to extract and
transform features

Popular architectures: AlexNet, VGG Net, GoogleNet, ResNet, U-net, GAN

Increase in performance, computing requirements and data
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https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

Gartner Hype Cycle for Emerging Technologies, 2017
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Hype
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Example Use Cases



Clinical

« Segmentation is essential task during radiotherapy planning

Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks

Hao Dong, Guang Yang, Fangde Liu, Yuanhan Mo, Yike Guo
Original Ground Truth Segmentation
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Clinical

» Classification of clinical significance of MRI prostate findings
using 3D convolutional neural networks

» Used Convolutional Neural Networks to differentiate clinically
significant tumors as candidates for therapy vs clinically
Insignificant tumors for safety surveillance

source


https://doi.org/10.1117/12.2277123

Science

Elucidation of biomarkers

Tricky with the nature of deep learning since feature
Importances aren’t always clear

Machine learning framework for early MRI-based Alzheimer's
conversion prediction in MCI subjects

Used shallow machine learning to help identify Mild Cognitive
Impairment patients at high risk for conversion to Alzheimers

source


https://doi.org/10.1016/j.neuroimage.2014.10.002

Engineering

* Deep artifact learning for compressed sensing and parallel MRI
» Uses down-sampled data to reconstruct MR images
* Acquisition with lower scan time

source


https://arxiv.org/abs/1703.01120

(a) Concept of artifact

Image

(b) Image learning
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(c) Artifact learning
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Figure 1: Concept of artifact learning. (a) The artifact image is defined as the difference between the aliased
image and the artifact-free image in magnitude and phase domain. (b) Image learning: the aliased image
is mapped to the artifact-free images. (¢) Artifact learning: the aliased image is mapped to the artifact
image. Once the artifact image is estimated, the artifact corrected image can be obtained by subtracting
the estimated artifact from the input image.



Computing with Medical Imaging

 Training machine learning networks almost always done with
GPUs

* Current model is to buy a GPU machine and run locally within
Institute or buy time on commercial clouds

- HIPAA compliance with clinical data available on AWS/MS
- Knowledge of OSG’s existence is limited



Network Pre-training

« Clinical medical imaging studies often lack sufficient statistics for
deep learning

- Data augmentation helps: rotations, flipping, translation

* Overwhelming trend at workshop to use pre-trained networks
- Decent results starting with just ImageNet

» Discussion centered around using other large public radiology data
- Human Connectome Project
- The Cancer Imaging Archive



ImageNet

Database containing 14 million images which are hand-
annotated
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Open Science Grid

* Challenges:
- Data involved is Protected Health Information covered by HIPAA
- Datasets are large, especially ones typically used for pre-training
- Jobs can be very long and not easily segmented
- Accessibility to clinical researchers



Open Science Grid

Pre-training can be done on OSG
- Repository for public imaging data similar to dbGap?
- Potential model is to pre-train on OSG and fine-tune at home institute

Hyperparameter optimization during fine-tuning is very suitable for
OSG resources

Engineering projects could involve non-HIPAA data
Analysis containers with Tensorflow and/or PyTorch
Time to strike is now before trough of disillusionment



Next Steps

Wrap up nsides.io in the next few months, making sure it's sustainable

Develop public imaging deep learning analysis pipeline that can be
deployed on OSG

- Pre-training on public radiology data
- Hyperparameter optimization

Calculate value of adding other types of clinical data into classifiers
Develop strategy for releasing networks and evaluation at other institutes
Gracefully end fellowship in trough of disappointment
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