
Data Lakes

Rob Gardner and Brian Bockelman
(With slides and ideas from Simone, Ilija, Benedikt, and others)

US LHC Joint Session @ University of Utah
March 19, 2018

Most significant challenge for HL-LHC

2

● Storage the main driver of
cost in the Facility (today)

● Yet current extrapolation
assuming flat budgets & a
little for technology
improvements fall way short
in Run 4

● How can we reduce the
needed disk capacity?

Storage Is (Operationally) Expensive!

As noted by Simone
earlier today, disk
drives operational
concerns as well!

3

Storage Elements are Complex
● In this model, we have multiple

services exposing a POSIX-like
filesystem.
○ Each storage element acts

independently.
● A higher-level transfer management

layer moves files between SEs.
● VOs develop their own data

management layer on top of that.
Not quite so simple…

● Driving model for 15+ years!

4

Cost reduction factors to consider

● LHC data is mostly ‘cold', store the majority on cheap cold
storage, including tape
○ recover hardware costs

● Reduce the number of VO-specific data management tools
● Reduce the number of storage elements in the grid

○ recover operational (labor) costs

● Choose organization & formats for the task
○ Strategically placed datasets in regions
○ Compressed files, optimized for storage and filtering
○ Granulated & inflated for client access & processing

5

Data Lake - Concept

● Instead of one-SE-per-site, have a single logical SE that
encompasses a significant amount of high-performance
storage.
○ Sites outside a data lake have no persistent experiment

storage.
○ E.g., all is cached or streamed.

● Potentially, this reduces the SE counts, allows more aggressive
use of tape, and allows experimentation in the data
format/organization.

6

Here comes the data lake

● For the purposes of discussions, we'll ignore the industry jargon and
focus on large aggregates of storage in a region.

● We need to develop the appropriate cost model to design the number
and configuration. Taps into an existing WLCG effort.

● Lots of management questions for a lakes-based data model.
○ Where does user data live?
○ How is tape storage incorporated and managed? In-lake or

out-of-lake?
○ What would be differences in models between ATLAS and CMS?

7

● There’s a few ways to approach data lakes:
○ Take an existing high-performance SE (such as EOS or

dCache) and make it work well over multiple sites.
○ Take the concept of a data federation and add functionality to

make it more like a distributed SE.
○ Explore new conceptual models for reducing data replication

levels.

● Do you try to save operational effort only? Or also
disk space?

Data Lake Implementations

8

Evolving the LHC computing model

● Implies significant change to the LHC computing
model

● A separation of major functions
○ A data plane (including archiving?).
○ A processing plane.
○ And a delivery & management network coupling them.

● Looks very different than any hierarchical
(“tiered”) model!

9

Potential Data Lake Architectures

10

Global Architecture Zoom-in of a data lake.

Data Lakes - Growing from Federations
● Federations provide data access.
● However, there are several

things that they don’t provide:
○ Namespaces. No source of

authority on what should be
in the federation or its
contents.

○ Data movement or
replication.

● These are often added by
combining the federation with
other technologies for data
management.

11

Data Lake Prototype - BigCVMFS
● Starting in CVMFS 2.3, we added the ability to:

○ Have the CVMFS / FUSE client download data from
files not in the existing CDN. (e.g., use AAA).

○ Utilize a separate authorization callout to retrieve
credentials from the user environment. In this case,
we get the GSI proxy from the user.

○ Enforce ACLs at the repository level.
● CVMFS provides an extraordinarily scalable namespace.

Solves AAA problems:
○ Record of what is supposed to be accessible via AAA!
○ CVMFS client can be updated independently of CMSSW

version.
● Currently publishing UCSD and Nebraska contents.

12

Data Lakes - New Conceptual Models

● We can also look at the data lake as a way to offer higher-level
services to the LHC.

● Proposal: Rather than outfitting processing sites with fat co-located
storage elements, outfit them with an event delivery service
○ “Service X", a new edge-service.

● Abstract away details of event format.
○ View data lake as datasets / events / branches, rather than files

an byte streams
● Hide latency of access

13

Service X

● Translate data between the storage optimized and
processing optimized formats

● Stream data to compute nodes through the LAN
● Optimizes network use by reducing number and size

of needed WAN transfers
● For output, aggregate (merge) data products and

reinsert into a delivery network

14

And delivery to a Service X?

15

● Expect a long period of
continuous development of
caching servers and delivery
services

● Roll out updates centrally
● Configure & control centrally

edge data delivery
service

Advantages

● Centralization of storage location and support
● Better planning for infrastructure investments (e.g. fast

networks between a Data Lake and its caches or between Data
Lakes)

● Separation of data storage format from data processing format,
opens the way for optimizations in data compression, evolution
of the data storage format, etc.
a. E.g., popular data can be recompressed for faster reads.

16

Advantages, cont.

● Optimization of network usage by reducing unnecessary data
transfers.
a. Does not always need to be a “pull”, but organized

placement.
● Lower startup cost and effort for adding resources (i.e. local

caches and Service X instances).
● Cache deployments are significantly smaller than current Tier2

storage deployments

17

Prototyping lakes infrastructure

18

● New services will be needed in various places, e.g.
in the edge networks of processing centers

● The “product" is the caching and delivery network,
which is a distributed set of services of various
types (e.g. Xcache, Service X, new-thing, ...)

● We need a platform - see SLATE slides at the end
(or sites jamboree talk two weeks ago)

US Computing Facilities as R&D Platform

● Wider-scale usage of Xcache (and
containerization). Continued Joint Project.

● Deployment of edge services at US Tier2s.
○ Deployment of a SLATE infrastructure for DevOps-friendly

development

● Service X prototype
● Prototyping improvements to data federations.

19

extra slides

http://bit.ly/atlas-lakes
20

http://bit.ly/atlas-lakes

21

Regional lakes, "zones", etc

● data lakes will
span geographic
regions

● interoperation
protocols
between regions
TBD

Deployment with SLATE

22

Services Layer At The Edge

● A ubiquitous underlayment -- the missing shim
○ A generic cyberinfrastructure substrate optimized for hosting edge

services
○ Programmable
○ Easy & natural for HPC and IT professionals
○ Tool for creating "hybrid" platforms

● DevOps friendly
○ For both platform and science gateway developers
○ quick patches, release iterations, fast track new capabilities
○ reduced operations burden for site administrators

23

SLATE Edge Clusters for US ATLAS

24

"Mock up" Examples

25

● slate app install --cluster=uchicago-mwt2,umich-arc
harvester:latest

● slate app install --cluster=alcf-edge htcondorce
● slate app install --cluster=mycluster arccache
● slate app status [appname]
● slate app status [appinstancename]
● slate app delete xcache
● slate app delete xcache --instance xcache-ivukotic-mwt2
● slate app delete xcache --cluster='uchicago-*'
● slate app delete --cluster=uchicago-rcc --org=ATLAS

Containerizing XCache for SLATE

● Already several Docker containers exist.
● There is an autobuilt one in slateci/xcache.
● A simple deployment (single server) tested in three different

Kubernetes clusters (CERN, MWT2, Google).
● Need a robot certificate before scale/reliability testing.
● Next steps:

○ Rucio fix for correct path construction.
○ XCache monitoring (reporting based on cache cinfo data)
○ Small scale testing
○ More complex deployment - cluster with autoscaling.

Ilija Vukotic

https://hub.docker.com/r/slateci/xcache/

