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Single phase LArTPC
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ü Wire readout instead of pixel readout 
ü Three wire planes in general design sense the induced current signal
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Drifting field: O(100) V/cm
Drifting speed: O(1) mm/us

Wire pitch: 3-5 mm

Photon sensor to 
measure scintillation 
light



DUNE Far Detector Simulation
• Generation

• Beam, atmospheric neutrinos
• Supernova neutrinos
• Cosmogenic events

• Geant4 tracking 
• Detector geometry
• Primary particle traversing liquid argon
• Scintillation photon + transport
• Ionization electron + transport

• Wire signal
• Electronics
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Neutrino flux + interaction

Primary particle 

Ionization electron
Scintillation photon 

ASIC à ADC Waveforms

Wire induced current

PMT Waveforms
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Neutrino flux + interaction

Produced primary particle 

Ionization electron
Scintillation photon 

ASIC à ADC Waveforms

Wire induced current

PMT Waveforms

TPC Signal Simulation
Ionization electrons à ADC waveforms



Nominal TPC Signal Simulation
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LAr Wire induced current
(field response)

Electronics 

At production
ü Ionization
ü Recombination

In drifting
ü Diffusion
ü Attachment/absorption

Short-range effect
ü Time dimension 
ü Closest wire
ü Average response

Cold electronics
ü Preamplifier 
ü RC filter
ü ADC 

ü Nominal TPC signal simulation in LArSoft (many LArTPC experiments 
share the core algorithms)

ü Wrapped wire case in APA (either side: grid wire plane, 2 induction plane
+ 1 collection plane)

Integrated charge
+

One closet wire



Improved TPC Signal Simulation
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LAr Wire induced current
(field response)

Electronics 

At production
ü Ionization
ü Recombination

In drifting
ü Diffusion
ü Attachment/absorption

Long-range effect
ü Time dimension 
ü Inter-wire
ü Intra-wire

Cold electronics
ü Preamplifier 
ü RC filter
ü ADC 

ü This improved TPC signal simulation currently in WireCell Toolkit 
(https://github.com/WireCell/)

ü Integration to LArSoft/local testing is on-going

Each charge deposition
+

Intra- and inter- wire



Improved TPC Signal Simulation
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LAr Wire induced current
(field response)

Electronics 

At production
ü Ionization
ü Recombination

In drifting
ü Diffusion
ü Attachment/absorption

Long-range effect
ü Time dimension 
ü Inter-wire
ü Intra-wire

Cold electronics
ü Preamplifier 
ü RC filter
ü ADC 

ü This improved TPC signal simulation currently in WireCell Toolkit 
(https://github.com/WireCell/)

ü Integration to LArSoft/local testing is on-going

Each charge deposition
+

Intra- and inter- wire

Field response ß input by
external configuration +

calculation (e.g. Garfield)



Signal formation in drifting
• Signal loss

• 30-40% due to recombination (ionization electron + argon ion)
• ~20 ms lifetime @16 ppt O2 equivalent contamination (~5%

absorption @1m drifting)

• Diffusion (shape change)
• Longitudinal (time dimension)
• Transverse (wire dimension)
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Profile of wire planes

Beam direction

Point charge

Patch

Roughly a 3D Gaussian diffusion
𝜎∥ (longitudinal) ~ 1.0 us @1 m drifting
𝜎# (transverse) ~ 1.5 mm @1 m drifting

𝜎 ∝ 𝐷&'()*
�
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Roughly a 3D Gaussian diffusion
𝜎∥ (longitudinal) ~ 1.0 us @1 m drifting
𝜎# (transverse) ~ 1.5 mm @1 m drifting

𝜎 ∝ 𝐷&'()*
� U

V
Y

D
rifting D

irection

Profile of wire planes

Beam direction
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Patch

Insignificant in comparison 
with long-range wire induction 
field response



Field Response
• Input to wire induced current signal
• Demonstrated using MicroBooNE anode plane design

9/24/17 10



Field response
• Electrostatic induction on wires
• End by electron collection
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,𝑖𝑑𝑡
�

�

= 𝑞 ⋅ (𝑉567& − 𝑉59*:'*)

Shockley–Ramo theorem
𝑖 = −𝑞	 ⋅ 𝐸5 ⋅ 𝑣⃗@

Ew /Vw: weighting electric
field/potential
• placing the target wire to

the unity potential, and 
the rest to zero

• Long range effect

Electron
track (E field)

+
Weighting
potential



Field response -- 2D Garfield calculation
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ü A 2D configuration for MicroBooNE anode palne
ü Average profile along wire orientation (ignore the dependency à residual 3D

effect)

Central wire



Field response -- 2D Garfield calculation
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ü 6 drifting paths (per 0.3 mm) for half wire pitch, the other half symmetrical
ü 0 ± 10 wires
ü 126 field responses are calculated

Central wire



Weighting potential
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U plane V plane Y plane

Field response (Plot in log scale, arbitrary unit)

Field response -- 2D Garfield calculation



Field response shape
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Electron collected

Weaker at boundary



Responses over wires 
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ü Significant contribution from adjacent wires
ü [-10, 10] (21) wires for U plane (mitigated in DUNE design by a

grid plane in front of U plane)
ü [-2, 2] (5) wires for V, Y planes (shield by U plane)

ü Equivalent to an isochronous track (parallel to wire plane) and 
perpendicular to wire orientation (along wire pitch direction)

Field response + Pre-amp response



2D signal formation validation
• Largely by 2D (time + wire dimension) field response
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MicroBooNE event 41075, Run 3493

Reconstructed charge after signal 
processing (kernel -- deconvolution)

2D decon has much better performance 
than 1D decon
ü Significantly improved for large angle track
ü Intense charge density along the track
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MicroBooNE event 41075, Run 3493

Reconstructed charge after signal 
processing (kernel -- deconvolution)

2D decon has much better performance 
than 1D decon
ü Significantly improved for large angle track
ü Intense charge density along the track

Validation of Inter-wire effect



2D signal formation validation
• Largely by 2D (time + wire dimension) field response
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MicroBooNE event 41075, Run 3493

X-axis: ×3𝜇𝑠



2D signal formation validation
• Largely by 2D (time + wire dimension) field response
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MicroBooNE event 41075, Run 3493

Validation of Intra- + inter-
wire effect

X-axis: ×3𝜇𝑠
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Time

Time

Time

True charge in one wire

Recon charge (average 
response in deconvolution)

Contribution from 
adjacent wires



TPC signal simulation
• Consist with abovementioned 2D signal formation

9/22/17 21



Overview of full TPC simulation
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𝑾𝒂𝒗𝒆 = (𝑫𝒆𝒑𝒐	 ⊛ 𝑫𝒓𝒊𝒇𝒕	 ⊛ 𝑫𝒖𝒄𝒕 + 𝑵𝒐𝒊𝒔𝒆) ⊙𝑫𝒊𝒈𝒊𝒕

INPUT:
üGeant4-based 
charge deposition
üSimple point/track 
of charge deposition

üIonization (W-value, fano factor) 
üRecombination (Birks & Modified box models)
üIonizing electron attachment (electron lifetime in LAr)
üGaussian diffusion (longitudinal / transverse)
üFluctuation (each step)

üField response (2D garfield calculation)
üPre-amplifier electronic response (gain, peaking time)
üAdditional two independent RC filter response (RC 
constant) 

Key convolution (signal shape):
𝐺𝑎𝑢𝑠 𝑡 ⋅ 𝐺𝑎𝑢𝑠 𝑥 ⨂𝐹𝑖𝑒𝑙𝑑 𝑥, 𝑡
⨂𝑃𝑟𝑒𝑎𝑚𝑝	(𝑡)⨂𝑅𝐶(𝑡)⨂𝑅𝐶(𝑡)

Blue: input

Analytic method 
(shown at last)



Interpolation of field response
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𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐺𝑎𝑢𝑠 𝑡 ⋅ 𝐺𝑎𝑢𝑠 𝑥
⨂𝐹𝑖𝑒𝑙𝑑 𝑥, 𝑡

⨂𝑃𝑟𝑒𝑎𝑚𝑝	(𝑡)⨂𝑅𝐶(𝑡)⨂𝑅𝐶(𝑡)

Input (126 paths):
0 ± 10 wires (63 mm)
Fine-grained calculation (per 0.3 mm)

Linear interpolation performed

Ticks
0 500 1000 1500 2000

W
av

ef
or

m
 (a

.u
.)

2500−

2000−

1500−

1000−

500−

0

500

1000

600 800 1000 1200 1400100−

50−

0

50

100

Average

Ticks
0 500 1000 1500 2000

W
av

ef
or

m
 (a

.u
.)

2500−

2000−

1500−

1000−

500−

0

500

1000

600 800 1000 1200 1400100−

50−

0

50

100

Linear

Non-proper bipolar cancellation at boundary of 0.3 mm sub-pitch

A large angle (to wire plane) track



A simulation of 5-GeV muon
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ADC Waveform Charge



A simulation of 5-GeV muon
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ADC Waveform Charge

Ionization charge from a ~2m muon track
Time/Memory summary (local machine):
0. Start: 0 second/+230 MB
1. Ionization electron signal: 42 seconds/+60 MB
2. Electronics noise: 11 seconds/+600 MB
3. Output: 2 seconds



Noise simulation
• Inevitable in the electronics
• Critical to the signal processing (ADC waveforms to 

ionization charge)
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Pre-amplifier inherent noise

27

Thermal
fluctuation in the
input transistor

Charge trapping and de-
trapping in the input
transistor

Transistor bias current and
resistors providing the bias 
voltageparallel white

9/22/17

v Noise occurring time 𝑡k is uniformly distributed (origin of the fluctuations)
v In frequency domain, given a 𝜔m, the stochastic effect just in phase term
𝑒n(op*q (delta function at 𝑡k	in time domain)

“Noise Characterization and Filtering in 
the MicroBooNE Liquid Argon TPC”, 
JINST 12 (2017) P08003



Noise -- Random Walk 
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𝐹 𝜔 ∝r𝑞((𝜔) ⋅
s

(tu

𝑒n(o*v = r𝐿(𝜔) ⋅ 𝑒n(⋅x
s

(tu

Sign of 𝑞( (Bernoulli variable) 
o unnecessary to be 50% + (-)
o absorbed into phase term

Noise in frequency domain:

𝛼 is uniformly distributed in [0, 2𝜋) 
o 𝑁 needs to be large enough

Start
End

𝐹 𝜔 follows a random walk in the 
complex plane with the step length 𝐿(𝜔)

How to describe vector ‘End – Start’?
Amplitude: Rayleigh distribution
Phase: uniform



Rayleigh distribution
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Number of steps N = 100
Step length L = 1

𝑓(𝑥; 𝝈) =
𝑥
𝜎~ 𝑒

n ��
~��

Mean = 𝜎 𝜋/2� , Mode = 𝜎

Only one 
parameter 𝝈



A simpler view
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Random Walk (Rayleigh distribution + uniform phase):
Two independent Gaussian distributions with same 
deviation (the only parameter 𝝈 in Rayleigh distribution) 

Gaussian

Gaussian

Additivity property of
Gaussian distribution

Summation of all sources of 
noise still can be described 
by only one parameter 𝝈
(the deviation of the two 
Gaussian distributions)

Only the mean amplitude of 𝐹 𝜔 = 𝜋/2� ⋅ 𝜎 is needed



Mean frequency amplitude
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“Noise Characterization and Filtering in 
the MicroBooNE Liquid Argon TPC”, 
JINST 12 (2017) P08003

Data-driven extraction



Summary
• The single phase LArTPC signal formation has been 

presented.
• 2D (time & wire) response is demonstrated.
• A corresponding/consistent signal simulation is introduced.
• A new analytic method of noise simulation is introduced.

• Special region response (e.g. shorted wire in MicroBooNE) 
stays tuned by data-driven result.

• An attempt on 3D calculation (boundary element method) is 
on-going.
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Two MicroBooNE papers

• Ionization signal analysis and processing in single
phase LArTPCs

• Paper 1: signal formation, simulation, extraction (signal
processing)

• Paper 2: data/MC comparison and performance in
MicroBooNE
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Starting review.
B. Russell will give a talk about the signal processing 
and evaluation with simulation.

Be ready soon.



BACKUP
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Signal loss in LAr -- recombination
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uBooNE DocDB 6866

𝑅 =
𝑑𝑄/𝑑𝑥
𝑑𝐸/𝑑𝑥

𝑅 ≅ 60% @87K, 273V/cm
𝑅 ≅ 70% @87K, 500V/cm



Signal loss in LAr -- absorption
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uBooNE DocDB 6866

𝐿 = 𝑒n*��v��/�, 𝜏 is defined as electron lifetime, 
𝜏 > 18.5 ms (normal MicroBooNE operation, 𝑂~

equivalent contamination < 16 ppt)
Maximum signal loss <12% at MicroBooNE (2.3 ms

drift from anode to cathode).



Electronics responses
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ü Significant if long or large signal
ü In general, <1% of the signal peak



Topology-dependent event
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x(drifting field direction)

y(wire direction)

z(wire pitch direction)theta_xz

theta_y

Varying 𝜃��
given 𝜃� = 90∘
(perpendicular 
to wire 
orientation)

𝜃�� determines 
the signal shape



Topology-dependent event
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𝜃� scales the 
charge in one 
wire pitch 



Shorted wire region
• Some special field response, e.g. shorted wire region 

of MicroBooNE detector, stays tuned by data-driven 
result.
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Y shorted by V wire
ü V plane has bipolar 

(electron bypass) + 
unipolar response 
(electron collected)

V plane 
response



Overall TPC Response 
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ü Effects/Responses changing the signal shape
ü In time dimension

Do not forget about signal shape changes/smearing in wire dimension
§ Diffusion
§ Field response


