Towards TPC Signal Simulation in Single Phase LArTPC

Hanyu WEI Brookhaven National Lab

APA consortium meeting Sep. 18, 2017

Single phase LArTPC

- ✓ Wire readout instead of pixel readout
- ✓ Three wire planes in general design sense the induced current signal

DUNE Far Detector Simulation

- Generation
 - Beam, atmospheric neutrinos
 - Supernova neutrinos
 - Cosmogenic events
- Geant4 tracking
 - Detector geometry
 - Primary particle traversing liquid argon
 - Scintillation photon + transport
 - Ionization electron + transport
- Wire signal
- Electronics

Neutrino flux + interaction

Primary particle

DUNE Far Detector Simulation

- Generation
 - Beam, atmospheric neutrinos
 - Supernova neutrinos

Neutrino flux + interaction

Nominal TPC Signal Simulation

LAr

At production

- ✓ Ionization
- ✓ Recombination

In drifting

- ✓ Diffusion
- ✓ Attachment/absorption

Wire induced current (field response)

Short-range effect

- ✓ Time dimension
- ✓ Closest wire
- ✓ Average response

Integrated charge + One closet wire Electronics

Cold electronics

- ✓ Preamplifier
- ✓ RC filter
- ✓ ADC

- Nominal TPC signal simulation in LArSoft (many LArTPC experiments share the core algorithms)
- Wrapped wire case in APA (either side: grid wire plane, 2 induction plane)
 + 1 collection plane)

Improved TPC Signal Simulation

LAr

At production

- ✓ Ionization
- ✓ Recombination

In drifting

- ✓ Diffusion
- ✓ Attachment/absorption

Wire induced current (field response)

Long-range effect

- ✓ Time dimension
- ✓ Inter-wire
- ✓ Intra-wire

Each charge deposition + Intra- and inter- wire Electronics

Cold electronics

- ✓ Preamplifier
- ✓ RC filter
- ✓ ADC

- This improved TPC signal simulation currently in WireCell Toolkit (<u>https://github.com/WireCell/</u>)
- ✓ Integration to LArSoft/local testing is on-going

Improved TPC Signal Simulation

Signal formation in drifting

- Signal loss
 - 30-40% due to recombination (ionization electron + argon ion)
 - ~20 ms lifetime @16 ppt O₂ equivalent contamination (~5% absorption @1m drifting)
- Diffusion (shape change)
 - Longitudinal (time dimension)
 - Transverse (wire dimension)

Roughly a 3D **Gaussian diffusion** σ_{\parallel} (longitudinal) ~ 1.0 us @1 m drifting σ_{\perp} (transverse) ~ 1.5 mm @1 m drifting

 $\sigma \propto D_{drift}$

Signal formation in LAr

- Signal loss
 - 30-40% due to recombination (ionization electron + argon ion)
 - ~20 ms lifetime @16 ppt O_2 equivalent contamination (~5%) absorption @1m drifting)
- Diffusion (shape change)
 - Longitudinal (time dimension)
 - Transverse (wire dimension)

Beam direction

Field Response

- Input to wire induced current signal
- Demonstrated using MicroBooNE anode plane design

Field response

- Electrostatic induction on wires
- End by electron collection

Weighting Field of a U Wire

Field response -- 2D Garfield calculation

- ✓ A 2D configuration for MicroBooNE anode palne
- ✓ Average profile along wire orientation (ignore the dependency → residual 3D effect)

Field response -- 2D Garfield calculation

- \checkmark 6 drifting paths (per 0.3 mm) for half wire pitch, the other half symmetrical
- ✓ 0 ± 10 wires
- ✓ 126 field responses are calculated

Field response -- 2D Garfield calculation

Field response (Plot in log scale, arbitrary unit)

Field response shape

Central Wire Field Response

Responses over wires

✓ Significant contribution from adjacent wires

- ✓ [-10, 10] (21) wires for U plane (mitigated in DUNE design by a grid plane in front of U plane)
- ✓ [-2, 2] (5) wires for V, Y planes (shield by U plane)
- ✓ Equivalent to an isochronous track (parallel to wire plane) and perpendicular to wire orientation (along wire pitch direction)

2D signal formation validation

• Largely by 2D (time + wire dimension) field response

Reconstructed charge after signal processing (kernel -- deconvolution)

2D decon has much better performance than 1D decon

- ✓ Significantly improved for large angle track
- \checkmark Intense charge density along the track

2D signal formation validation

• Largely by 2D (time + wire dimension) field response

Reconstructed charge after signal processing (kernel -- deconvolution)

2D decon has much better performance than 1D decon

- ✓ Significantly improved for large angle track
- ✓ Intense charge density along the track

Validation of Inter-wire effect

2D signal formation-validation-

Largely by 2D (time + wire dimension) field response

2D signal formation validation

Largely by 2D (time + wire dimension) field response

TPC signal simulation

Consist with abovementioned 2D signal formation

Overview of full TPC simulation

A simulation of 5-GeV muon

Y Plane (charge / electrons)

24

A simulation of 5-GeV muon

Noise simulation

- Inevitable in the electronics
- Critical to the signal processing (ADC waveforms to ionization charge)

Pre-amplifier inherent noise

noise type	also called	normalization	Time Domain pulse	s domain	the MicroBooNE Liquid Argon TPC", JINST 12 (2017) P08003 Thermal
Thermal 1	series white	$\sqrt{2k_BT_{temp}R_S} \times C_{det}$	$\times G \cdot \delta(t-t_j)$	$\times G \cdot e^{-st_j}$	 fluctuation in the input transistor
Thermal 2	parallel white	$\sqrt{2k_{B}T_{temp}}$ / R_{F}	$\times G \cdot u(t-t_j)$	$\times \frac{G}{S} \cdot e^{-st_j} \checkmark$	Transistor bias current and
Shot noise	parallel white	$\sqrt{qI_{\scriptscriptstyle leakage}}$	$\times G \cdot u(t-t_j)$	$\times \frac{G}{S} \cdot e^{-st_j}$	voltage
Flicker noise (1/f or pink)	series 1/f	$C_{ m det}\sqrt{2\pi a_F}$	$\times \frac{G}{\sqrt{\pi \cdot (t - t_j)}}$	$\times \frac{G}{\sqrt{s}}e^{-st_j}$	Charge trapping and de- trapping in the input
Man made noise	Various couplings	Usually has discrete frequency spectrum. Ignored here, could be modeled.			transistor

• Noise occurring time t_j is uniformly distributed (origin of the fluctuations) • In frequency domain, given a ω_0 , the stochastic effect just in phase term

 $e^{-i\omega_0 t_j}$ (delta function at t_j in time domain)

"Noise Characterization and Filtering in

Noise -- Random Walk

Noise in frequency domain:

$$F(\omega) \propto \sum_{i=1}^{N} q_i(\omega) \cdot e^{-i\omega t_i} = \sum_{i=1}^{N} L(\omega) \cdot e^{-i \cdot \alpha}$$

Sign of q_i (Bernoulli variable) \circ unnecessary to be 50% + (-) \circ absorbed into phase term

 $F(\omega)$ follows a random walk in the complex plane with the step length $L(\omega)$

How to describe vector 'End – Start'? Amplitude: Rayleigh distribution Phase: uniform

Rayleigh distribution

A simpler view

Random Walk (Rayleigh distribution + uniform phase): Two independent Gaussian distributions with same deviation (the only parameter σ in Rayleigh distribution)

Only the mean amplitude of $F(\omega) = \sqrt{\pi/2} \cdot \sigma$ is needed

Mean frequency amplitude

Summary

- The single phase LArTPC signal formation has been presented.
- 2D (time & wire) response is demonstrated.
- A corresponding/consistent signal simulation is introduced.
- A new analytic method of noise simulation is introduced.

- Special region response (e.g. shorted wire in MicroBooNE) stays tuned by data-driven result.
- An attempt on 3D calculation (boundary element method) is on-going.

Two MicroBooNE papers

- Ionization signal analysis and processing in single phase LArTPCs
 - Paper 1: signal formation, simulation, extraction (signal processing)

Starting review.

B. Russell will give a talk about the signal processing and evaluation with simulation.

 Paper 2: data/MC comparison and performance in MicroBooNE

Be ready soon.

BACKUP

Signal loss in LAr -- recombination

$$R = \frac{dQ/dx}{dE/dx}$$

$$R \cong 60\% @87K, 273V/cm$$

$$R \cong 70\% @87K, 500V/cm$$

Signal loss in LAr -- absorption

 $L = e^{-t_{drift}/\tau}$, τ is defined as electron lifetime, $\tau > 18.5$ ms (normal MicroBooNE operation, O_2 equivalent contamination < 16 ppt) Maximum signal loss <12% at MicroBooNE (2.3 ms drift from anode to cathode).

Electronics responses

Topology-dependent event

Varying θ_{xz} given $\theta_y = 90^\circ$ (perpendicular to wire orientation)

Topology-dependent event

Shorted wire region

 Some special field response, e.g. shorted wire region of MicroBooNE detector, stays tuned by data-driven result.

DDR Vs. Garfield V plane Y-short Comparison

Overall TPC Response

- ✓ Effects/Responses changing the signal shape
- $\checkmark\,$ In time dimension

Do not forget about signal shape changes/smearing in wire dimension

- Diffusion
- Field response