

Ran Hong Operational Readiness Review Meeting 02 October 2017

Outline

- Charge Question #4: "Are there robust plans for data processing and data analysis? Have adequate resources from the laboratory and the collaboration been identified for data analysis to meet these goals?"
- Overview of the magnetic field analysis
 - Analysis workflow
- Analysis Developments for operation
 - Analysis software framework
 - Progress and readiness for operation
- Analysis plans to achieve the physics goal
- Summary

ω_a Improvement: 180 ppb -> 70 ppb

$$a_{\mu}(\text{Exp}) = -\frac{m\omega_{a}}{eB} \longrightarrow a_{\mu}(\text{Exp}) = 2\frac{g_{e}\omega_{o}m_{\mu}\mu_{p}}{2\omega_{o}m_{e}\mu_{e}} = 22 \text{ ppb}$$

 ω_p Improvement: 170 ppb -> 70 ppb

- Magnetic field measurement
 - Magnetic field mapping
 - Interpolation in between measurements
 - Calibration and correction
- Convolution between field map and muon distribution

Source of uncertainty	R99	R00	R01	E989
Source of affectuality	[ppb]	[ppb]	[ppb]	[ppb]
Absolute calibration of standard probe	50	50	50	35
Calibration of trolley probes	200	150	90	30
Trolley measurements of B_0	100	100	50	30
Interpolation with fixed probes	150	100	70	30
Uncertainty from muon distribution	120	30	30	10
Inflector fringe field uncertainty	200	_	_	-
Time dependent external B fields	_	_	_	5
Others †	150	100	100	30
Total systematic error on ω_p	400	240	170	70
Muon-averaged field [Hz]: $\widetilde{\omega}_p/2\pi$	61791256	61791595	61 791 400	_

Our Team (ANL, UMass, FNAL, UW, UMichigan, UT-Austin)

- Faculty/Senior Scientists
 - Peter Winter, David Kawall, Brendan Kiburg, Alejandro Garcia, Erik Swanson, Martin Fertl, Tim Chupp
- Postdocs
 - Joe Grange, Ran Hong, David Flay, Matthias Smith, Jimin George
- Graduate students
 - Alyssa Conway, Rachel Osofsky, Alec Tewsley-Booth, Midhat Farooq
- Interns
 - 3 more undergraduates

- Online Analysis Required for Operations
 - For hardware operation
 - Fixed probe NMR frequency extraction (Time scale: 100ms)
 - Trolley Position
 - Field averaging for power supply feedback
 - For Data Quality Monitoring (Time scale: 5s)
 - DQM Pages and data publishing modules
 - All NMR frequency extraction
 - Data Storage: 500 TB in total, Tapes at Fermilab, using FTS to transfer data
- Nearline data production (Needed for operation, executed after each run)
 - All NMR frequency extraction (Data reduction: dropping off wave forms)
 - Data unpacking and saving
 - Trolley field mapping, multipole expansion
 - Trend plots: fixed probe, power supply feedback current, etc.

- Offline analyses (Not needed for operation)
 - Run quality summarizing: getting a list of good runs
 - Data reprocessing: reprocess raw data (like NMR frequency extraction) if algorithm is improved
 - Field interpolation using fixed probe
 - Fluxgate transient field study
 - Calibrations
 - Correlate with slow control database
 - Systematic uncertainty studies for each system
 - Muon distribution convolution

Framework for nearline production and offline analysis

Art Analyzers Trend Plots Art Root Data Quality Scans Raw Data Event-scale systematic study Art Jobs Frequency Extraction Position measurement Unpacking **Root Analyzers** Interpolation Plain Root Tree Data Calibration Run scale systematic study Muon distribution convolution Production **Analysis**

Progress and readiness for operation

Category	Task	Expert Oncall	Readiness
Online	All NMR probe Frequency	R. H., D. F.	100%
Online	Trolley Position	R. H.	100%
Online	Field Averaging	D. F.	100%
Online	DQM Pages	R. H.	100%
Nearline	Art modules for data production	R. H., D. F., R. O.	95%

Remaining tasks for operation (Done before Oct. 15th)

- Fluxgate data unpacking and nearline analysis
- Documentations for data production and trouble shooting
- Further improvements (Done before Nov. 1st)
 - More and better looking DQM Pages
 - Train people (and develop documentations) to do nearline production
 - Faster fixed probe frequency extraction
- Maintenance (1 Person every day during the run)
 - Sorting out good runs
 - Data quality control
 - Data base managing

Interpolation in between trolley runs (30ppb)

- Basic Plan
 - Interpolate the field cross-section map (averaged in azimuthal direction)
 - Interpolate lower order multipoles versus azimuth
 - Correlate with the fluxgates

- Advanced Plan
 - Use machine learning to interpolate field in finer scale
 - Use trolley runs as training data set
 - Predict the field at any position when trolley is not present

- Calibration (30+35 ppb)
- Basic Plan
 - Use water probe
 - Study material perturbation, chemical shift, mirror effect.
 - Position uncertainty

- Advanced Plan
 - Absolute calibration using 3He probe

• Frequency extraction and trolley field mapping (30 ppb)

- Basic Plan
 - Study how different algorithms affect the frequency extraction
 - Simulate the NMR probes and understand the systematic biases
 - Study frequency extractions in present of strong field gradient
 - Systematics related to trolley position measurements

- Advanced Plan
 - Independent studies of each issue
 - Blinding

Muon distribution convolution (10 ppb)

- Basic Plan
 - Convolute the measured muon beam distribution (cross-section) and the averaged field map (cross-section)

- Advanced Plan
 - Beam dynamics simulation in non-uniform field
 - 3-d muon distribution convoluted with 3-d magnetic field map

Developers and time frame

Task	Developers	Estimated time for Basic Plan	Estimated time for Advanced Plan
Field Interpolation	R. H., R. O., J. George, A. T.	1 month	9 months
Calibrations	D. F., R. H.	2 months	6 months
F-extraction and Field Mapping	R. H., D. F., R. O.	2 months	6 months
Muon Convolution	J. Grange	1 month	6 months

Summary

- Robust plans for data processing and data analysis?
 - Analysis programs necessary for operations are >95% ready for operation by now,
 - Will be fully ready before the October run
 - Data production scheme is developed to store raw data and provide unpacked data for down stream analyses
- Have adequate resources from the laboratory and the collaboration been identified for data analysis?
 - Experts are appointed to be ready to maintain the analysis system during the operation
 - Nearline analysis computer is configured and ready
 - Data storage requirement is identified
 - Clear plans to achieve the final physics goal

