

g-2 Simulation Tools

Renee Fatemi **FNAL Operational Readiness Review** October 2, 2017

What STUDIES do we need?

- Beam optics from target to storage ring injection
 - Model proton-target interactions
 - Track secondaries through beamlines and delivery ring
 - Predict # stored muons per protons on target (POT).
 - Necessary for beamline design and motivating running time.

What STUDIES do we need?

II. Beam optics in the storage ring

- Optimize beam injection parameters into the inflector
- Optimize inflector, kicker and quad settings for maximal muon storage
- Study effects of non-optimal quad alignment and field settings on muon storage and motion around the ring.

What STUDIES do we need?

III. Particle interactions with material in injection M5 line and storage ring

- Realistic distribution of decay positrons in order to
 - Develop calorimeter clustering and track reconstruction methods
 - Parameterize distributions as input for "fast" monte carlo simulations.
- Realistic muon injection and storage in order to
 - Study muon motion in the ring and interactions with collimators and fiber harps
- Study signature of systematic effects, for example lost muons

What TOOLS do we have?

STUDY	PACKAGE	FUNCTION
1	MARS	Simulates interaction of proton beam with the target and produces distribution of downstream secondary particles.
1 & 2	G4BEAMLINE	A particle tracking simulation program based on GEANT4 and optimized for simulating beamlines. Includes particle interactions such as pion-muon decay and precession of the muon spin as well as interactions with materials.
1 & 2	COSY	Same functionality as G4BEAMLINE. Includes fringe fields as well.
1 & 2	BMAD	Simulates relativistic charged-particle dynamics in high energy accelerators and storage rings. Capable of tracking particle momentum and spin interactions with fields. Does not simulate material interactions.
2 & 3	GM2RINGSIM	Customized implementation of GEANT4 within ART framework. Simulates the interaction of particles with storage ring materials and tracks motion inside mataerials and fields. Package Includes several particles guns.

Snapshots from **Type 1** Studies

MARS: Target Production

MARS used to model inconel target and lithium lens.

Simulate # secondaries/POT as a function of species after the TARGET

MARS output -> input to G4Beamline

G4BEAMLINE and COSY: M2 & M3 Lines

G4Beamline and COSY: Delivery Ring

- ~All pions decay to muons by turn #3
- Protons increasingly lag behind decay muons.
- After 4 turns protons are ready to be kicked out of DR

G4Beamline and COSY: M4 & M5 Lines

μ

- Losses through M4+M5 are minimal
- Muon momentum and beam injection parameters at inflector are fed into

Momentum, p (GeV/c)

Snapshots from Type 2 Studies

BMAD: Ring Storage Parameters

GM2RINGSIM: CBO vs Kicker Strength

During commissioning CBO did not change with kicker field as expected. Use BeamGun to map out CBO and mean radial beam position as a function of kicker strength. GM2RINGSIM indicates kickers were running ~ 70% of full field. Agrees well with BMAD analysis (see Dave Rubin's talk).

Snapshots from Type 3 Studies

Features

Features

Features

Constructed from a mix of native GEANT4 and CADMESH volumes.

Geometry integrated with complex time dependent magnetic and electric fields.

Features

Constructed from a mix of native GEANT4 and CADMESH volumes.

Geometry integrated with complex time dependent magnetic and electric fields.

Includes Parallel world functionality for tracking in a crowded geometry

Features

Constructed from a mix of native GEANT4 and CADMESH volumes.

Geometry integrated with complex time dependent magnetic and electric fields.

Includes Parallel world functionality for tracking in a crowded geometry

Includes an arsenal of particle guns: MIGun, DistroGun, GasGun, BeamGun

 Also used tune inflector, kicker and quad fields and optimize muon storage for commissioning run.

- g-2 used the original E821 inflector during the commissioning run. In parallel a new, lower mass, inflector was being designed
- The beam gun was used to study muon trajectories and storage fraction rates as a function of inflector design.

GM2RINGSIM: Lost Muon Signal

Use gasGun to study backgrounds to the lost muon signal.

Muons that exit the storage ring before decaying distort the ω_a extraction.

Use beamGun to study double (triple) coincidences in calorimeters.

GM2RINGSIM: Track Reconstruction

Integral part of track reconstruction in the strawtrackers.

- Geometry provides tracker module and straw positions
- The magnetic field is used to predict the path of the track through the fringe field.
- Simulation provides the energy loss in chamber walls and straws
- All of these effects are combined to extrapolate track to the decay tangential point

Computing Resources and Contributors

MARS

Initial studies run at RACF @ BNL. Future studies will be run @ FNAL.

- Voloyda Tishchenko
- Bill Morse
- J.F. Ostiguy
- Jim Morgan
- D. Still
- Mike Syphers

BMAD

Running @ CORNELL and FNAL

- Dave Rubin
- SeungCheon Kim
- Joe Bradley

G4BEAMLINE

Initial studies run on Cori @ NERSC.

If resources at NERSC become limited will run @ FNAL instead.

Diktys Stratakis

COSY

Currently running on cluster at Michigan State. Exploring possibility of running on FermiGRID.

- David Tarazona
- Martin Berz

μ g-2 m

Computing Resources and Contributors

GM2RINGSIM

Production currently runs on FERMIGrid and will utilize OSG in future.

- Production of truth level hits requires 0.6-6 sec/event.
 Reconstruction runs x10 faster .
- Combined footprint of truth + reconstruction is ~1TB per 4M events.
- If the collaboration requires a gm2ringsim simulation sample that replicates the expected data sample of 1x10¹¹ we would need 10 PB of disk space.
- The collaboration is embarking on a campaign to reduce both the running time and the total storage footprint of the gm2ringsim simulation productions.

Karie Badgley* Robin Bjorkquist Renee Fatemi* Nathan Froemming* Jason Fry* Jimin George* Alex Herrod * Laura Kelton* Bingzhi Li Adam Lyon James Stapleton* **David Sweigart** Leah Welty-Rieger* *current simulation team

