#### Fermilab **ENERGY** Office of Science



# SC Acceleration Modules and Cryogenics (WBS 121.3.4-8, 11)

Allan Rowe PIP-II Director's Review 10-12 October 2017

In partnership with:

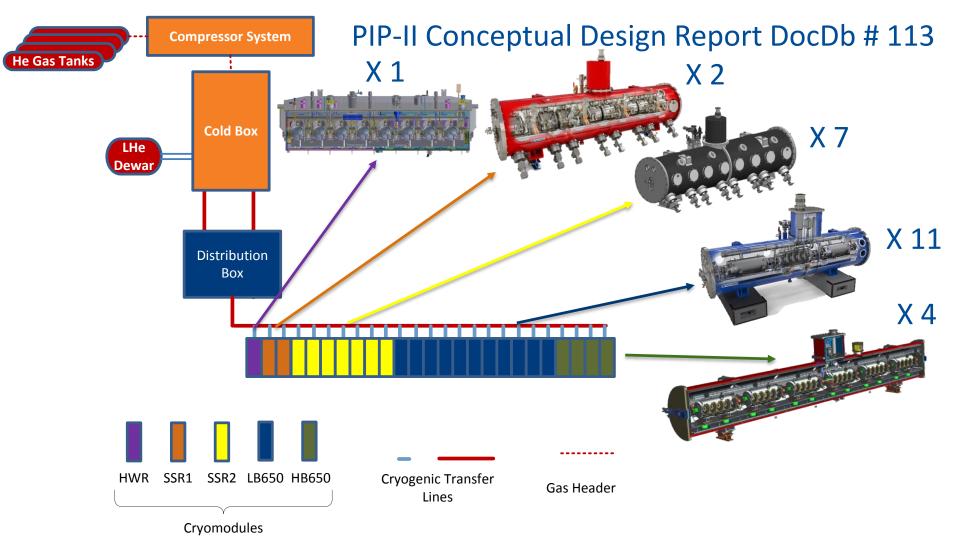
India Institutes Fermilab Collaboration Istituto Nazionale di Fisica Nucleare Science and Technology Facilities Council



# Outline

- Overview
- Requirements
- Conceptual Design, Maturity
- Scope/Deliverables
- Organization
- Interfaces
- Technical Progress to Date
- Design Review Plan
- Plan for CD-2/Preliminary Design
- ESH&Q
- Risk
- Cost
- Schedule
- Breakout Session topics
- Summary




#### About Me:

- Role in PIP-II: Project Engineer
  - L3 Manager for WBS 121.3.7, 8 (LB650, HB650)
- Relevant experience:
  - Tech. Div. SRF Development Dept. Deputy Head
  - PIP-II Coordinator for Technical Division (SRF LINAC Dev.)
  - Cryomodule Cleanroom Assembly Group Leader
  - Cavity Processing and Facilities Group Leader
  - Project Manager for ARRA Cavity Processing Industrialization + Eco-friendly Processing Development
  - FNAL Project Manager for Cavity Processing Facility at ANL
  - Responsible engineer for 3.9 GHz DESY FLASH Cryomodule Cavity processing and testing



#### 🛟 Fermilab

#### SC Cryomodules and Cryo Systems Overview

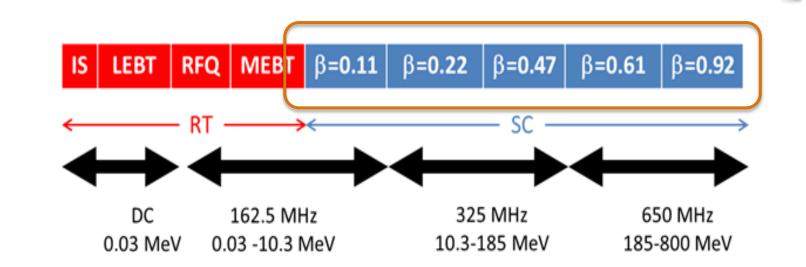




# WBS 121.3.4-8 Requirements

Booster/RR/MI upgrades

|   | # | Description of Scope | Threshold KPP                 | Objective KPP              |
|---|---|----------------------|-------------------------------|----------------------------|
| Ш | 1 | SRF linac            | 700 MeV beam delivered to the | 800 MeV beam delivered     |
| U |   |                      | Booster Injection Region      | to Booster Injection Regio |


MI γ<sub>t</sub> b

L11 Booster injection region,

Recycler and MI RF upgrades,

<sup>1</sup>ware

'ed in









#### Charge #1

Region

8 GeV beam transmitted

ctor, del'

through Recycler and Main

Charge #1

# WBS 121.3.4-6 Requirements

SRF Cryomodules

- 121.3.4  $\beta_{opt}$ =0.11, 162.5 *MHz* Half Wave Cryomodule
  - Accept and accelerate H<sup>-</sup> beam from 2.1-10.3 *MeV* FRS: TC# ED0001313
- 121.3.5 β<sub>opt</sub>=0.22, 325 *MHz* Single Spoke Cryomodules

   Accept and accelerate H<sup>-</sup> beam from 10.3-35 *MeV* FRS: TC# ED0001316
- 121.3.6 β<sub>opt</sub>=0.47, 325 *MHz* Single Spoke Cryomodules

   Accept and accelerate H<sup>-</sup> beam from 35-185 *MeV* FRS: TC# ED0001829



Charge #1

# WBS 121.3.7-8 Requirements

SRF Cryomodules cont...

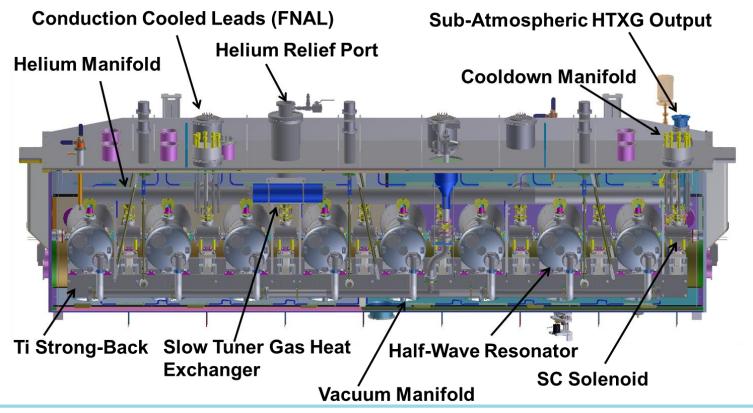
- 121.3.7  $\beta_g$ =0.61, 650 *MHz* Elliptical Cryomodules
  - Accept and accelerate  $H^-$  beam from 185-500 MeV
  - FRS: TC# ED0001830
- 121.3.8  $\beta_g$ =0.92, 650 *MHz* Elliptical Cryomodules
  - Accept and accelerate  $H^{-}$  beam from 500-800 MeV
    - 700 MeV is Threshold KPP, 800 MeV is Objective KPP
  - FRS: TC# ED0001322

# Mechanical, RF, and Cryogenic performance, requirements are detailed in the CM and sub-system FRS documents.



#### 🛟 Fermilab

### WBS 121.3.11 Requirements


#### Charge #1

|  |   |                          | injected and circulated in the Booster.                                                                 | N                                                                                                      |
|--|---|--------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|  | 3 | Cryogenic Infrastructure | Cryogenic plant and distribution<br>lines ready to support pulsed RF<br>operation, and operated to 2 K. | Cryogenic plant and<br>distribution lines ready to<br>support CW RF operation,<br>and operated to 2 K. |
|  | 4 | Civil Construction       | Tunnel enclosures d service<br>buildings ready to ort 700<br>MeV linac                                  | Tunnel enclosures and<br>service buildings to support<br>1 SRF c and<br>line D to                      |

- 121.3.11 Cryogenics
  - Deliver sufficient cryogenics cooling capacity and distribution to the LINAC superconducting cavities and cryogenics components operating within their respective operating conditions.
  - FRS: TC# ED0003531
- Requirements are well defined and traceable.



- 121.3.4 HWR Cryomodule
- CM and subsystem designs are complete, most key subsystems performance demonstrated.
- L3 Breakout Talk Z. Conway





Fermilab

Charge #1

Breakout

#### 121.3.5-6 – SSR1/SSR2 Cryomodules

- SSR1 CM and subsystem designs are advanced but not final, several key subsystems performance demonstrated.
- SSR2 CM and subsystem designs are conceptual, including cavity design. CM design and key subsystems will be based on SSR1 cryomodule.
- L3 Breakout Talk D. Passarelli SSR2 Electric (left) and Magnetic (right) 3D conceptual 0 0 model by COMSOL. Design DAE deliverable. NO **SSR1** Integrated CM SSR1 coldmass SSR1 string assembly



10

#### 🛟 Fermilab

Charge #1

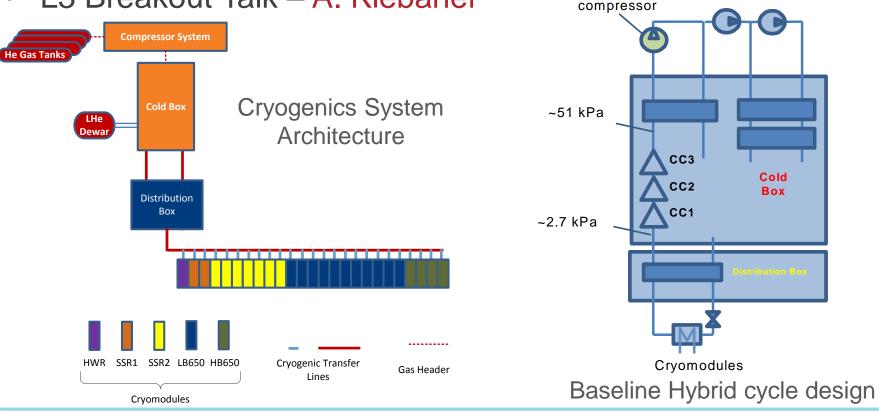
Breakout

#### 121.3.7-8 – LB650/HB650 Cryomodules

- LB650 CM and subsystem designs are preliminary, including cavity design. CM design and key subsystems are based on SSR1 cryomodule.
- HB650 CM and subsystem designs are in an advanced preliminary state of development with advanced designs and functional prototypes for cavity subsystems. CM design and key subsystems are based on SSR1 cryomodule.
- L3 Breakout Talk A. Rowe






Fermilab

Charge #1 Breakout

- 121.3.11 Cryogenics Systems
- The integrated Cryogenics Plant and Cryogenics Distribution System (CDS) are in a preliminary state of development.

Sub-atmospheric

• L3 Breakout Talk – A. Klebaner





🛟 Fermilab

Charge #1

Breakout

### **Scope and Deliverables**

- 121.3.4 HWR Cryomodule
  - Partner Development Argonne National Laboratory
  - Design, procure, integrate, install in PIP2IT, and test to performance requirements one 162.5 *MHz* 8-cavity superconducting cryomodule.
  - Beam testing through the HWR is part of the Warm Front End WBS
- 121.3.5-6 SSR1/SSR2 Cryomodules
  - SSR1 FNAL Development
    - Design, procure, integrate, install in PIP2IT or PIP2IT CMTS and test to performance requirements two 325 *MHz* 8-cavity superconducting cryomodules in PIP2IT.
  - SSR2 Combined FNAL/DAE Development
    - Design, procure, integrate, seven 325 MHz 5-cavity superconducting cryomodules. Test to performance requirements four of seven cryomodules in PIP2IT. Deliver seven CMs to the LINAC tunnel.





🛠 Fermilab

Charge #1

#### **Scope and Deliverables**



😤 Fermilab

- 121.3.7-8 LB650/HB650 Cryomodules
  - LB650 Combined FNAL/DAE/EU Development
    - Design, procure, integrate, eleven 650 *MHz* 3-cavity cryomodules. Test to performance requirements in CMTF/CMTS six of eleven cryomodules. Deliver eleven cryomodules to the LINAC tunnel.
  - HB650 Combined FNAL/DAE Development
    - Design, procure, integrate, four 650 *MHz* 6-cavity cryomodules. Test to performance requirements in CMTF/CMTS three of four cryomodules. Deliver four cryomodules to the LINAC tunnel.
- 121.3.11 Cryogenics Systems
  - Combined FNAL/DAE Development
    - Design, procure, and install one cryogenics plant, supporting infrastructure, and cryogenics distribution system to support both continuous wave and pulsed operation of superconducting cryomodules in the LINAC tunnel



Charge #3

121.5.12 Walth Units

121.3.13 Magnet Power Supplies

A. Chen

B. Hanna

| F. Garcia                                     | I. Kourbanis                                   | S. Dixon                                  |  |  |  |  |
|-----------------------------------------------|------------------------------------------------|-------------------------------------------|--|--|--|--|
| 121.3.1 Project Management                    | 121.4.1 Booster                                | 121.5.1 Project Management                |  |  |  |  |
| F. Garcia                                     | B. Pellico                                     | S. Dixon                                  |  |  |  |  |
| 121.3.2 Accelerator Physics                   | 121.4.2 Recycler/Main Injector                 | 121.5.2 Site Preparation                  |  |  |  |  |
| V. Lebedev                                    | J. <u>Dey</u>                                  | TBD                                       |  |  |  |  |
| 121.3.3 Warm Front End                        |                                                | 121.5.3 <u>Cryo</u> Plant Building<br>TBD |  |  |  |  |
| 121.3.4 HWR<br>Z. Conway                      |                                                | 121.5.4 Utility Plant Building<br>TBD     |  |  |  |  |
| 121.3.5 SSR1                                  | 121.3.14 Beam Transfer Line                    | 121.5.5 High Bay Building                 |  |  |  |  |
| D. Passarelli                                 | TBD                                            | TBD                                       |  |  |  |  |
| 121.3.6 SSR2                                  | 121.3.15 Beam Absorber                         | 121.5.6 <u>Linac</u> Tunnel               |  |  |  |  |
| D. Passarelli                                 | TBD                                            | TBD                                       |  |  |  |  |
| 121.3.7 LB650                                 | 121.3.16Beam Instrumentation                   | 121.5.7 <u>Linac</u> Gallery              |  |  |  |  |
| (A. Rowe)                                     | V. <u>Scarpine</u>                             | TBD                                       |  |  |  |  |
| 121.3.8 HB650                                 | 1211.3.17 Control System                       | 121.5.8 Beam Trans & Absorb Line          |  |  |  |  |
| (A. Rowe)                                     | J. Patrick                                     | TBD                                       |  |  |  |  |
| IZ1.3.7 NF POWER                              | 121.3.18 Vacuum                                | 121.5.9 Booster Connect                   |  |  |  |  |
| D. Peterson                                   | A. Chen                                        | TBD                                       |  |  |  |  |
| 121.3.10 RF Integration<br>D. Chase           | 121.3.19 Gen <u>Supp</u> Services<br>C. Baffes |                                           |  |  |  |  |
| 121.3.11 CryogenicSystems<br>A. Klebaner      | 121.3.20 Safety Systems<br>J. Anderson         |                                           |  |  |  |  |
| 565 866 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m |                                                |                                           |  |  |  |  |

121.3.21Test Infrastructure

C. Baffes

J. Leibfritz, J. Ozelis, D. Passarelli

121.3.22 Install, Integ & Commiss

121.4 Rings Upgrades

#### **PIP-II Project Office**

121.3 Superconducting Linac

121.2 Project Management S. Holmes

| 121.2.2 E<br>S. Holme   | ermilab & USA <u>Coord</u><br>s |
|-------------------------|---------------------------------|
| 121.2.3 li<br>S. Mishra | nternational <u>Coord</u><br>a  |
| 121.2.4 E<br>L. Lari    | Business Office                 |
| 121.2.5 E<br>T. Dykhu   |                                 |
| 121.2.6 S<br>A. Rowe    | ystem Eng & Integ               |
| 121.2.7 C<br>S. Dixon   | Conv Facil Coord                |

**Organization** 

**121.5** Conventional Facilities

| ligh Bay Building        |   |
|--------------------------|---|
| <u>inac</u> Tunnel       |   |
| inac Gallery             |   |
| Beam Trans & Absorb Line |   |
| Booster Connect          |   |
|                          | 5 |
|                          |   |



#### **Interfaces - Technical**

Charge #1

Each L3 WBS within 121.3 interfaces across the WBS Matrix

 Each Cryomodule type has or will have an interface document. Examples are: TC# ED0002529 HWR Interface Document, TC# ED0004129 Interfaces for PIP-II SSR1 Cryomodule...

| Common Interfaces to each Cryomodule Type |                                       |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| 121.3.9 – RF Power                        | 121.3.19 – General Supt. Serv.        |  |  |  |  |  |  |  |
| 121.3.10 – RF Integration                 | 121.3.20 – Safety Systems             |  |  |  |  |  |  |  |
| 121.3.11 – Cryo Systems                   | 121.3.21 – Test Infrastructure        |  |  |  |  |  |  |  |
| 121.3.16 – Beam Instrum.                  | 121.3.22 – Install., Integ., and Comm |  |  |  |  |  |  |  |
| 121.3.17 – Control Systems                | 121.5 – Conventional Facilities       |  |  |  |  |  |  |  |
| 121.3.18 - Vacuum                         |                                       |  |  |  |  |  |  |  |

• Technical interfaces are understood. Formally, each WBS will have a revision controlled Interface Spec Doc managed in Teamcenter.



#### **Interfaces - Partners**



- Final deliverables to be formalized in advance of CD-2
- Cryomodule development in HWR, SSR2, LB650, and HB650 are heavily matrixed.
- 121.3.4 HWR (ANL/FNAL)
  - ANL: Development and production
  - FNAL: Development support and CM testing with ANL scientific suppt
- 121.3.6 SSR2 (FNAL/DAE BARC)
  - FNAL: Overall CM design, development, production and testing
  - DAE-BARC: SSR2 dressed cavity design and production & qualif.
- 121.3.7 LB650 (DAE VECC, RRCAT/EU-INFN/FNAL)
  - DAE VECC: LB650 dressed cavity design and production
  - DAE RRCAT: LB650 overall CM design
  - EU: INFN-Lasa: LB650 dressed cavity design and production
  - EU: CEA-Saclay: LB650 CM integration
  - FNAL: Design and integration support and CM testing



#### **Interfaces - Partners**

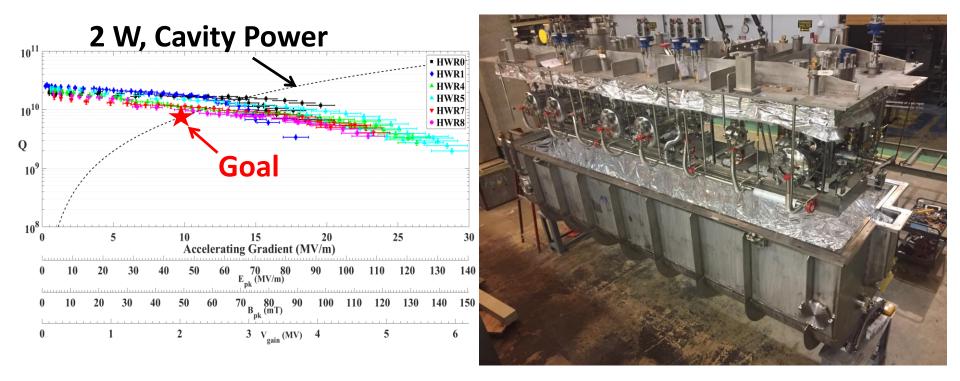
Charge #1

- 121.3.8 HB650 (FNAL/DAE-RRCAT)
  - FNAL: Overall CM design, development, production, and testing
  - DAE RRCAT: HB650 dressed cavity production & qualif.
- 121.3.11 Cryogenics Systems (FNAL/DAE)
  - FNAL: Design, development, and production of the Cryogenics Distribution System, integration of the Cryogenics Plant
  - DAE BARC: Delivery of the Cryogenics Plant
- All FNAL/DAE Partner Interfaces managed via Sub-project Coordinator (SPC) and Sub-project Manager (SPM) weekly or bi-weekly meetings. Points of Contact (POC) for technical areas defined both at FNAL and within DAE.
- EU-INFN/CEA Saclay need to be confirmed



#### **Progress to date**

- Organizational Progress:
  - FNAL L3 managers assigned
  - DAE Sub-project Coordinators assigned maps to FNAL L3s who are also Sub-project managers.
  - EU points of contact are being elaborated (LB650/HB650)
  - Managerial structure organized around WBS
  - FNAL Technical points of contact are identified within the Technical Division and aligned within the Division's Org. Structure.




😤 Fermilab

Charge #1

#### **Progress to date - HWR**

- HWR Z. Conway breakout talk
  - Technically mature with critical technologies demonstrated and design reviews completed.
  - Most critical procurements completed.





#### 🛟 Fermilab

Charge #1 Breakout

#### 🛟 Fermilab

Charge #1

Breakout

#### **Progress to date – SSR1**

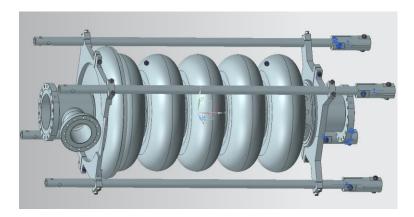
- SSR1 D. Passarelli breakout talk
  - Design technically mature, Final Design Review sequence underway (String Assembly – FDR done, Coldmass, and CM-Integration FDR - ready)
  - Many significant procurements complete for SSR1 CM1, remaining procurements awaiting scheduled FDRs and PRRs.
  - All bare cavities qualified, all bare cavities dressed and in qualification stream.
  - Dressed cavities with high-power RF couplers and tuners are proceeding through the Spoke Test Cryostat.
  - Field Emission remains primary concern.



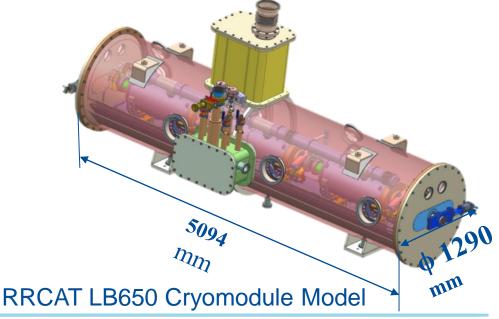
#### **Progress to date – SSR2**

- SSR2 D. Passarelli breakout talk
  - CM Design is based on SSR1.
  - SSR2 has the least amount of integrated tasks complete of all CM types.
  - SSR2 development is the critical path for the LINAC starting with the current activities in the SSR2 cavity design and prototyping effort.
  - Next step is SSR2 PDR of cavity by BARC followed by FDR several months later with prototyping at BARC and FNAL to follow.
  - Critical sub-components (RF couplers, tuners) are derivatives of SSR1.




Fermilab
Charge #1
Breakout

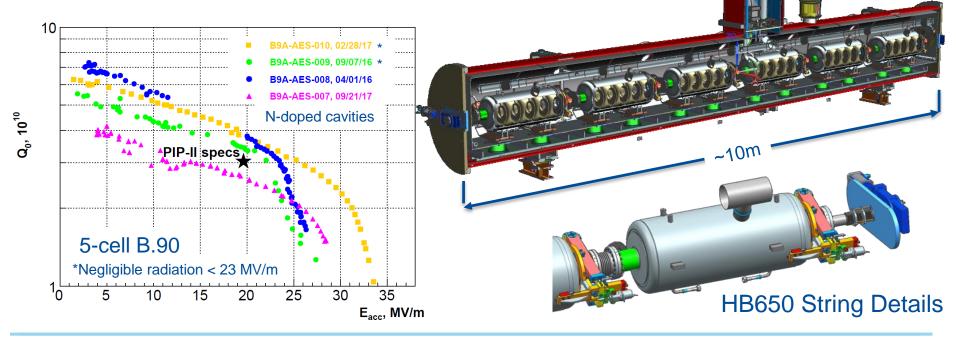
#### **Progress to date – LB650**


LB650 – A. Rowe breakout talk



- CM Design is the responsibility of the DAE (RRCAT) and is pre-PDR.
- Concept based on SSR1 CM design.
- Dressed cavity has completed the PDR. EM design chosen.
   Mechanical design iterations proceeding to FDR both at VECC and INFN.




INFN-Lasa LB650 Cavity Model



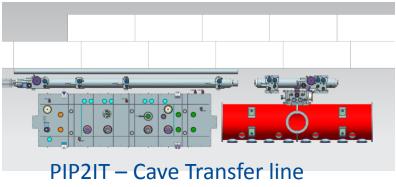


#### **Progress to date – HB650**

- HB650 A. Rowe breakout talk
  - CM design is preliminary, but pre-PDR.
  - 650 MHz multi-cell performance in the VTD exceeds specs.
  - DAE-RRCAT processing the first  $\beta$ =0.92 cavity
  - Prototype RF couplers are ordered.






#### Fermilab Charge #1

Breakout

#### **Progress to date – Cryogenic Systems**

- Cryo Systems A. Chakravarty/A. Klebaner
  - 2kW at 2.0 K Cryogenic Plant DAE Deliverable
    - Procurement cycle started in the DAE BARC
    - Hybrid compression cycle deemed baseline
    - Primary performance specifications defined
  - Cryogenic Distribution System
    - Technical details for PIP2IT CDS well elaborated. Numerous ED's generated.
    - External PIP2IT transfer line under construction
    - Linac CDS design specifications and alternatives established.





Charge #1 Breakout

🛟 Fermilab



#### **Design Review Plan**



😤 Fermilab

- Design reviews are organized as follows:
  - Review Cycle: FRS/TRS  $\rightarrow$  PDR  $\rightarrow$  FDR  $\rightarrow$  PRR
  - Critical component, subsystem, and primary system all progress through Preliminary (PDR), Final (FDR), and Production Readiness Reviews (PRR). This cycle enables the procurement cycle to begin.
  - Non-critical components or subsystems are managed within the Division or Department review process as indicated by the FNAL Engineering Manual.

| D |     | 7                      | Activity Name                                                                                                            | BOE Docdt |                      | 2022           | 2023               | 2024                     | 2025                     | 2026                  | 2027                   | 2028         |
|---|-----|------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|----------------|--------------------|--------------------------|--------------------------|-----------------------|------------------------|--------------|
|   |     |                        |                                                                                                                          |           | Q4                   | Q1 Q2 Q3 Q4    | Q1 Q2 Q3           | Q4 Q1 Q2 Q3 Q            | 4 Q1 Q2 Q3 Q4            | Q1 Q2 Q3 Q4           | Q1 Q2 Q3 Q4            | Q1 Q2 Q3 Q4  |
|   | E 1 | 21.3.6.3.4.1 Linac - 9 | SSR2 - 1stCM - COLDMASS - CryoModule Components                                                                          |           | 1 i i <del>t i</del> |                | 121.3.6            | 3.4.1 Linac - SSR2 - 1st | tCM - COLDMASS - Cry     | oModule Components    |                        |              |
|   | -   | 121.3.6.3.4.1.1 Lina   | ac - SSR2 - 1stCM - COLDMASS - CMComp: Fermilab scope (FTE)                                                              |           | i i 🛨                | *****          | 121.3.6.3          | 4.1.1 Linac - SSR2 - 1   | stCM - COLDMASS - CM     | (Comp: Fermilab scop  | e (FTE)                |              |
|   |     | 121.3.6.3.4.1.1.1      | Linac - SSR2 - 1stCM - COLDMASS - CMComp - Design of CM Components                                                       |           | 1 : <del>1 :</del>   | 121.3.6.3      | .4.1.1.1 Linac - 9 | SSR2 - 1stCM - COLDMA    | ASS - CMComp - Design    | of CM Components      |                        |              |
|   | 1   | A17722030              | Linac - SSR2 - 1stCM - COLDMASS - CMComp - Des - ConstrPh: Dev. Prel. Design for Cold Mass Comp. after Final PRR DCAV    | 429       |                      | Linac - SSR2   | 1stCM - COLDM      | ASS - CMComp - Des - C   | ConstrPh: Dev. Prel. Des | iign for Cold Mass Co | mp. after Final PRR DC | AV           |
|   |     | A17722040              | Linac - SSR2 - 1stCM - COLDMASS - CMComp - Des - ConstrPh: TS MS - Prelim. Design Review (PDR) of Cold Mass Components   | 429       |                      | + Linac - SSR2 | 1stCM - COLDM      | ASS - CMComp - Des - C   | ConstrPh: T5 MS - Prelin | n, Design Review (PDI | R) of Cold Mass Compo  | inents       |
|   |     | A17722050              | Linac - SSR2 - 1stCM - COLDMASS - CMComp - Des - ConstrPh: Develop Final Design of Cold Mass Components                  | 429       |                      | + Linac - SS   | R2 - 1stCM - COL   | DMASS - CMComp - Des     | s - ConstrPh: Develop Fi | nal Design of Cold Ma | iss Components         |              |
|   |     | A17722060              | Linac - SSR2 - 1stCM - COLDMASS - CMComp - Des - ConstrPh: T5 MS - Final Design Review (FDR) for Cold Mass Components    | 429       |                      |                | R2 - 1stCM - COL   | DMASS - CMComp - Des     | s - ConstrPh: T5 MS - Fi | nal Design Review (Fl | DR) for Cold Mass Corr | iponents     |
|   | 1   | A17722070              | Linac - SSR2 - 1stCM - COLDMASS - CMComp - Des - ConstrPh: Prepare documentation for Cold Mass Components PRR            | 429       |                      | Linac-S        | SR2 - 1stCM - CO   | LDMASS - CMComp - D      | es - ConstrPh: Prepare   | documentation for Co  | ld Mass Components P   | RR           |
|   |     | A17722080              | Linac - SSR2 - 1stCM - COLDMASS - CMComp - Des - ConstrPh: T5 MS - Prod. Readiness Review (PRR) for Cold Mass Components | 429       |                      | 🛏 Linac - S    | SR2 - 1stCM - CC   | LDMASS - CMComp - D      | es - ConstrPh: T5 MS - I | Prod. Readiness Revi  | ew (PRR) for Cold Mas  | s Components |

#### SSR2 1<sup>st</sup> CM Coldmass Design and Review Cycle in P6



Charge #3

# **Next Steps toward CD-2**

- Organizational
  - Formalize technical POC's for critical subsystem elements within each L3 as necessary.
  - Elaborate Partner deliverables' schedule and incorporate formally into the WBS and schedule.
- Technical
  - Complete high-level system design and correlate combined L3 scope functional requirements with individual L3 functional requirements.
  - Complete interface specifications between L3 systems, followed by technical requirement specifications.
  - Validate design and construction schedule for each L3 system.
  - Continue critical R&D in each L3 area as necessary to meet R&D and construction schedules.



# ESH&Q

- Charge #4
- Personnel Safety and environmental and equipment protection are the highest priorities in the PIP-II Project.
- All activities will be in full compliance with the PIP-II ISM program defined in DocDb# 141.
  - Laboratory and DOE standards and practices
    - Fermi ES&H Manual
    - Division/Area specific Hazards Analyses and Training
- PIP-II's Project's QA Plan (DocDB # 142) implemented across all areas. Established Project/Division mechanisms regarding acceptance testing, control of non-conformances, and vendor feedback are included.

#### All systems are designed to be safe and to minimize impact on the environment



Charge #2

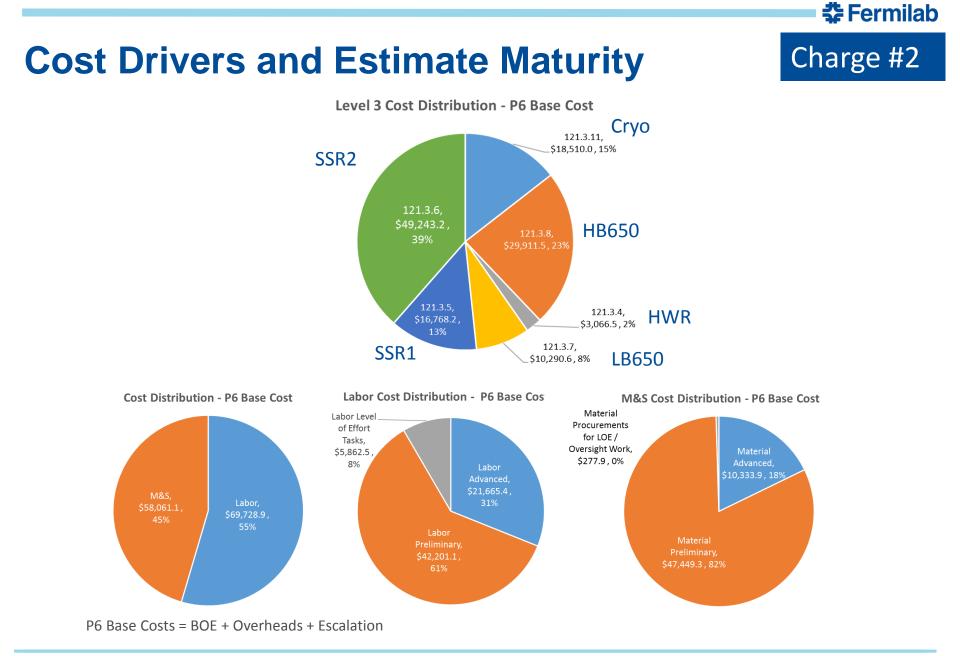
# **Risk: Cavity, CM and Cryogenics**

- Pulsed and CW cryomodule operating modes cause cryogenic or mechanical instabilities
- Insufficient Cryogenic system vendor manufacturing capacity and priority
- SSR1 CM (1) Performance at PIP2IT does not meet technical requirements
- HB650 CM (1) Performance at CMTF does not meet technical requirements
- SSR2 CM (1) Performance at PIP2IT does not meet technical requirements

| Title                                                                                | Probability | Score | P * Impact<br>(k\$) |     | Impact<br>Score - Cost | Impact<br>Score -<br>Schedul 💌 | Risk Rank |
|--------------------------------------------------------------------------------------|-------------|-------|---------------------|-----|------------------------|--------------------------------|-----------|
| Pulsed and CW cryomodule operating modes cause cryogenic or mechanical instabilities | 50.00%      | 4 (H) | 688                 | 3.3 | 2 (M)                  | 3 (H)                          | 3 (High)  |
| Insufficient Cryogenic system vendor manufacturing capacity and priority             | 50.00%      | 4 (H) | 500                 | 3.5 | 2 (M)                  | 3 (H)                          | 3 (High)  |
| SSR1 CM (1) Performance at PIP2IT does not meet technical requirements               | 40.00%      | 4 (H) | 433                 | 2.8 | 2 (M)                  | 3 (H)                          | 3 (High)  |
| HB650 CM (1) Performance at CMTF does not meet technical requirements                | 40.00%      | 4 (H) | 333                 | 2.8 | 2 (M)                  | 3 (H)                          | 3 (High)  |
| SSR2 CM (1) Performance at PIP2IT does not meet technical requirements               | 40.00%      | 4 (H) | 333                 | 2.8 | 2 (M)                  | 3 (H)                          | 3 (High)  |

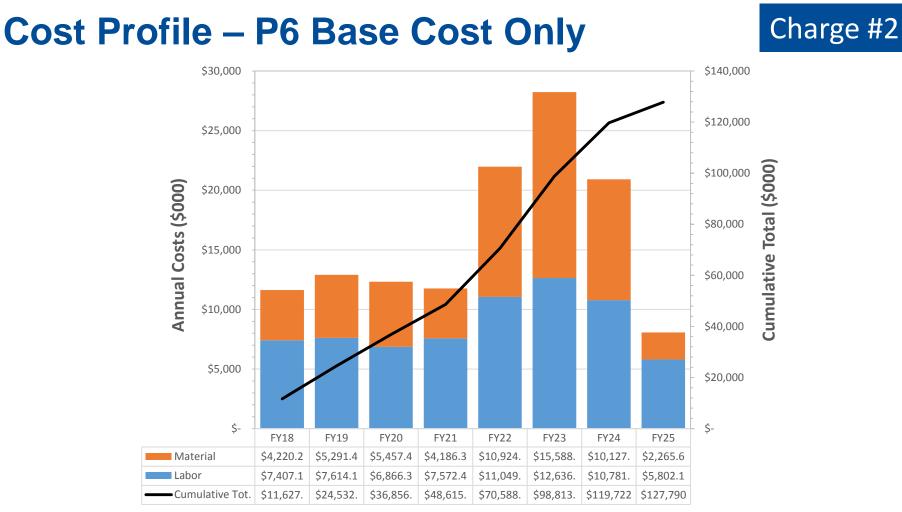


#### 🛟 Fermilab


## **Cost Summary**

#### Charge #2

| WBS Element                                         | Hours    | Labor | r (\$000) | M  | &S (\$000) | Est  | . Uncerta | nity (\$000) |    |                           |
|-----------------------------------------------------|----------|-------|-----------|----|------------|------|-----------|--------------|----|---------------------------|
| 121.3 - PIP-II - Linac                              | P6 Hours | P6 Ba | se Cost   | P6 | Base Cost  |      | Total     | % of Base    | То | tal Cost Incl.<br>Uncrty. |
| 121.3.4 - Linac - Half Wave Resonator (HWR)         | 9,019    | \$ 1  | 1,459.9   | \$ | 1,606.6    | \$   | 570.7     | 18.6%        | \$ | 3,637.3                   |
| 121.3.5 - Linac - Single Spoke Resonator 1 (SSR1)   | 64,288   | \$ 9  | 9,359.4   | \$ | 7,408.8    | \$   | 3,476.6   | 20.7%        | \$ | 20,244.8                  |
| 121.3.6 - Linac - Single Spoke Resonator 2 (SSR2)   | 154,462  | \$ 24 | 4,501.0   | \$ | 24,742.2   | \$ 1 | 1,892.3   | 24.2%        | \$ | 61,135.5                  |
| 121.3.7 - Linac - Low Beta 650 (LB650)              | 54,790   | \$ 9  | 9,895.0   | \$ | 395.6      | \$   | 1,757.2   | 17.1%        | \$ | 12,047.8                  |
| 121.3.8 - Linac - High Beta 650 (HB650)             | 119,688  | \$ 16 | 5,729.2   | \$ | 13,182.3   | \$   | 7,302.5   | 24.4%        | \$ | 37,214.0                  |
| 121.3.11 - Linac - CRYOgenics (CRYO)                | 57,601   | \$ 7  | 7,784.4   | \$ | 10,725.7   | \$   | 5,063.9   | 27.4%        | \$ | 23,573.9                  |
| Grand Total                                         | 459,849  | \$ 69 | ),728.9   | \$ | 58,061.1   | \$3  | 0,063.2   | 23.5%        | \$ | 157,853.2                 |
| Note: P6 base cost = BOE + overheads and escalation |          |       |           |    |            |      |           |              |    |                           |


- Uncertainty based on Project Guidelines
- Costs come from P6 and are estimated down to the L6-8 Activity level.





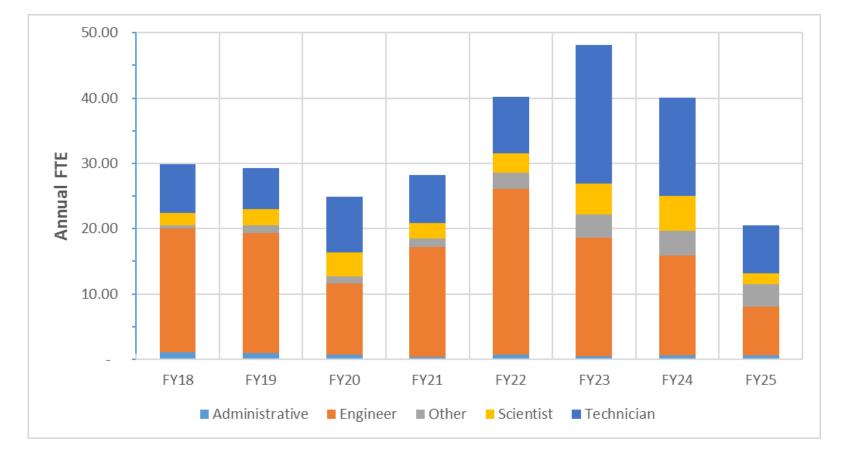
#### 31 10/10/2017 Allan Rowe | SC Acceleration Modules and Cryogenics





P6 Base Costs = BOE + Overheads + Escalation

• Material cost ramps significantly during SSR2 and HB650 Production CMs.




🛟 Fermilab

#### 10 deteile in breakerste

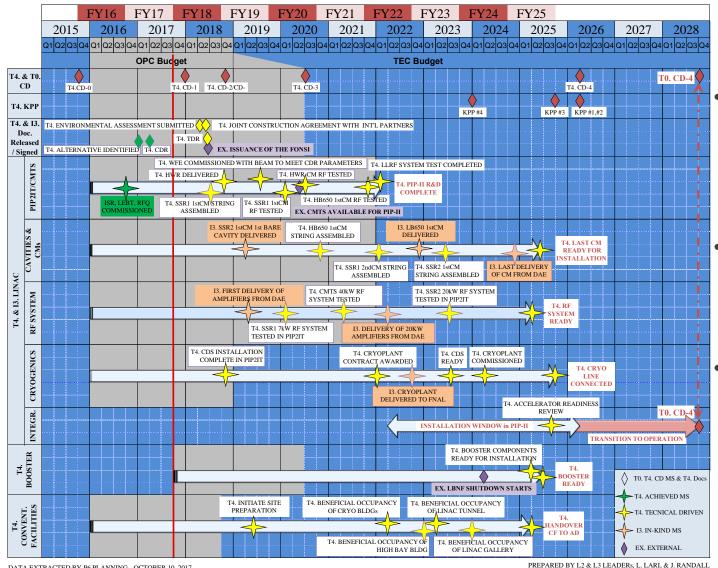
• L3 details in breakouts.

#### Labor Profile – P6 Hours/FTE



Labor profile technically driven with no smoothing.






Charge #2



PIP-II PROJECT - High Level Master Schedule

T4 Milestones Tiered to T2, I3 Milestones - WORKING SCHEDULE



CHECKED BY OFFICE OF SCIENCE - FERMI SITE OFFICE SUBMITTED BY S. HOLMES

**Fermilab** 

DATA EXTRACTED BY P6 PLANNING - OCTOBER 10, 2017



🛟 Fermilab

Charge #2

SRF/Cryo

milestones in

PIP2IT, CMTF,

Cavities & CMs,

and Cryogenics

Individual L3

schedules

detailed in

breakouts

**PIP-II** Critical

through SSR2

CM development.

Path moves

#### **Breakout Session**

| Breakout Session: SC Acceleration Modules and Cryogenics<br>Session to begin on Tuesday and carry over to Wednesday as required |      |       |               |                                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|------|-------|---------------|--------------------------------|--|--|--|--|
| 15:00                                                                                                                           | 0:20 | 15:20 | Z. Conway     | 121.3.4 Linac - HWR            |  |  |  |  |
| 15:20                                                                                                                           | 0:40 | 16:00 | D. Passarelli | 121.3.5-6 Linac - SSR1, SSR2   |  |  |  |  |
| 16:00                                                                                                                           | 0:40 | 16:40 | A. Rowe       | 121.3.7-8 Linac - LB650, HB650 |  |  |  |  |
| 16:40                                                                                                                           | 0:40 | 17:20 | A. Klebaner   | 121.3.11 Linac - Cryogenics    |  |  |  |  |



## **Summary**

- All L3 WBS requirements are defined and traceable
- Cryo systems and cryomodule designs are sufficiently advanced to proceed to CD-1
- Milestone driven design review schedules through all WBS's are developed
- Cost and schedule drivers including risks are understood
- Partnerships between multiple laboratories throughout the world are established
- ESH&Q plans, risks, and mitigation strategies are developed.
- We are ready for CD-1 and look forward to your feedback
- Thank you for your attention







