Fermilab **BENERGY** Office of Science

121.3.4 Linac – HWR (Half-Wave Resonator)

SC Acceleration Modules and Cryogenics

Zachary Conway PIP-II Director's Review 19-21 September 2017

In partnership with:

India Institutes Fermilab Collaboration Istituto Nazionale di Fisica Nucleare Science and Technology Facilities Council

Outline

- Who am I and Organization
- Half-Wave Resonator (HWR) cryomodule requirements.
- HWR cryomodule design overview.
- Scope/deliverables.
- Interface control document for the HWR cryomodule.
- Fabrication and testing status.
- FNAL ESH&Q and Argonne HSE (Health, Safety and Environment)
- Risk assessment.
- Cost.
- Future schedule.
- Summary.

Argonne National Laboratory - Accelerator Development Group:

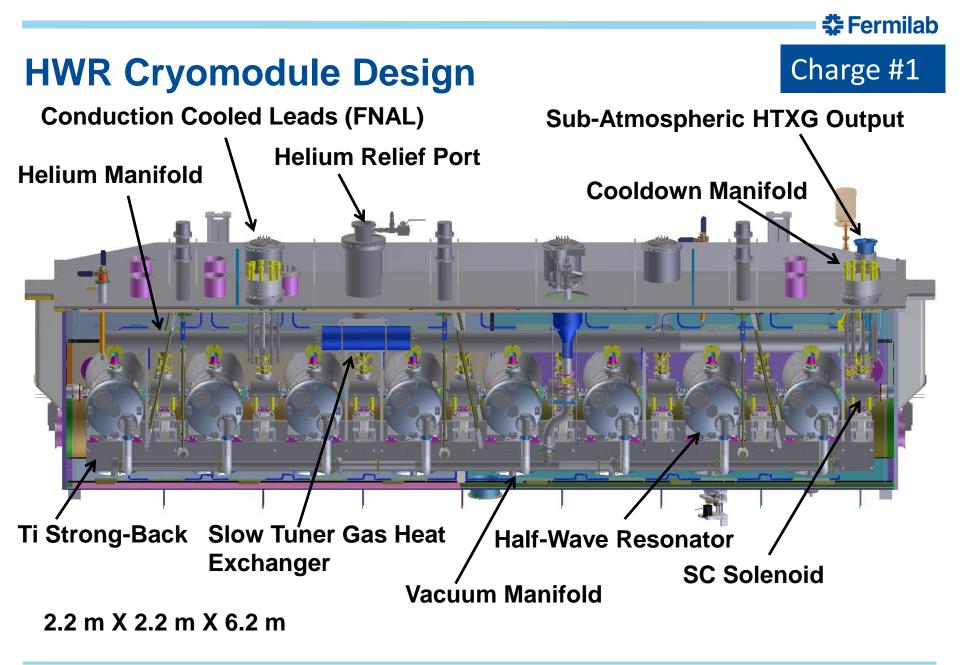
- Designing, building and commissioning superconducting accelerators since 1977.
 - Kenneth W. Shepard still works ¹/₂ day per week and started in 1977.
- I was Ken's graduate student and have been working in the field of SRF since 2007 (date of my Ph.D.).
- My experience:
 - Superconducting resonators spanning ion/electron velocities from 0.05c to c.
 - All ancillary hardware.
 - 6 different types of superconducting resonator cryomodules operating at 2.0 or 4.5 K.
 - Superconducting accelerator commissioning.

Project Organization

- Cryomodule and subcomponents designed by FNAL and ANL.
- ANL is fabricating and assembling the half-wave resonator (HWR) cryomodule.
- At ANL:
 - Group Leader = Mike Kelly.
 - Technical Lead = Zack Conway.
- FNAL:
 - Project liaison: Andrei Lunin (attends weekly status meetings at ANL and provides interface between FNAL/ANL).
 - Project Engineer: Allan Rowe

WBS 121.3.4 Linac – HWR System Req.Charge #1TC# ED0001313 Tech. Spec. for HWR Cryomodule

- The half-wave resonator (HWR) cryomodule contains 8 β = 0.11 HWRs and 8 6 T solenoids with integrated x-y dipole steering coils.
- The HWR cryomodule is planned to operate cw with a beam current of up to 2 mA to accelerate the beam from 2.1 – 10.3 MeV.


🛟 Fermilab

Charge #1

Interface Control

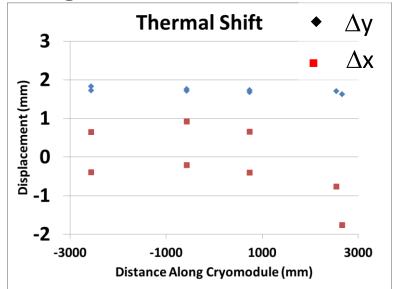
- TC# ED0001313: Technical Specification for the Interfaces of the FNAL Project-X Half-Wave Resonator Cryomodule:
 - Interfaces, operating limits, connection types, locations and their functions are described.
 - Detailed pin diagrams for all electrical connections.
 - All mechanical connections are specified along with their flanges and purpose.
 - Alignment hardware and monitoring capabilities described.
 - Comprehensive description of all cryogenic interfaces with operating limits.
- Interfaces extend from the up- to the down-stream beam line flanges.
- The interface control document has been modified to suit the developing needs of the project.
- Technical specification for the interfaces is supplemented with ~weekly documented integration meetings.

Charge #1

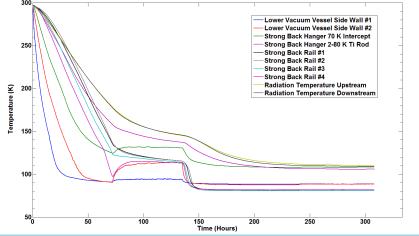
HWR Cryomodule Reviews

- Design/safety reviews for the HWRs and cryomodule were held at Argonne (ANL) with FNAL and ANL subject matter experts performing the reviews:
 - HWR review 5/17/2012, and
 - cryomodule review 5/16/2013.
- All design reviews were conducted in compliance with ANL's procedures, LMS-PROC-305.
- Procurement readiness reviews were carried out at ANL.

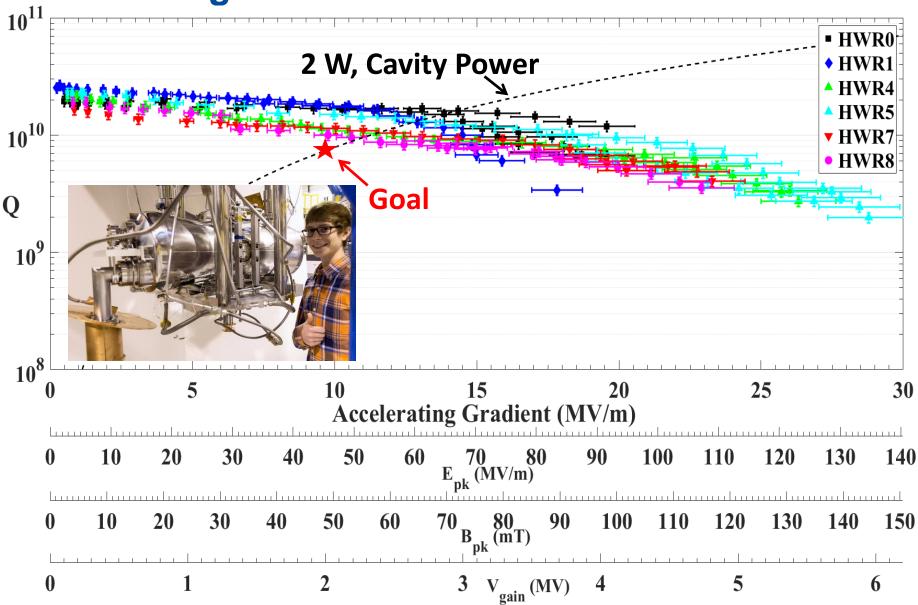
HWR Cryomodule Mock Assembly



Cryomodule Testing Cryomodule Alignment


Alignment Measurements

Cryomodule Assembly



Cool Down Data

HWR Testing

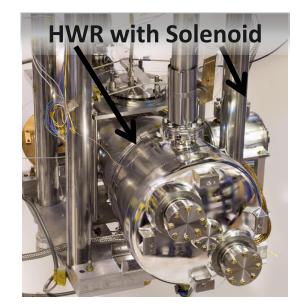
10 10/4/2017 Z. Conway | 121.3.4 Linac – HWR | SC Acceleration Modules and Cryogenics

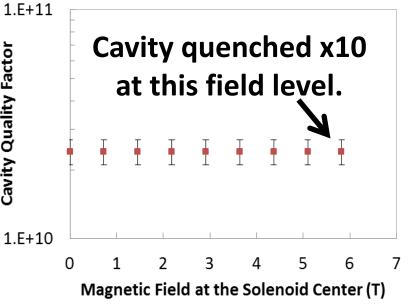
🛟 Fermilab

ANL/FNAL Collaboration on Surface Processing

162 MHz Cavity Electropolishing

Electropolishing,

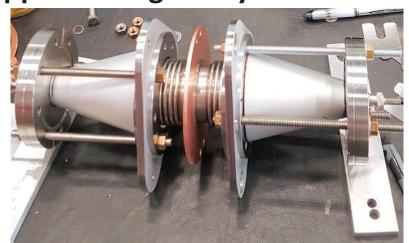

325 MHz BCP

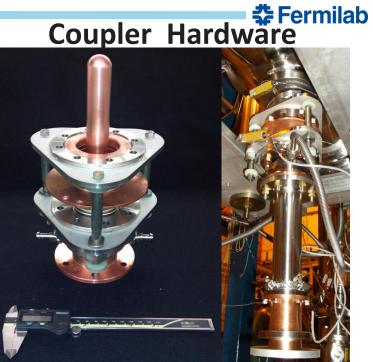


🛠 Fermilab

HWR/Solenoid Testing

- To decrease the accelerator lattice length we have integrated x-y steering coils into the focusing solenoid package.
- Important design issue:
 - Minimize stray field @ the RF cavity to prevent performance degradation due to trapped magnetic flux.
- Measured RF surface resistance with a sensitivity of ±0.1 nOhm avity Quality Factor before and after each quench of the cavity.
- The cavity was quenched with the solenoid and the steering coils energized.
- No quantifiable change to the cavity RF surface resistance.



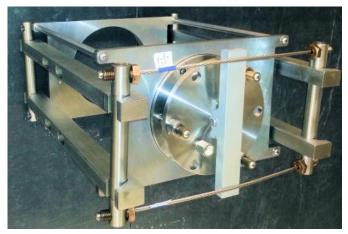


Power Coupler Progress

- Power coupler testing on HWRs starting soon.
 - The first HWR is dressed and ready for testing.
- Offline measurements are good.
- Q ~ 10000 or > 80% of calculated value for pure copper for both replated bellows
- However, one bellows had a pinhole after stripping and replating
- All 10 bellows assemblies will be remade and plated at AJ Tuck

Copper Plating Purity Measurement

‡ Fermilab


Slow Tuners

- The HWR cryomodule will use pneumatic slow tuners → pneumatic slow tuners have been in operation at Argonne on superconducting cavities since the 1970s.
- Slow tuners are install on all HWRs during offline testing.
 - Slow tuners are actuated through their full range to verify response.
 - 162.5 MHz ± 60 kHz is exceeded for all HWRs
- Slow tuners are operating as planned and testing has demonstrated this.

HWR with Slow Tuner

Slow Tuner

Interfaces

WBS Number	Title	Docdb #
121.3.4.2	BOE Document for 121.3.4.2 HWR PM and Coordination	<u>704 – v18</u>
121.3.4.3.2	BOE Document for 121.3.4.3.2. HWR Cryomodule Final Integration	<u>710 – v13</u>
121.3.4.3.3	BOE Document for 121.3.4.3.3 HWT Cryomodule: Cryomodule RF Test at PIP2IT	<u>713 – v14</u>

• The interfaces for the HWR cryomodule are specified in the Interface Control Document TC# ED0001313

Charge #4

ESH&Q

- Safety is our highest priority.
- Argonne has a robust program to ensure work and environmental safety.
- Providing a working piece of hardware goes hand-in-hand with work planning and control at Argonne.
- Work at FNAL is being planned in compliance with:
 - FESHM, and
 - ED0001313 Technical Specifications for the HWR Cryomodule,
 - Docdb # 710 HWR Cryomodule Final Integration, and
 - Docdb # 713 Cryomodule RF Test at PIP2IT.

Risk: HWR

HWR Cryomodule does not meet technical performance requirements

Title	Probability	Probability Score	Impact Score - Cost 🔽	Impact Score - Schedul	Risk Rank	P * Impact (k\$) ▼	
HWR Cryomodule does not meet technical performance requirements	20.00%	2 (L)	2 (M)	3 (H)	2 (Medium)	217	2.4

18 10/4/2017 Z. Conway | 121.3.4 Linac – HWR | SC Acceleration Modules and Cryogenics

Cryomodule RF Test at PIP2IT

WBS Number	Title
121.3.4.2	BOE Document for 121.3.4.2 HWR PM and

BOE Document for 121.3.4.3.2 HWR Cryomodule Final

BOE Document for 121.3.4.3.3 HWT Cryomodule:

Coordination

Integration

BOE Summary

121.3.4.3.2

121.3.4.3.3

Docdb #

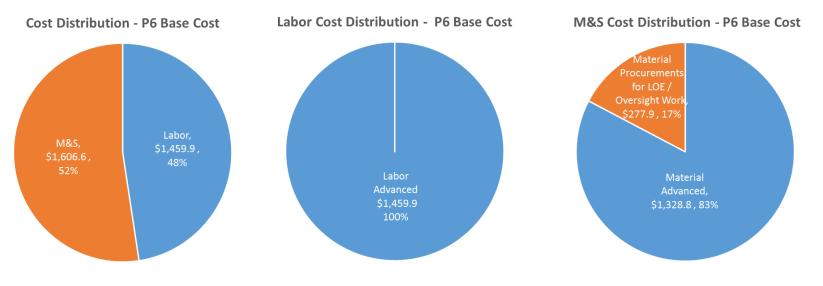
<u>704 – v18</u>

<u>710 – v13</u>

<u>713 – v14</u>

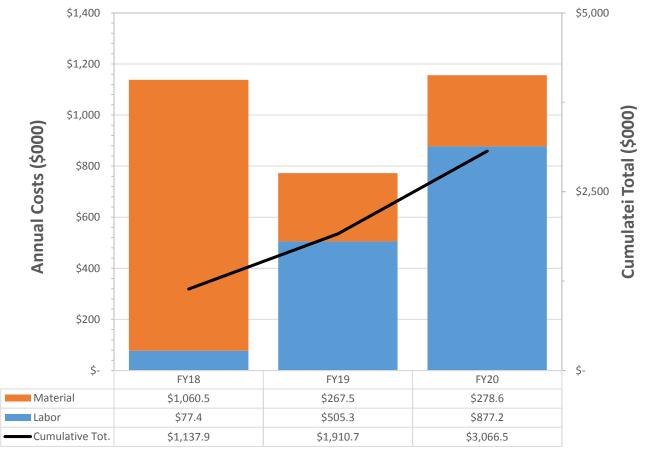
10/4/2017 Z. Conway | 121.3.4 Linac – HWR | SC Acceleration Modules and Cryogenics 19

St 3 U	ary	


WBS Element	Hours	Lab	or (\$000)	\$000) M&S (\$000)		Est. Uncertanity (\$000)				
121.3.4 - Linac - Half Wave Resonator									Тс	otal Cost
(HWR)	P6 Hours	P6	Base Cost	P6	Base Cost		Total	% of Base	Inc	l. Uncrty.
121.3.4.2 - Linac - HWR - Project Management and Coordination	972	\$	147.8	\$	3.3	\$	15.4	10.2%	\$	166.5
121.3.4.3 - Linac - HWR - CryoModule (HWR)	8,047	<u>\$</u>	1,312.1	\$	1,603.3	<u>\$</u>	555.3	<u>19.0</u> %	<u>\$</u>	3,470.8
Grand Total	9,019	\$	1,459.9	\$	1,606.6	\$	570.7	18.6%	\$	3,637.3
Note: P6 base cost = BOE + overheads and escalation										

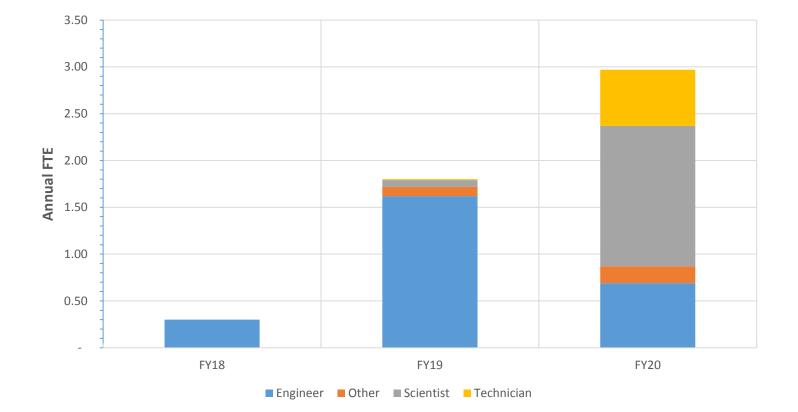
O K) /

Cost Drivers and Estimate Maturity

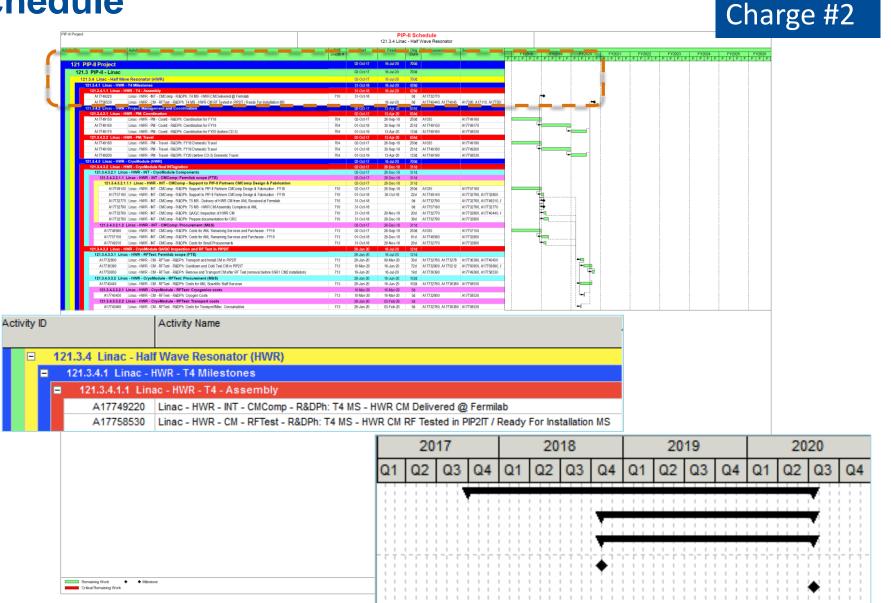


P6 Base Costs = BOE + Overheads + Escalation

Fermilab


Cost Profile – P6 Base Cost Only

P6 Base Costs = BOE + Overheads + Escalation


Labor Profile – P6 Hours/FTE

‡ Fermilab

Schedule

Summary

- Requirements are defined and traceable.
- Cryomodule and subsystems are almost finished.
 - Then final assembly.
- The cryomodule will be finished and ready for PIP-II.
- Thank you for your attention.

